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Abstract

An important problem in graph theory is that of determining the maximum number of edges in a given graph G that
contains no specific subgraphs. This problem has attracted the attention of many researchers. An example of such a
problem is the determination of an upper bound on the number of edges of a graph that has no triangles. In this paper,
we let G(n,Vr,3) denote the class of graphs on n vertices containing no r-vertex-disjoint cycles of length 3. We show that
for large n, E(G) 6 ⌊ (n−r+1)2

4 ⌋ + (r − 1)(n − r + 1) for every G ∈ G(n,Vr,3). Furthermore, equality holds if and only if
G = Ω(n, r) = Kr−1,⌊ n−r+1

2 ⌋,⌈ n−r+1
2 ⌉ where Ω(n, r) is a tripartite graph on n vertices.
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1. Introduction

In this paper, we only consider simple graphs with vertex set V(G) and edge set E(G). If an edge e ∈ E(G) is incident
with the two vertices u and v in V(G), we write e = uv = vu. For a vertex u ∈ V(G) the neighborhood of u, denoted by
NG(u), is the set of vertices v ∈ V(G) such that uv ∈ E(G). The degree dG(u) is the cardinality of NG(u).

For vertex-disjoint subgraphs H1 and H2 of G, we let E(H1,H2) to be the set of all edges that are incident to a vertex in
H1 and a vertex in H2. That is E(H1,H2) = {uv ∈ E(G) | u ∈ V(H1), v ∈ H2}. We also define E(G) to be the cardinality
of E(G) and E(H1,H2) = |E(H1,H2)|. The cycle on n vertices is denoted by Cn and the complete tripartite graph with
partitioning sets of order m, n and k is denoted by Km,n,k. For given graphs G1 and G2 we denote the union of G1 and G2
by G1 +G2 such that V(G1 +G2) = V(G1)∪ V(G2) and E(G1 +G2) = E(G1)∪ E(G2). We also denote the joint of G1 and
G2 by G1 ∨G2 such that V(G1 ∨G2) = V(G1) ∪ V(G2) and E(G1 ∨G2) = E(G1) ∪ E(G2) ∪ E(G1,G2).

An important problem in extremal graph theory is the determination of maximum number of edges a graph has under a
condition that the given graph has no specific subgraphs. Such an example is finding an upper bound for E(G) whenever
G has no triangles (cycles of length 3) or, in general, G has no odd disjoint cycles. We have two types of disjoint cycles,
the first type is edge-disjoint cycles, and the second type is vertex-disjoint cycles. Note that vertex-disjoint cycles are
edge-disjoint cycles, but not vice-versa.

The determination of maximum number of edges in a graph that forbids certain subgraphs has attracted the attention of
many graph researchers. For example, Höggkvist et al in (Höggkvist, R., Faudree, R. J., & Schelp, R. H., 1981) proved
that E(G) 6 ⌊ (n−1)2

4 ⌋+1 for a non bipartite graph G with n vertices that contains no odd cycle C2k+1 for all positive integers
k. In (Bataineh, M., & Jaradat, M. M. M. , 2012), M. Bataineh and M. Jaradat proved that E(G) 6 ⌊ n2

4 ⌋ + r − 1 for any
graph G ∈ G(n; r, 2k+ 1) for large n and r > 2, k > 1, where G(n; r, 2k+ 1) is the set of all graphs on n vertices containing
no r edge-disjoint cycles of length 2k + 1. In (Bataineh, M.), Bataineh proved that E(G) 6 ⌊ (n−1)2

4 ⌋+ n− 1 for every graph
G ∈ G(n; V2k+1) where G(n; V2k+1) is the class of graphs on n vertices containing no vertex-disjoint cycles of length 2k+1.

In this paper, we will generalize a result that is parallel to the result of (Bataineh, M., & Jaradat, M. M. M., 2012) in which
we considered here no r vertex-disjoint cycles of length 3 instead of edge-disjoint cycles discussed in (Bataineh, M., &
Jaradat, M. M. M., 2012).

