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Abstract

We provide two new algorithms with applications to asymptotically exact minimizations with inequalities constraints.
These results generalize and improve the works of Andreani, Birgin, Martinez and Schuverdt on minimization with
equality constraints. Numerical examples show that our proposed analysis gives convergence results.
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1. Introduction

The Kuhn-Tucker condition is often used to obtain important results in economics, especially in decision problems that
occur in static situations, for example to show the existence of a balance for a competitive economy, main agents con-
straints and so on. Kuhn-Tucker conditions for the optimization problem under inequality and equality constraints have a
global shape that naturally incorporate the Lagrange multiplier method (introduced by Lagrange in 1788). The application
of this method to an optimization problem under constraint leads to the resolution of the Karush, Kuhn and Tucker (KKT)
system.

Thoughout this work, we consider on Rn (n ∈ N) the ordering relation ≤ defined by:
∀ u ∈ Rn,∀ l ∈ Rn, u ≤ l ⇐⇒ [u]i ≤ [l]i ∀ i ∈ {1; ...; n} where [u]i is the ith component of the row u. We also consider

the operator projection P+ : Rn −→ Rn
+ by [P+(u)]i =

{
[u]i if [u]i ≥ 0
0 otherwise

We shall study in this work the optimization problem of type

(P) : min
x∈K

f (x) (1)

with K =
{

x ∈ Rn; gi(x) ≤ 0 ∀ i ∈ I = {1, ...,m}
}

(2)

Under Karush-Kuhn-Tucker constraint qualification, when the problem (1) is differentiable (i.e., all the involved functions
are differentiable), a first-order condition for a point x∗ to be optimal is that it satisfies the following system:

∇ f (x) +
n∑

i=1

λi∇gi(x) = 0

λigi(x) = 0 ∀ i ∈ I (exclusion condition)
λi ≥ 0 ∀ i ∈ I

(3)

When the constraints of the problem are equality constraints, the exclusion condition in (3) becomes obvious. So, to find
a solution of the problem (1) is to find a point satisfying the system (3) without the exclusion condition. The manual
resolution of this system becomes complicated especially when the size of the problem becomes large.

In April 1991, Andrew R. C. et al. published two algorithms in (Andrew, R.C. & et al., 1991) for solving KKT systems
arising from differentiable optimization problems under equality constraints K defined by:

K =
{

x ∈ Rn; hi(x) = 0 ∀ i ∈ I; u ≤ x ≤ l
}
, u ∈ Rn and l ∈ Rn (4)

36



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 2; 2018

These algorithms are based on the augmented Lagrangian defined by:

L(x; λ; S ; µ) = f (x) +
∑
i∈I

λihi(x) +
∑
i∈I

S ii

2µi
(hi(x))2 (5)

where µ ∈ Rm
+ and S is an invertible diagonal matrix such that 0 < S ii.

In 2006, Andreani R. et al., in (Andreani, R. & et al., 2006) have taken up these algorithms by posing ρi =
S ii
µi

called
penality parameter. Their algorithms are also based on the augmented lagrangian defined by:

L(x, λ, ρ) = f (x) +
∑
i∈I

λigi(x) +
1
2

∑
i∈I

ρi[gi(x)]2 (6)

If all the functions of the constraints are differentiable and if the objective function is differentiable, we have:

∇xL(x, λ, ρ) = ∇ f (x) +
∑
i∈I

(λi + ρigi(x))∇igi(x) (7)

The principle of these algorithms is to find x ∈ K such that

∥PΩ[x − ∇xL(x, λ, ρ)] − x∥∞ = 0 (8)

that is to say

−∇xL(x, λ, ρ) ∈ T 0
Ω(x) (9)

Where PΩ is the projection operator on Ω = {x ∈ Rn : lb ≤ x ≤ ub}
In our work, we improve these algorithms in order to adapt them to optimization problems under inequality constraints.
Our algorithm guarantees constraint qualifications at the end point of sequence generated by each of these algorithms
(and satisfaction of exclusion condition). We modify the estimation of Lagrange multipliers and add a new condition for
the resolution of a sub-problem in order to determine the approximate solutions xk at each iteration k. We present the
foundations of this algorithm including a convergence analysis result.

