Edge-Maximal Graphs Containing No r Vertex-Disjoint Triangles

Mohammad Hailat ${ }^{1}$
${ }^{1}$ Department of Mathematical Scieces, University of South Carolina Aiken, USA
Correspondence: Mohammad Hailat, Department of Mathematical Scieces, University of South Carolina Aiken, SC 28801, USA. E-mail: mohammadh@usca.edu

Received: November 11, 2017 Accepted: December 14, 2017 Online Published: January 15, 2018
doi:10.5539/jmr.v10n1p110 URL: https://doi.org/10.5539/jmr.v10n1p110

Abstract

An important problem in graph theory is that of determining the maximum number of edges in a given graph G that contains no specific subgraphs. This problem has attracted the attention of many researchers. An example of such a problem is the determination of an upper bound on the number of edges of a graph that has no triangles. In this paper, we let $\mathcal{G}\left(n, V_{r, 3}\right)$ denote the class of graphs on n vertices containing no r-vertex-disjoint cycles of length 3 . We show that for large $n, \mathcal{E}(G) \leqslant\left\lfloor\frac{(n-r+1)^{2}}{4}\right\rfloor+(r-1)(n-r+1)$ for every $G \in \mathcal{G}\left(n, V_{r, 3}\right)$. Furthermore, equality holds if and only if $G=\Omega(n, r)=K_{r-1,\left\lfloor\frac{n-r+1}{2}\right\rfloor,\left\lceil\frac{n-r+1}{2}\right\rceil}$ where $\Omega(n, r)$ is a tripartite graph on n vertices.

Keywords: vertex-disjoint cycles, tripartite graphs
2010 Mathematics Subject Classification: Primary 05C38; Secondary 05C35

1. Introduction

In this paper, we only consider simple graphs with vertex set $V(G)$ and edge set $E(G)$. If an edge $e \in E(G)$ is incident with the two vertices u and v in $V(G)$, we write $e=u v=v u$. For a vertex $u \in V(G)$ the neighborhood of u, denoted by $N_{G}(u)$, is the set of vertices $v \in V(G)$ such that $u v \in E(G)$. The degree $d_{G}(u)$ is the cardinality of $N_{G}(u)$.

For vertex-disjoint subgraphs H_{1} and H_{2} of G, we let $E\left(H_{1}, H_{2}\right)$ to be the set of all edges that are incident to a vertex in H_{1} and a vertex in H_{2}. That is $E\left(H_{1}, H_{2}\right)=\left\{u v \in E(G) \mid u \in V\left(H_{1}\right), v \in H_{2}\right\}$. We also define $\mathcal{E}(G)$ to be the cardinality of $E(G)$ and $\mathcal{E}\left(H_{1}, H_{2}\right)=\left|E\left(H_{1}, H_{2}\right)\right|$. The cycle on n vertices is denoted by C_{n} and the complete tripartite graph with partitioning sets of order m, n and k is denoted by $K_{m, n, k}$. For given graphs G_{1} and G_{2} we denote the union of G_{1} and G_{2} by $G_{1}+G_{2}$ such that $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1}+G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. We also denote the joint of G_{1} and G_{2} by $G_{1} \vee G_{2}$ such that $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E\left(G_{1}, G_{2}\right)$.
An important problem in extremal graph theory is the determination of maximum number of edges a graph has under a condition that the given graph has no specific subgraphs. Such an example is finding an upper bound for $\mathcal{E}(G)$ whenever G has no triangles (cycles of length 3) or, in general, G has no odd disjoint cycles. We have two types of disjoint cycles, the first type is edge-disjoint cycles, and the second type is vertex-disjoint cycles. Note that vertex-disjoint cycles are edge-disjoint cycles, but not vice-versa.
The determination of maximum number of edges in a graph that forbids certain subgraphs has attracted the attention of many graph researchers. For example, Höggkvist et al in (Höggkvist, R., Faudree, R. J., \& Schelp, R. H., 1981) proved that $\mathcal{E}(G) \leqslant\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1$ for a non bipartite graph G with n vertices that contains no odd cycle $C_{2 k+1}$ for all positive integers k. In (Bataineh, M., \& Jaradat, M. M. M. , 2012), M. Bataineh and M. Jaradat proved that $\mathcal{E}(G) \leqslant\left\lfloor\frac{n^{2}}{4}\right\rfloor+r-1$ for any graph $G \in \mathcal{G}(n ; r, 2 k+1)$ for large n and $r \geqslant 2, k \geqslant 1$, where $\mathcal{G}(n ; r, 2 k+1)$ is the set of all graphs on n vertices containing no r edge-disjoint cycles of length $2 k+1$. In (Bataineh, M.), Bataineh proved that $\mathcal{E}(G) \leqslant\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+n-1$ for every graph $G \in \mathcal{G}\left(n ; V_{2 k+1}\right)$ where $\mathcal{G}\left(n ; V_{2 k+1}\right)$ is the class of graphs on n vertices containing no vertex-disjoint cycles of length $2 k+1$.
In this paper, we will generalize a result that is parallel to the result of (Bataineh, M., \& Jaradat, M. M. M., 2012) in which we considered here no r vertex-disjoint cycles of length 3 instead of edge-disjoint cycles discussed in (Bataineh, M., \& Jaradat, M. M. M., 2012).

