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Abstract

An important problem in graph theory is that of determining the maximum number of edges in a given graph G that
contains no specific subgraphs. This problem has attracted the attention of many researchers. An example of such a
problem is the determination of an upper bound on the number of edges of a graph that has no triangles. In this paper,
we let G(n, V,.3) denote the class of graphs on n vertices containing no r-vertex-disjoint cycles of length 3. We show that
for large n, &(G) < LWJ + (r—1Dm—-r+1) for every G € G(n,V,3). Furthermore, equality holds if and only if
G =Qn,r) = Kr—hL%M%] where Q(n, r) is a tripartite graph on n vertices.

Keywords: vertex-disjoint cycles, tripartite graphs
2010 Mathematics Subject Classification: Primary 05C38; Secondary 05C35
1. Introduction

In this paper, we only consider simple graphs with vertex set V(G) and edge set E(G). If an edge e € E(G) is incident
with the two vertices u and v in V(G), we write e = uv = vu. For a vertex u € V(G) the neighborhood of u, denoted by
Ng(u), is the set of vertices v € V(G) such that uv € E(G). The degree d(u) is the cardinality of Ng(u).

For vertex-disjoint subgraphs H, and H, of G, we let E(H,, H;) to be the set of all edges that are incident to a vertex in
H, and a vertex in H,. Thatis E(H,H,) = {uv € E(G) | u € V(H,),v € H,}. We also define &(G) to be the cardinality
of E(G) and EH,, Hy) = |E(H|, H>)|. The cycle on n vertices is denoted by C,, and the complete tripartite graph with
partitioning sets of order m, n and & is denoted by K, , . For given graphs G| and G, we denote the union of G| and G,
by G| + G such that V(G| + G») = V(G) U V(G,) and E(G + G,) = E(G) U E(G,). We also denote the joint of G| and
G, by G V Gy such that V(G V G;) = V(G) U V(G») and E(G, V Gy) = E(G)) U E(G,) U E(Gy,G»).

An important problem in extremal graph theory is the determination of maximum number of edges a graph has under a
condition that the given graph has no specific subgraphs. Such an example is finding an upper bound for & G) whenever
G has no triangles (cycles of length 3) or, in general, G has no odd disjoint cycles. We have two types of disjoint cycles,
the first type is edge-disjoint cycles, and the second type is vertex-disjoint cycles. Note that vertex-disjoint cycles are
edge-disjoint cycles, but not vice-versa.

The determination of maximum number of edges in a graph that forbids certain subgraphs has attracted the attention of
many graph researchers. For example, Hoggkvist et al in (Hoggkvist, R., Faudree, R. J., & Schelp, R. H., 1981) proved
that E(G) < L@J + 1 for a non bipartite graph G with n vertices that contains no odd cycle Cy; for all positive integers

k. In (Bataineh, M., & Jaradat, M. M. M. , 2012), M. Bataineh and M. Jaradat proved that E(G) < L%J + r — 1 for any
graph G € G(n;r,2k + 1) forlarge nand r > 2, k > 1, where G(n; r, 2k + 1) is the set of all graphs on n vertices containing

no r edge-disjoint cycles of length 2k + 1. In (Bataineh, M.), Bataineh proved that £(G) < L%J +n — 1 for every graph
G € G(n; Vory1) where G(n; Vore1) 1s the class of graphs on n vertices containing no vertex-disjoint cycles of length 2k + 1.

In this paper, we will generalize a result that is parallel to the result of (Bataineh, M., & Jaradat, M. M. M., 2012) in which
we considered here no r vertex-disjoint cycles of length 3 instead of edge-disjoint cycles discussed in (Bataineh, M., &
Jaradat, M. M. M., 2012).

2. Important Lemmas and Theorems

In this section, we introduced necessary background that are needed in proving the main results of this paper.

2.1 Lemma. (Bondy and Murty, 1976) Let G be a graph on n vertices. If E(G) > é, then G contains a cycle of length
2k + 1 foreach 1 <k <|"=2|-1.