The rest of the paper is organized as follows. In section 2, we review part of literature on KKT algorithm, followed by an
analysis of our algorithm and the obtained results in section 3. Finally, we conclude with prospective recommendations
in section 4.

2. Some Preliminaries

2.1 Admissible Direction and Tangent Cone

Let K be a feasible set of the problem (P) and x0 be an admissible element.

• An admissible direction at x0 is any vector tangent to an arc of curve (sufficiently regular) admissible in x0. In
other words, it is any element d such that there exists (xn) ∈ KN −→ x0 , ϵn −→ 0 and xn−x0

ϵn
−→ d.

Let ωn =
xn−x0
ϵn

, we obtain ωn −→ d and ϵnωn + x0 ∈ K ∀ n

• The set of all admissible directions is called the tangent cone at x0 of K and denote by TK(x0)

• The polar cone at x0 of K is
T 0

K(x0) =
{
u : ⟨u, d⟩ ≤ 0 ∀ d ∈ TK(x0)

}
Suppose that

K =
{
x ∈ X : gi(x) ≤ 0, ∀i ∈ I

}
• The linear tangent cone at x0 of K denote by T lin

K (x0) is defined by

T lin
K (x0) =

{
d : ∇gi(x) · d ≤ 0, ∀i ∈ I(x0)

}
and its linear polar cone at x0 is

(T lin
K )0(x0) =

 ∑
i∈I(x0)

λi∇gi(x0) : λi ≥ 0 ∀ i ∈ I(x0)
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where I(x0) = {i ∈ I; gi(x0) = 0} It is easy to see that:

TK(x0) ⊂ T lin
K (x0) (10)

and

(T lin
K )0(x0) ⊂ T 0

K(x0) (11)

Recall that the constraint K is qualified at xo if

TK(x0) = T lin
K (x0) (12)

Among the multitudes sufficient conditions for the qualification of the constraint, we can mention those such as:

Slater (1950) and Karlin (1959) constraints: that often apply in nondifferentiable cases for convex problems.

AHUCQ Arrow, Hurwicz and Uzawa Constrained qualification.

MFCQ Mangasarian and Fromovitz Constrained qualification (Gerd Wachsmuth, 2013): it guarantees the existence of
Lagrange multiplier satisfying the system of Karush Kuhn and Tucker at the optimum.

LICQ Linearly Independent Constraint Qualification Gerd Wachsmuth, 2013): which is the strongest of all the qualifica-
tion constraints that apply to differentiable problems; it guarantees the existence and uniqueness of Lagrange multiplier
satisfying the system of Karush Kuhn and Tucker at the optimum.

(CPLD) Constant Positive Linear Dependence condition (Qi, L. &Wei, Z., 2000); Definition 2.1]:

Let A = {a1, ..., am} and B = {b1, ..., bq} be families of elements of Rn such that A ∪ B is no empty set. A and B are
said to be positively linearly dependent if there exists α ∈ Rm

+ and β ∈ Rq such that (α; β) , (0; 0) and

m∑
i=1

αiai +

q∑
j=1

β jb j = 0 (13)

Otherwise, we say that A and B are positively linearly independent. We say that x∗ satisfies the qualification constraint
(CPLD), if there exists I1 ⊂ I(x∗) =

{
i ∈ I; gi(x∗) = 0

}
, J1 ⊂ J such that the familly

{
∇gi(x∗)

}
i∈I1

∪{
∇h j(x∗)

}
j∈J1

is posi-

tively linearly dependent, if there exists a neighborhood V(x∗) such that ∀ x ∈ V(x∗) the familly
{
∇gi(x)

}
i∈I1

∪{
∇h j(x)

}
j∈J1

is lineairely dependent.

2.2 KKT Point

We say that a feasible point is a Karush-Kuhn-Tucker point of the problem (1) if it checks the system (3) called Karush-
Kuhn-Tucker (KKT) system.