2. Important Lemmas and Theorems

In this section, we introduced necessary background that are needed in proving the main results of this paper.
2.1 Lemma. (Bondy and Murty, 1976) Let G be a graph on n vertices. If $\mathcal{E}(G)>\frac{n^{2}}{4}$, then G contains a cycle of length $2 k+1$ for each $1 \leqslant k \leqslant\left\lfloor\frac{n+3}{4}\right\rfloor-\frac{1}{2}$.
2.2 Theorem. (Batineh and Jaradat, 2012) Let $k \geqslant 1, r \geqslant 2$ be two integers and $g \in \mathcal{G}(n ; r, 2 k+1)$. For large n,
$\mathcal{E}(G) \leqslant\left\lfloor\frac{n^{2}}{4}\right\rfloor+r-1$. Furthermore. equality holds if and only if $G \in \Omega(n, r)=K_{r-1,\left\lfloor\frac{n-r+1}{2}\right\rfloor,\left\lceil\frac{n-r+1}{2}\right\rceil}$.
2.3 Theorem. (Bataineh, 2012) Let $k \geqslant 1$ be an integer and $G \in \mathcal{G}\left(n, V_{2 k+1}\right)$. Then for $n>\max \left\{\frac{4 k^{3}+15 k^{2}+11 k-5}{2}, 4\left(4 k^{2}+\right.\right.$ $8 k-3)+1\}, \mathcal{E}(G) \leqslant\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+n-1$. Furthermore, equality holds if and only if $G=\Omega(n, 2)$.

3. Main Result

In this section, we generalize a special case of Theorem 2.3 to the case where $G \in \mathcal{G}\left(n, V_{r}, 3\right)$. That is to the case where G is a graph on n vertices containing no r vertex-disjoint cycles of length 3 . We start with $r=2$.
3.1 Theorem. Let k be a positive integer and $G \in \mathcal{G}(n, 2,3)$. Then for large $n, \mathcal{E}(G) \leqslant\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+n-1$. Furthermore, equality holds if and only if $G=\Omega(n, 2)$.

Proof. Since $G \in \mathcal{G}(n, 2,2 k+1)$, then G has no two vertex-disjoint cycles of length 3 . Suppose first that G has no cycle of length 3 . Then for $n \geqslant 11$, we have $3 \leqslant\left\lfloor\frac{n+3}{3}\right\rfloor$, so that, using Lemma 2.1 we have:

$$
\begin{aligned}
\mathcal{E}(G) & \leqslant\left\lfloor\frac{n^{2}}{4}\right\rfloor \\
& =\left\lfloor\frac{((n-1)+1)^{2}}{4}\right\rfloor \\
& \leqslant\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+\frac{2(n-1)}{4}+\frac{1}{4}+1 \\
& \leqslant\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+(n-1) \quad \text { for } n \geqslant 11
\end{aligned}
$$

Now if G has a cycle of length 3 , then for large $n, \mathcal{E}(G) \leqslant\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+n-1$ by Theorem 2.3. Note that if $G=\Omega(n, 2)=$ $K_{1,\left\lfloor\frac{n-1}{2}\right\rfloor\left\lceil\frac{n-1}{2}\right\rceil}$ then

$$
\mathcal{E}(G)=\left\lceil\frac{n-1}{2}\right\rceil+\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lceil\frac{n-1}{2}\right\rceil\left\lfloor\frac{n-1}{2}\right\rfloor=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+(n-1)
$$

Therefore, equality holds if and only if $G=\Omega(n, 2)$.
To prove the main theorem we have to introduce Turán graphs since these graphs play a major role in the proof.
3.2 Definition. The complete s-partite graph on n vertices with part sizes being $\left\lceil\frac{n}{s}\right\rceil$ or $\left\lfloor\frac{n}{s}\right\rfloor$ is called Turán graph. We denote this graph by $T_{n, s}$.