2.2 Theorem. (Batineh and Jaradat, 2012) Let k > 1, r > 2 be two integers and g € G(n;r,2k + 1). For large n,
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&EG) < I_’Z—ZJ + r — 1. Furthermore. equality holds if and only if G € Q(n,r) = Kr—LL%M%T

2.3 Theorem. (Bataineh, 2012) Let k > 1 be an integer and G € G(n, Vo+1). Then for n > max{w,ﬁﬂcz +
8k—-3)+ 1}, EG) € Lﬁj +n — 1. Furthermore, equality holds if and only if G = Q(n, 2).

3. Main Result

In this section, we generalize a special case of Theorem 2.3 to the case where G € G(n, V,, 3). That is to the case where G
is a graph on n vertices containing no r vertex-disjoint cycles of length 3. We start with r = 2.

3.1 Theorem. Let k be a positive integer and G € G(n,2,3). Then for large n, &(G) < Lﬁj +n — 1. Furthermore,
equality holds if and only if G = Q(n, 2).

Proof. Since G € G(n,2,2k + 1), then G has no two vertex-disjoint cycles of length 3. Suppose first that G has no cycle
of length 3. Then forn > 11, we have 3 < L%J, so that, using Lemma 2.1 we have:

2
&G) < {”—J

4
=1+ 1)
B 4

2

g{(n—l)J+2(n—l)+l+1

4 4

2
g{(n 41)J+(n—1) forn > 11

Now if G has a cycle of length 3, then for large n, E(G) < Lﬁj +n — 1 by Theorem 2.3. Note that if G = Q(n,2) =

KI,L"%IH%-\ then
_n-1 n—1 n—1|ln—-1|_ (n—-1)?
co-[r5 |5 [ e

Therefore, equality holds if and only if G = Q(n, 2). O

To prove the main theorem we have to introduce Turdn graphs since these graphs play a major role in the proof.

3.2 Definition. The complete s-partite graph on n vertices with part sizes being H] or [%J is called Turdn graph. We
denote this graph by T, ;.

Note that Turan graph is Ky, free, where K, is the complete graph on (s + 1)-vertices. In (Conlon, D.), David Conlon
introduced the following statement of Turdn’s theorem.

3.3 Theorem. (Turdn) If G is an n-vertex K. \-free graph, then it contains at most E(T,, ;) edges.

In addition, Conlon introduced three different proofs of Turdns Theorem. In proof 2 (Zykovs Symmetrization), he con-
cluded that the set of vertices of a K. -free graph G on n vertices with maximum number of edges can be partitioned into
two equivalence classes. In these classes, vertices in the same class are non-adjacent and vertices in different classes are
adjacent. Since the graph G is K. -free, it must be a complete s-partite graph. Note that T, ; is the unique graph that
maximizes the number of edges among such graphs.

3.4 Theorem. Let G be a graph that has (r — 1) vertex-disjoint cycles Cy, C»,...,C,_1, but no r vertex disjoint cycles of
length 3 andlet H = G - Uf;,l G(C)). Then 8(Uf=_]1 G(C),H) < 2(r-=1)(n—-r+1)—4(r-1)*> and S(Uf;ll G(C)) < 3(r—1)%.

Proof. Note that H is K3 free graph since, otherwise, G would have r vertex-disjoint cycles of length 3, a contradiction to
the assumption. Let H’ be a graph on the vertices of H with a maximum number of edges. Note that |V(H)| = |V(H’)| =
n=3(r-1=@m-r+1)+20-1),8H) < EH), and EUL; G(C), H) < &L, G(C), H).

Letn’ =n—-3(r—1) = |V(H")|. Since H' is K,,-free graph then, using proof 2 of Turdns theorem, H’ is T,/ , and the
vertices of H’ can be partitioned into two equivalent classes H| and H’, where |[V(H])| = {"7'] and |V(H))| = I_%'J. Note
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that vertices in H 1 are non-adjacent and, also, vertices in Hé are non-adjacent, but vertices in H i are adjacent to vertices
in H). In Figure 1, let

Ci = viuywivi

Crol = VU1 Wi—1 V1

Figure 1

Note that |H]| = [#] and |H)| = [#J so that

2 2
=(m-r+1)-2(r—-1)

S H') < {n—S(r—l)J_F{n—S(r—l)

wzn—3(r—1)