A KKT point is not necessarily a minimum point, it is usually a stationary point (minimum, or maximum, or saddle point).
The determination of such a point consists in solving the system (3). Our goal is to determine from these algorithms, the
points of KKT which allow to have the exact optimum value. But it is sometimes difficult to reach precisely such a point.

2.3 Approximate KKT Point

Consider the optimization probem defined by

(P) : min
x∈K

f (x) where K =
{
x ∈ Rn; gi(x) ≤ 0 ∀ i ∈ I = {1, ...,m}, h j(x) = 0, ∀ j ∈ {1, · · · , q}

}
(14)

and all the functions are differentiable.

A feasible point x∗ is said to be approximate KKT point of (P) if there exists a sequence (xk)k ⊂ Rn that converges to x∗,
a sequence (λk)k ⊂ Rm

+ , a sequence (µk)k ⊂ Rq and a sequence (εk)k ⊂ R+ converging to zero such that

{ (
∇ f (xk) +

∑m
i=1 λ

k
i∇gi(xk) +

∑q
j=1 µ

k
j∇ jh j(xk)

)
−→ 0 when k −→ ∞

λk
i (gi(xk) + εk) = 0 ∀ i ∈ I et ∀ k

(15)

Proposition 2.1. (See (Qi, L. & Wei, Z., 2000); Theorem2.7)
Let x∗ be an approximate KKT point that satisfies the (CPLD) condition, then x∗ is a KKT point.
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2.4 Some Reminders on Optimality Conditions

An immediate consequence of the local optimality of x∗ for (1) is

∇ f (x∗) · d ≥ 0 ∀ d ∈ TK(x∗) (16)

that is to say

−∇ f (x∗) ∈ (T 0
K(x∗)) (17)

with K =
{
x ∈ X : gi(x) ≤ 0, ∀i ∈ I

}
. According to KKT condition, the relation (17) implies

∑
i∈I

λi∇gi(x∗) ∈ T 0
K(x∗) (18)

3. Main Results

3.1 Algorithms

Let us first recall that any constrained optimization problem whose feasible set is defined by

K =
{
x ∈ Rn, gi(x) ≤ 0 ∀ i ∈ I = 1, 2, ...,m, h j(x) = 0 ∀ j ∈ J = 1, 2, ..., q} (19)

can be transformed into a problem of the same type as (1) where all the constraints are inequality constraints. This is
because each equality constraint can be transformed into double inequalities. That is to say

h(x) = 0⇐⇒ h(x) ≤ 0 and h(x) ≥ 0 (20)

Our algorithms are based on the augmented lagrangian defined by:

L(x, λ, µ) = f (x) +
∑
i∈I

λigi(x) +
1
2

∑
i∈I

ρi(gi(x))2 (21)

Like R. Andreani et al. in (Andreani, R. & et al., 2006), We shall compute at each iteration k a point xk such that

∥PΩ[xk − ∇xL(xk, λk, ρk)] − xk∥∞ ≤ εk (22)

where εk is a decreasing sequence converging to zero. The point xk at iteration k for (22) constitutes a non-obvious sub-
problem to solve in the algorithm. The following proposition allows us to easily construct a sequence of points under
certain hypotheses satisfying (22)

Proposition 3.1. Let Ω be a close subset of Rn , λ ∈ Rm
+ , ρ ∈ Rm

++ and (xk)k be a sequence defined by:

xk+1 = PΩ[xk − hk∇xL(xk, λ, ρ)] (23)

where hk is a sequence that converges to zero and
∑
k≥0

hk < +∞. Then the sequence ∥PΩ[xk − ∇xL(xk, λk, ρk)] − xk∥∞
converge.