Note that Turán graph is K_{s+1} free, where K_{s+1} is the complete graph on ($s+1$)-vertices. In (Conlon, D.), David Conlon introduced the following statement of Turán's theorem.
3.3 Theorem. (Turán) If G is an n-vertex K_{s+1}-free graph, then it contains at most $\mathcal{E}\left(T_{n, s}\right)$ edges.

In addition, Conlon introduced three different proofs of Turáns Theorem. In proof 2 (Zykovs Symmetrization), he concluded that the set of vertices of a K_{s+1}-free graph G on n vertices with maximum number of edges can be partitioned into two equivalence classes. In these classes, vertices in the same class are non-adjacent and vertices in different classes are adjacent. Since the graph G is K_{s+1}-free, it must be a complete s-partite graph. Note that $T_{n, s}$ is the unique graph that maximizes the number of edges among such graphs.
3.4 Theorem. Let G be a graph that has $(r-1)$ vertex-disjoint cycles $C_{1}, C_{2}, \ldots, C_{r-1}$, but no r vertex disjoint cycles of length 3 and let $H=G-\bigcup_{i=1}^{r-1} G\left(C_{i}\right)$. Then $\mathcal{E}\left(\bigcup_{i=1}^{r-1} G\left(C_{i}\right), H\right) \leqslant 2(r-1)(n-r+1)-4(r-1)^{2}$ and $\mathcal{E}\left(\bigcup_{i=1}^{r-1} G\left(C_{i}\right)\right) \leqslant 3(r-1)^{2}$.

Proof. Note that H is K_{3} free graph since, otherwise, G would have r vertex-disjoint cycles of length 3, a contradiction to the assumption. Let H^{\prime} be a graph on the vertices of H with a maximum number of edges. Note that $|V(H)|=\left|V\left(H^{\prime}\right)\right|=$ $n-3(r-1)=(n-r+1)+2(r-1), \mathcal{E}(H) \leqslant \mathcal{E}\left(H^{\prime}\right)$, and $\mathcal{E}\left(\bigcup_{i=1}^{r-1} G\left(C_{i}\right), H\right) \leqslant \mathcal{E}\left(\bigcup_{i=1}^{r-1} G\left(C_{i}\right), H^{\prime}\right)$.
Let $n^{\prime}=n-3(r-1)=\left|V\left(H^{\prime}\right)\right|$. Since H^{\prime} is K_{2+1}-free graph then, using proof 2 of Turáns theorem, H^{\prime} is $T_{n^{\prime}, 2}$ and the vertices of H^{\prime} can be partitioned into two equivalent classes H_{1}^{\prime} and H_{2}^{\prime} where $\left|V\left(H_{1}^{\prime}\right)\right|=\left\lceil\frac{n^{\prime}}{2}\right\rceil$ and $\left|V\left(H_{2}^{\prime}\right)\right|=\left\lfloor\frac{n^{\prime}}{2}\right\rfloor$. Note
that vertices in H_{1}^{\prime} are non-adjacent and, also, vertices in H_{2}^{\prime} are non-adjacent, but vertices in H_{1}^{\prime} are adjacent to vertices in H_{2}^{\prime}. In Figure 1, let

Figure 1

Note that $\left|H_{1}^{\prime}\right|=\left\lceil\frac{n-3(r-1)}{2}\right\rceil$ and $\left|H_{2}^{\prime}\right|=\left\lfloor\frac{n-3(r-1)}{2}\right\rfloor$, so that

$$
\begin{aligned}
\mathcal{E}\left(v_{1}, H^{\prime}\right) & \leqslant\left\lfloor\frac{n-3(r-1)}{2}\right\rfloor+\left\lceil\frac{n-3(r-1)}{2}\right\rceil=n-3(r-1) \\
& =(n-r+1)-2(r-1)
\end{aligned}
$$