2. Important Lemmas and Theorems

In this section, we introduced necessary background that are needed in proving the main results of this paper.

2.1 Lemma. (Bondy and Murty, 1976) Let G be a graph on n vertices. If E(G) > n2

4 , then G contains a cycle of length
2k + 1 for each 1 6 k 6 ⌊ n+3

4 ⌋ −
1
2 .

2.2 Theorem. (Batineh and Jaradat, 2012) Let k > 1, r > 2 be two integers and g ∈ G(n; r, 2k + 1). For large n,
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E(G) 6 ⌊ n2

4 ⌋ + r − 1. Furthermore. equality holds if and only if G ∈ Ω(n, r) = Kr−1,⌊ n−r+1
2 ⌋,⌈ n−r+1

2 ⌉.

2.3 Theorem. (Bataineh, 2012) Let k > 1 be an integer and G ∈ G(n,V2k+1). Then for n > max{ 4k3+15k2+11k−5
2 , 4(4k2 +

8k − 3) + 1}, E(G) 6 ⌊ (n−1)2

4 ⌋ + n − 1. Furthermore, equality holds if and only if G = Ω(n, 2).

3. Main Result

In this section, we generalize a special case of Theorem 2.3 to the case where G ∈ G(n,Vr, 3). That is to the case where G
is a graph on n vertices containing no r vertex-disjoint cycles of length 3. We start with r = 2.

3.1 Theorem. Let k be a positive integer and G ∈ G(n, 2, 3). Then for large n, E(G) 6 ⌊ (n−1)2

4 ⌋ + n − 1. Furthermore,
equality holds if and only if G = Ω(n, 2).

Proof. Since G ∈ G(n, 2, 2k + 1), then G has no two vertex-disjoint cycles of length 3. Suppose first that G has no cycle
of length 3. Then for n > 11, we have 3 6 ⌊ n+3

3 ⌋, so that, using Lemma 2.1 we have:

E(G) 6
⌊
n2

4

⌋
=

⌊
((n − 1) + 1)2

4

⌋
6
⌊
(n − 1)2

4

⌋
+

2(n − 1)
4

+
1
4
+ 1

6
⌊
(n − 1)2

4

⌋
+ (n − 1) for n > 11

Now if G has a cycle of length 3, then for large n, E(G) 6 ⌊ (n−1)2

4 ⌋ + n − 1 by Theorem 2.3. Note that if G = Ω(n, 2) =
K1,⌊ n−1

2 ⌋,⌈
n−1

2 ⌉ then

E(G) =
⌈
n − 1

2

⌉
+

⌊
n − 1

2

⌋
+

⌈
n − 1

2

⌉ ⌊
n − 1

2

⌋
=

⌊
(n − 1)2

4

⌋
+ (n − 1)

Therefore, equality holds if and only if G = Ω(n, 2). �

To prove the main theorem we have to introduce Turán graphs since these graphs play a major role in the proof.

3.2 Definition. The complete s-partite graph on n vertices with part sizes being
⌈

n
s

⌉
or
⌊

n
s

⌋
is called Turán graph. We

denote this graph by Tn,s.

Note that Turán graph is Ks+1 free, where Ks+1 is the complete graph on (s + 1)-vertices. In (Conlon, D.), David Conlon
introduced the following statement of Turán’s theorem.

3.3 Theorem. (Turán) If G is an n-vertex Ks+1-free graph, then it contains at most E(Tn,s) edges.

In addition, Conlon introduced three different proofs of Turáns Theorem. In proof 2 (Zykovs Symmetrization), he con-
cluded that the set of vertices of a Ks+1-free graph G on n vertices with maximum number of edges can be partitioned into
two equivalence classes. In these classes, vertices in the same class are non-adjacent and vertices in different classes are
adjacent. Since the graph G is Ks+1-free, it must be a complete s-partite graph. Note that Tn,s is the unique graph that
maximizes the number of edges among such graphs.