Proof

To simplify, let us denote ∇xL(xk, λ, ρ)] = ∇xL(xk)
By definition xk ∈ Ω for all k. The projection operator is 1-lipschitzian, thus

∥xk − xk+1∥ = ∥xk − PΩ[xk − hk∇xL(xk)]∥ (24)
= ∥PΩ[xk] − PΩ[xk − hk∇xL(xk)]∥ (25)
≤ ∥xk − (xk − hk∇xL(xk))∥ = ∥hk∇xL(xk)∥ (26)

Let Uk = PΩ[xk − ∇xL(xk, λk, ρk)] − xk. Again the 1-Lipschitzness of the projection we have:

∥Uk+1 − Uk∥ = ∥xk+1 − xk − (PΩ[xk+1 − ∇xL(xk+1)] − PΩ[xk − ∇xL(xk)])∥ (27)
≤ ∥xk − xk+1∥ + ∥xk − xk+1 − (∇xL(xk+1) − ∇xL(xk))∥ (28)
≤ 2∥xk − xk+1∥ + ∥(∇xL(xk+1) − ∇xL(xk))∥ (29)
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(xk)k being a sequence of descent towards the optimum, there exists M ≥ 0 such that ∥∇xL(xk)∥ ≤ M and
∥∇xL(xk+1) − ∇xL(xk)∥ ≤ M∥xk+1 − xk∥ then

∥Uk+1 − Uk∥ ≤ (2 + M)hk (30)

Let p, q ∈ N (suppose that p ≥ q) we have:

∥Up − Uq∥ ≤
p−q−1∑

s=0

∥∥∥Up−s − Up−s−1
∥∥∥ (31)

According to (30) we have:

∥Up − Uq∥ ≤
p+1∑
s=q

(2 + M) hs =
(
2 + M

) p+1∑
s=q

hs (32)

As hk −→ 0 and
∑
k≥0

hk < +∞, then Uk are Cauchy sequence. Then it converge because Rn is a complete space.

The convergence towards zero will be studied in these propositions to follows.

As constraints are inequalities, we shall add a new condition defined by:∑
i∈I

| [λk]igi(xk) | ≤ εk ∀ k (33)

in order to satisfy at the end of each algorithm the exclusion condition in the KKT system. This condition will serve to
converge rapidly towards the optimum. In fact, it is easy to see that

∑
i∈I

| [λk]igi(xk) | = 0 ⇐⇒ [λk]igi(xk) = 0 ∀ i ∈ I (34)

In 2006, Andreani R. et al., in (Andreani R. & et al., 2006) have defined the projection on Ω = {x ∈ Rn, lb ≤ x ≤ ub}.
The projection on this set can give inadmissible points specially when lb and ub are not well defined according to the
admissible set (eg when they are away from the permissible assembly). To approximate advantage the projected to the
admissible set we shall define the projection on the set

Ω(xk) = {x ∈ Rn, Ax ≤ b, lb ≤ x ≤ ub} were A = ∇g(xk) and bi = (∇gi(xk))T · xk − gi(xk) ∀ i (35)

Indeed a point x ∈ Rn will be admissible if and only if gi(x) ≤ 0 ∀ i ∈ {1, ...,m}. Since all the functions are differentiable,
at the iteration k+ 1 knowing that xk is already determined, gi(xk+1)− gi(xk) = ∇gi(xk)(xk+1 − xk)+ ∥xk+1 − xk∥ε(xk+1 − xk)
were lim

∥xk+1−xk∥→0
ε(xk+1 − xk) = 0. Thus, approximately we have g(xk+1) ≤ 0⇐⇒ ∇g(xk)T · xk+1 ≤ ∇g(xk)T · xk − g(xk).

At each iteration it is necessary to solve a quadratic problem defined by

(Q) :


min ∥u − x∥2
(∇gi(xk))T x ≤ (∇g(xk))T · xk − gi(xk), 1 ≤ i ≤ m
lb ≤ x ≤ ub
x ∈ Rn

(36)

It is clear that K ⊂ Ω(xk) ⊂ Ω ∀ k. Then for all y ∈ Ω and x ∈ Ω(xk), we have d(y,K) ≥ d(x,K).

Also in the stopping criterion we shall impose that gi(x) ≤ 0 ∀ i ∈ I
We propose the two following algorithms C1 and C2.