In Figure 1, if v_{1} is adjacent to a vertex $x \in H_{1}^{\prime}$ and a vertex $y \in H_{2}^{\prime}$ then $C_{1}^{\prime}=v_{1} x y v_{1}$ is a is a cycle of length 3. If u_{1} or w_{1} is adjacent to vertices in H_{1}^{\prime} and H_{2}^{\prime} then we can form another cycle $C_{1}^{\prime \prime}=u_{1} x^{\prime} y^{\prime} u_{1}$. Now if we replace C_{1} with C_{1}^{\prime} and $C_{1}^{\prime \prime}$ then we will have r vertex-disjoint cycles of length 3, a contradiction. It follows that w_{1} and u_{1} are adjacent to H_{1}^{\prime} or H_{2}^{\prime} but not to both. Therefore,

$$
\begin{aligned}
& \mathcal{E}\left(u_{1}, H^{\prime}\right) \leqslant \frac{1}{2}((n-r+1)-2(r-1))=\frac{1}{2}(n-r+1)-(r-1) \\
& \mathcal{E}\left(w_{1}, H^{\prime}\right) \leqslant \frac{1}{2}((n-r+1)-2(r-1))=\frac{1}{2}(n-r+1)-(r-1)
\end{aligned}
$$

so that,

$$
\begin{aligned}
\mathcal{E}\left(G\left(C_{1}\right), H\right) & \leqslant \mathcal{E}\left(G\left(C_{1}\right), H^{\prime}\right) \\
& \leqslant \mathcal{E}\left(v_{1}, H^{\prime}\right)+\mathcal{E}\left(u_{1}, H^{\prime}\right)+\mathcal{E}\left(w_{1}, H^{\prime}\right) \\
& \leqslant(n-r+1)-2(r-1)+\frac{1}{2}(n-r+1)-(r-1)+\frac{1}{2}(n-r+1)-(r-1) \\
& \leqslant 2(n-r+1)-4(r-1)^{2} .
\end{aligned}
$$

It follows that

$$
\mathcal{E}\left(\bigcup_{i=1}^{r-1} G\left(C_{i}\right), H\right) \leqslant 2(r-1)(n-r+1)-4(r-1)^{2}
$$

Note that, without loss of generality, $w_{1}, w_{2}, \ldots, w_{r-1}$ are adjacent to vertices in H_{2}^{\prime} and $v_{1}, v_{2}, \ldots, v_{r-1}$ are adjacent to vertices in H_{1}^{\prime}. Note, also, that $K=G-G\left(\left\{v_{1}, \ldots, v_{r-1}\right\}\right)$ is K_{3} free and, therefore, K can be partitioned into two sets K_{1}^{\prime} and K_{2}^{\prime} where $w_{1}, \ldots, w_{r-1} \in K_{1}^{\prime}, H_{1}^{\prime} \subset K_{1}^{\prime}, v_{1}, \ldots, v_{r-1} \in K_{2}^{\prime}$, and $H_{2}^{\prime} \subset K_{2}^{\prime}$. Therefore, $w_{i} w_{j} \notin E(G)$ and $v_{i} v_{j} \notin E(G)$. Also, $v_{i} v_{j} \notin G$ since, otherwise, we will have r-vertex disjoint cycle of length 3. It follows that

$$
\mathcal{E}\left(\bigcup_{i=1}^{r-1} G\left(C_{i}\right)\right) \leqslant\left|K_{r-1, r-1, r-1}\right|=3(r-1)^{2} .
$$

Now we have our main result.
3.5 Theorem. Let $G \in \mathcal{G}\left(n, V_{r}, 3\right)$. Then for large n,

$$
\mathcal{E} \leqslant\left\lfloor\frac{(n-r+1)^{2}}{4}\right\rfloor+(r-1)(n-r+1)
$$

Furthermore, equality holds if and if $G=\Omega(n, r)$.
Proof. Suppose G is a graph on n vertices containing no r vertex-disjoint triangles. That is G has no r vertex-disjoint cycles each of length 3. We prove the theorem by induction on r. For $r=2$, the result holds by Theorem 3.1.
Now suppose the result is true for $r-1$. We need to show that it is true for r. For this, let $G \in \mathcal{G}(n, r, 3)$. If G contains no ($r-1$) vertex-disjoint cycles of length 3 , then by induction:

$$
\begin{aligned}
\mathcal{E}(G) & \leqslant\left\lfloor\frac{(n-(r-1)+1)^{2}}{4}\right\rfloor+((r-1)-1)(n-(r-1)+1) \\
& =\left\lfloor\frac{(n-r+2)^{2}}{4}\right\rfloor+(r-2)(n-r+2) \\
& \leqslant \frac{\left.(n-r+1)^{2}+2(n-r+1)+1+4((r-1)-1)(n-(r-1)+1)\right)}{4}+1 \\
& =\frac{(n-r+1)^{2}}{4}+\frac{2(n-r+1)+4(r-1)(n-r+1)+4(r-1)-4(n-r+1)-4}{4}+1 \\
& =\frac{(n-r+1)^{2}}{4}+(r-1)(n-r+1)-\frac{1}{2}(n-r+1)(r-1)-1+1 \\
& \leqslant\left\lfloor\frac{(n-r+1)^{2}}{4}\right\rfloor+(r-1)(n-r+1), \quad \text { for } n \geqslant 3 r-3 .
\end{aligned}
$$