In Figure 1, if v is adjacent to a vertex x € Hj and a vertex y € H} then C| = vixyv, is a is a cycle of length 3. If u; or
wy is adjacent to vertices in H| and H) then we can form another cycle C{" = u1x’y’u;. Now if we replace C; with C| and
C{ then we will have r vertex-disjoint cycles of length 3, a contradiction. It follows that w; and u; are adjacent to H] or
H} but not to both. Therefore,

S, H) < (= r+ D=2~ 1) = 51— r+ D=~ 1)
B0, H) < (= r+ D=2~ 1) = S(1=r+ D=~ 1)
so that,
E(G(Cy). H) < SG(C). H')
<EW,H)+Ewi,H) +Ewy, H)

N

(n—r+1)—2(r—1)+%(n—r+1)—(r—1)+%(n—r+1)—(r—l)

N

2n—r+1)—4(r-1>%

It follows that

r—1
S(U G(C), H)<2(r—=D(n—-r+1)—4(r - 1>
i=1
Note that, without loss of generality, wi, w», ..., w,_1 are adjacent to vertices in H), and vy, v, ..., v,_1 are adjacent to
vertices in H{. Note, also, that K = G — G({v1,...,v,1}) is K3 free and, therefore, K can be partitioned into two sets K|
and K} where wy,...,w,1 € K], H C K|, v1,...,v,_1 € K}, and H] C K. Therefore, wyw; ¢ E(G) and viv; ¢ E(G). Also,
vivj & G since, otherwise, we will have r-vertex disjoint cycle of length 3. It follows that

r—1

& JG(EC) < 1K1l = 30 = 17,
i=1
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Now we have our main result.
3.5 Theorem. Let G € G(n, V,,3). Then for large n,

(n—r+1)>

) +(r—-Dm-r+1).

o<

Furthermore, equality holds if and if G = Q(n, r).

Proof. Suppose G is a graph on n vertices containing no r vertex-disjoint triangles. That is G has no r vertex-disjoint
cycles each of length 3. We prove the theorem by induction on r. For r = 2, the result holds by Theorem 3.1.

Now suppose the result is true for » — 1. We need to show that it is true for r. For this, let G € G(n, r, 3). If G contains no
(r — 1) vertex-disjoint cycles of length 3, then by induction:

S(G)qw H (= D= D= =D+ 1)
{W =2 (n-r+2)
g(n—r+1)2+2(n—r+l)+1+4((r—1)—1)(n—(r—1)+1))+1
:(n—2+1)2+2(n—r+1)+4(j—1)(n—r+41)+4(r—1)—4(n—r+1)—4+1
=w+(r—1)(n—r+1)—%(n—r+1)(r—1)—l+]
Q{WJ+(F—1)(H—F+I), forn > 3r - 3.

Therefore, we now assume that G has (r — 1) vertex-disjoint cycles of length 3 and has no r vertex-disjoint cycles of length
3. Let Cy, C3,...,C,; be such cycles. Let H = G — Uf;ll G(C)), so that H has no cycle of length 3 since, otherwise, G
will have r vertex-disjoint cycles of length 3. Note thatn’ = [V(H)|=n-3(r—1)=m—-r+ 1) —2(r — 1). Since H has
no cycle of length 3 then, using Lemma 2.1, we have;

n? (mn=r+1)=2@r-1))7?
< —_— =
s <| |- | .
_ 2
< {%J—u— Dn—r+ 1)+ -1y
Also, using Theorem 3.4, we have
r—1

E(H, UG(C,-)) <2r=Dn—r+1)—4(r-1)>
i=1

r—1
&l Joy <3017
i=1

so that,

r—1 r—1

&(G) = &H) + &H, |_|G(Cy) +&(_J G
i=1 i=1

—(r-Dn-r+D+@-1)7

< {(n—r+1)2
4

+2r=Dn—r+1) =3 =172 +3( - 1)

_ 2
< {M (= Dn-r+1).

4

113



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 1; 2018

Furthermore, we conclude that equality holds for Q(n, r) = K,

=1, n7£+] ”nfgn 1 simce

S(Q(n,r))z(r—l)v_;-'-l F -1 n—;+1}+{n—;+1} n—;+1J
_ 2
S Dln—r s | BT TDJ
_ 2
={% +(r=Dn—r+1).
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