Algorithm C1
x0 ∈ K, τ ∈ [0; 1[, γ > 1, ρ0 ∈ Rm

++ such that [ρ0]i = ∥ρ0∥∞ ∀i ∈ I, (εk)k ⊂ R+ a decreasing sequence converging to 0
and 0 < ε∗ ≪ 1
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Step1 : Evaluate λ0

λ0 ∈ Argmax{L(x0, λ), λ ≥ 0} (37)

Step2 : (Estimate multipliers)
If

∥PΩ(xk)[xk − ∇xL(xk, λk, ρk)] − xk∥ ≤ ε∗ and gi(xk) ≤ ε∗ ∀ i ∈ I (38)

stop
Otherwise :

[λk+1]i = P+([λk]i + [ρk]i[g(xk)]i) ∀ i ∈ I (39)

Step3 : (Update the penalty parameters)
ρk+1 = ρk if ∥g(xk)∥∞ ≤ εk and
ρk+1 = γρk otherwise

Step4 : Solving the subproblem:

εk+1 = min

εk ;
∑
i∈I

|gi(xk)|
1 + [ρk]i|gi(xk)|

 (40)

We chose xk+1 such that

∥PΩ(xk)[xk+1 − ∇xL(xk+1, λk+1, ρk+1)] − xk+1∥∞ +
∑
i∈I

| [λk+1]igi(xk+1) | ≤ εk+1 (41)

Step5 : k ←− k + 1
Return to Step2.

Algorithm C2
x0 ∈ K, τ ∈ [0; 1[, γ > 1,

ρ0 ∈ Rm
++

(εk)k ⊂ R+ is a decreasing sequence converging to 0 and 0 < ε∗ ≪ 1

Step1 : Evaluate λ0

λ0 ∈ Argmax{L(x0, λ), λ ≥ 0} (42)

Step2 : Estimate multipliers
If

∥PΩ(xk)[xk − ∇xL(xk, λk, ρk)] − xk∥ ≤ ε∗ (43)

and
∥g(xk)∥∞ ≤ ε∗ (44)

stop
Otherwise :

[λk+1]i = P+([λk]i +
[ρk]i

∥ρk∥
[g(xk)]i) ∀ i (45)

Step3 : (Update the penalty parameters)
We define the set

Γk = {i ∈ I, |gi(xk)| ≥ τ∥g(xk−1)∥∞} (46)

If Γk = ϕ then ρk+1 = ρk

Otherwise

[ρk+1]i = γ[ρk]i if i ∈ Γk and [ρk+1]i = [ρk]i if i < Γk
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Step4 : Solving the subproblem:

εk+1 = min

εk+1 ;
∑
i∈I

|gi(xk)|
1 + [ρk]i|gi(xk)|

 (47)

We checks xk+1 such that

∥PΩ(xk)[xk+1 − ∇xL(xk+1, λk+1, ρk+1)] − xk+1∥∞ +
∑
i∈I

|[λk+1]igi(xk+1)| ≤ εk+1 (48)

Step5 : k ←− k + 1
Return to Step2

Recall that the resolution of the sub-problem in each algorithm is based on the proposition (3.1). The point x0 can also
be unfeasible point; in this case we project it in the feasible set Ω and obtain an approximate feasible point.

3.2 Theorical Results

Note that, at the end of each algorithm, the sequence (xk)k converge or have a subsequence that converges to a point x∗

according to (3.1).

According to (Theorem3 (Andreani R. & et al., 2006)), Andreani et al. (2006) have proved that if x∗ is feasible and
satisfies the CPLD constraint qualification then it is an approximate KKT point. Through the following propositions we
will give other conditions under which x∗ will be a KKT point

Proposition 3.2. Assume that the sequence (xk)k is generated by algorithm C1 and that x∗ is a limit point. Then∑
i∈I

(−gi(x∗)) · ∇gi(x∗) ∈ T 0
Ω(x∗) (49)

and if x∗ is feasible, then there exists λi ≥ 0 ∀ i, such that∑
i∈I(x∗)

λi · ∇gi(x∗) ∈ T 0
Ω(x∗)(x∗) (50)

Proof

Remark that

∥PΩ(u + tv) − u∥∞ ≤ ∥PΩ(u + v) − u∥∞ ∀ t ∈ [0; 1] and ∀ u, v ∈ Rn (51)

Let ρk = ∥ρk∥∞ ∀ k
By Step3, if the sequence (ρk)k is bounded then there exists k0 such that for all k ≥ k0, ∥g(xk)∥ ≤ εk which makes it
possible to conclude that the limit x∗ is feasible.