3.4 Theorem. Let G be a graph that has (r − 1) vertex-disjoint cycles C1, C2,. . . ,Cr−1, but no r vertex disjoint cycles of
length 3 and let H = G−∪r−1

i=1 G(Ci). Then E(
∪r−1

i=1 G(Ci),H) 6 2(r−1)(n−r+1)−4(r−1)2 and E(
∪r−1

i=1 G(Ci)) 6 3(r−1)2.

Proof. Note that H is K3 free graph since, otherwise, G would have r vertex-disjoint cycles of length 3, a contradiction to
the assumption. Let H′ be a graph on the vertices of H with a maximum number of edges. Note that |V(H)| = |V(H′)| =
n − 3(r − 1) = (n − r + 1) + 2(r − 1), E(H) 6 E(H′), and E(

∪r−1
i=1 G(Ci),H) 6 E(

∪r−1
i=1 G(Ci),H′).

Let n′ = n − 3(r − 1) = |V(H′)|. Since H′ is K2+1-free graph then, using proof 2 of Turáns theorem, H′ is Tn′,2 and the
vertices of H′ can be partitioned into two equivalent classes H′1 and H′2 where |V(H′1)| = ⌈ n′

2 ⌉ and |V(H′2)| = ⌊ n′
2 ⌋. Note
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that vertices in H′1 are non-adjacent and, also, vertices in H′2 are non-adjacent, but vertices in H′1 are adjacent to vertices
in H′2. In Figure 1, let

C1 = v1u1w1v1

...

Cr−1 = vr−1ur−1wr−1vr−1

b b
b

b bHHHHHH

HHHHHH

������

������
b

HHHHHH

������b

b
b

. . .

. . .

. . .
u1 u2 ur−1

w1 w2 wr−1 b b b b. . .

b b b b. . .

H′1

H′2

v1 v2 vr−1

Figure 1

Note that |H′1| =
⌈

n−3(r−1)
2

⌉
and |H′2| =

⌊
n−3(r−1)

2

⌋
, so that

E(v1,H′) 6
⌊
n − 3(r − 1)

2

⌋
+

⌈
n − 3(r − 1)

2

⌉
= n − 3(r − 1)

= (n − r + 1) − 2(r − 1)

In Figure 1, if v1 is adjacent to a vertex x ∈ H′1 and a vertex y ∈ H′2 then C′1 = v1xyv1 is a is a cycle of length 3. If u1 or
w1 is adjacent to vertices in H′1 and H′2 then we can form another cycle C′′1 = u1x′y′u1. Now if we replace C1 with C′1 and
C′′1 then we will have r vertex-disjoint cycles of length 3, a contradiction. It follows that w1 and u1 are adjacent to H′1 or
H′2 but not to both. Therefore,

E(u1,H′) 6
1
2

((n − r + 1) − 2(r − 1)) =
1
2

(n − r + 1) − (r − 1)

E(w1,H′) 6
1
2

((n − r + 1) − 2(r − 1)) =
1
2

(n − r + 1) − (r − 1)

so that,

E(G(C1),H) 6 E(G(C1),H′)
6 E(v1,H′) + E(u1,H′) + E(w1,H′)

6 (n − r + 1) − 2(r − 1) +
1
2

(n − r + 1) − (r − 1) +
1
2

(n − r + 1) − (r − 1)

6 2(n − r + 1) − 4(r − 1)2.

It follows that

E(
r−1∪
i=1

G(Ci),H) 6 2(r − 1)(n − r + 1) − 4(r − 1)2.

Note that, without loss of generality, w1, w2, . . . , wr−1 are adjacent to vertices in H′2 and v1, v2, . . . , vr−1 are adjacent to
vertices in H′1. Note, also, that K = G −G({v1, . . . , vr−1}) is K3 free and, therefore, K can be partitioned into two sets K′1
and K′2 where w1,. . . ,wr−1 ∈ K′1, H′1 ⊂ K′1, v1,. . . , vr−1 ∈ K′2, and H′2 ⊂ K′2. Therefore, wiw j < E(G) and viv j < E(G). Also,
viv j < G since, otherwise, we will have r-vertex disjoint cycle of length 3. It follows that

E(
r−1∪
i=1

G(Ci)) 6 |Kr−1,r−1,r−1| = 3(r − 1)2.