Therefore, we now assume that G has $(r-1)$ vertex-disjoint cycles of length 3 and has no r vertex-disjoint cycles of length 3. Let $C_{1}, C_{2}, \ldots, C_{r-1}$ be such cycles. Let $H=G-\bigcup_{i=1}^{r-1} G\left(C_{i}\right)$, so that H has no cycle of length 3 since, otherwise, G will have r vertex-disjoint cycles of length 3 . Note that $n^{\prime}=|V(H)|=n-3(r-1)=(n-r+1)-2(r-1)$. Since H has no cycle of length 3 then, using Lemma 2.1, we have;

$$
\begin{aligned}
\mathcal{E}(H) & \leqslant\left\lfloor\frac{n^{\prime 2}}{4}\right\rfloor=\left\lfloor\frac{((n-r+1)-2(r-1))^{2}}{4}\right\rfloor \\
& \leqslant\left\lfloor\frac{(n-r+1)^{2}}{4}\right\rfloor-(r-1)(n-r+1)+(r-1)^{2}
\end{aligned}
$$

Also, using Theorem 3.4, we have

$$
\begin{aligned}
\mathcal{E}\left(H, \bigcup_{i=1}^{r-1} G\left(C_{i}\right)\right) & \leqslant 2(r-1)(n-r+1)-4(r-1)^{2} \\
\mathcal{E} & \left(\bigcup_{i=1}^{r-1} G\left(C_{i}\right)\right)
\end{aligned}
$$

so that,

$$
\begin{aligned}
\mathcal{E}(G)= & \mathcal{E}(H)+\mathcal{E}\left(H, \bigcup_{i=1}^{r-1} G\left(C_{i}\right)\right)+\mathcal{E}\left(\bigcup_{i=1}^{r-1} G\left(C_{i}\right)\right) \\
\leqslant & \left\lfloor\frac{(n-r+1)^{2}}{4}\right\rfloor-(r-1)(n-r+1)+(r-1)^{2} \\
& +2(r-1)(n-r+1)-3(r-1)^{2}+3(r-1)^{2} \\
\leqslant & \left\lfloor\frac{(n-r+1)^{2}}{4}\right\rfloor+(r-1)(n-r+1)
\end{aligned}
$$

Furthermore, we conclude that equality holds for $\Omega(n, r)=K_{r-1,\left\lfloor\frac{n-r+1}{2}\right\rfloor,\left\lceil\frac{n-r+1}{2}\right\rceil}$ since

$$
\begin{aligned}
\mathcal{E}(\Omega(n, r)) & =(r-1)\left\lfloor\frac{n-r+1}{2}\right\rfloor+(r-1)\left\lfloor\frac{n-r+1}{2}\right\rceil+\left\lceil\frac{n-r+1}{2}\right\rceil\left\lfloor\frac{n-r+1}{2}\right\rfloor \\
& =(r-1)\lfloor n-r+1\rfloor+\left\lfloor\frac{(n-r+1)^{2}}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-r+1)^{2}}{4}\right\rfloor+(r-1)(n-r+1) .
\end{aligned}
$$

References

Bataineh, M. Edge-maximal graphs containing no vertex-disjoint cycles of length $2 k+1$. To appear in Jordan Journal of Mathematics and Statistics.
Bataineh, M., \& Jaradat, M. M. M. (2012). Edge Maximal C2k+1-edge disjoint free graphs. Discussion Mathematicae Graph Theory, 32, 271-278.
Bondy, J., \& Murty, U. (1976). Graph Theory with Applications, London, UK: The MacMillan Press.
Conlon, D. Extremal Graph Theory, Lecture 1.
Höggkvist, R., Faudree, R. J., \& Schelp, R. H. (1981). Pancyclic graphs-connected Ramsey number. Ars Comb, 11, 37-49.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