�
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Now we have our main result.

3.5 Theorem. Let G ∈ G(n,Vr, 3). Then for large n,

E 6
⌊
(n − r + 1)2

4

⌋
+ (r − 1)(n − r + 1).

Furthermore, equality holds if and if G = Ω(n, r).

Proof. Suppose G is a graph on n vertices containing no r vertex-disjoint triangles. That is G has no r vertex-disjoint
cycles each of length 3. We prove the theorem by induction on r. For r = 2, the result holds by Theorem 3.1.

Now suppose the result is true for r − 1. We need to show that it is true for r. For this, let G ∈ G(n, r, 3). If G contains no
(r − 1) vertex-disjoint cycles of length 3, then by induction:

E(G) 6
⌊
(n − (r − 1) + 1)2

4

⌋
+ ((r − 1) − 1)(n − (r − 1) + 1)

=

⌊
(n − r + 2)2

4

⌋
+ (r − 2)(n − r + 2)

6 (n − r + 1)2 + 2(n − r + 1) + 1 + 4((r − 1) − 1)(n − (r − 1) + 1))
4

+ 1

=
(n − r + 1)2

4
+

2(n − r + 1) + 4(r − 1)(n − r + 1) + 4(r − 1) − 4(n − r + 1) − 4
4

+ 1

=
(n − r + 1)2

4
+ (r − 1)(n − r + 1) − 1

2
(n − r + 1)(r − 1) − 1 + 1

6
⌊
(n − r + 1)2

4

⌋
+ (r − 1)(n − r + 1), for n > 3r − 3.

Therefore, we now assume that G has (r−1) vertex-disjoint cycles of length 3 and has no r vertex-disjoint cycles of length
3. Let C1, C2,. . . ,Cr−1 be such cycles. Let H = G −∪r−1

i=1 G(Ci), so that H has no cycle of length 3 since, otherwise, G
will have r vertex-disjoint cycles of length 3. Note that n′ = |V(H)| = n − 3(r − 1) = (n − r + 1) − 2(r − 1). Since H has
no cycle of length 3 then, using Lemma 2.1, we have;

E(H) 6
⌊
n′2

4

⌋
=

⌊
((n − r + 1) − 2(r − 1))2

4

⌋
6
⌊
(n − r + 1)2

4

⌋
− (r − 1)(n − r + 1) + (r − 1)2

Also, using Theorem 3.4, we have

E(H,
r−1∪
i=1

G(Ci)) 6 2(r − 1)(n − r + 1) − 4(r − 1)2

E(
r−1∪
i=1

G(Ci)) 6 3(r − 1)2

so that,

E(G) = E(H) + E(H,
r−1∪
i=1

G(Ci)) + E(
r−1∪
i=1

G(Ci))

6
⌊
(n − r + 1)2

4

⌋
− (r − 1)(n − r + 1) + (r − 1)2

+ 2(r − 1)(n − r + 1) − 3(r − 1)2 + 3(r − 1)2

6
⌊
(n − r + 1)2

4

⌋
+ (r − 1)(n − r + 1).
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Furthermore, we conclude that equality holds for Ω(n, r) = Kr−1,⌊ n−r+1
2 ⌋,⌈ n−r+1

2 ⌉ since

E(Ω(n, r)) = (r − 1)
⌊
n − r + 1

2

⌋
+ (r − 1)

⌈
n − r + 1

2

⌉
+

⌈
n − r + 1

2

⌉ ⌊
n − r + 1

2

⌋
= (r − 1)⌊n − r + 1⌋ +

⌊
(n − r + 1)2

4

⌋
=

⌊
(n − r + 1)2

4

⌋
+ (r − 1)(n − r + 1).

�
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