Otherwise, ρk −→ ∞ and:[
PΩ(xk)

(
xk − ∇xL(xk, λk, ρk)

)
− xk

]
=

PΩ(xk)

xk −
∇ f (xk) +

∑
i∈I

(
[λk]i + ρkgi(xk)

)∇gi(xk)

 − xk

 (52)

Let u = xk, t = 1
ρk
, and v = −

∇ f (xk) +
∑
i∈I

([λk]i + ρkgi(xk))∇gi(xk)

 we have

∥∥∥∥∥∥∥PΩ(xk)

xk −
∇ f (xk)
ρk

+
∑
i∈I

(
[λk]i

ρk
+ gi(xk)

)
∇gi(xk)

 − xk

∥∥∥∥∥∥∥
∞

≤
∥∥∥PΩ(xk) (xk − ∇xL(xk, λk, ρk)) − xk

∥∥∥∞ (53)

Hence, for k sufficiently large, we have ρk −→ ∞ and
∥∥∥PΩ(xk) (xk − ∇xL(xk, λk, ρk)) − xk

∥∥∥∞ −→ 0 (according to (48)).

Then ∥∥∥∥∥∥∥PΩ(x∗)

x∗ −
∑
i∈I

gi(x∗) · ∇gi(x∗)

 − x∗
∥∥∥∥∥∥∥
∞

= 0 (54)
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So ∑
i∈I

(
− gi(x∗)

)
· ∇gi(x∗) ∈ T 0

Ω(x∗)(x∗) (55)

∀ v ∈ TΩ(x∗)(x∗);
⟨
v;

∑
i∈I

(−gi(x∗)) · ∇gi(x∗)
⟩
≤ 0 (56)

If x∗ is feasible, then −gi(x∗) ≥ 0 ∀ i, that is, we can conclude that there exists λi ≥ 0 ∀ i such that∑
i∈I(x∗)

λi · ∇gi(x∗) ∈ T 0
Ω(x∗)(x∗) (57)

Remark 3.1. .

When

x∗ −
∑
i∈I

gi(x∗)∇gi(x∗)

 ∈ Ω, we have
∑
i∈I

gi(x∗)∇gi(x∗) = 0, because:

x∗ = PΩ(x∗)

x∗ −
∑
i∈I

gi(x∗)∇gi(x∗)

 = x∗ −
∑
i∈I

gi(x∗)∇gi(x∗)

 .
In this case we have the following proposition:

Proposition 3.3. Assume that the sequence (xk)k is generated by algorithm C2 and that x∗ is a limit point. If there exists
k0 such that Γk is an empty set ∀ k ≥ k0, then x∗ is a feasible point.

Proof

By S tep3 in algorithm C2, we have:

∥g(xk0+1)∥ < τ∥g(xk0 )∥ (58)
∥g(xk0+2)∥ < τ∥g(xk0+1)∥ (59)

< τ2∥g(xk0 )∥ (60)
. (61)
. (62)
. (63)

∥g(xk0+m)∥ < τm∥g(xk0 )∥ (64)

When m −→ +∞, we have ∥g(x∗)∥ = 0 , because 0 ≤ τ < 1 .
Then g(x∗) = 0, that is to say x∗ is feasible and all constraints are active at x∗. Note that in the case where the number of
constraints is high, it is almost impossible to have all the constraints to be active at a point.

Proposition 3.4. Assume that the sequence (xk)k is generated by algorithm C2 and that x∗ is a limit point. Then either x∗

is feasible, or there exists ω ∈ Rm
++ such that∑

i∈I

ωi(−gi(x∗)) · ∇gi(x∗) ∈ T 0
Ω(x∗)(x∗) (65)

And if x∗ is feasible, then there exists λi ≥ 0 ∀ i such that∑
i∈I(x∗)

λi · ∇gi(x∗) ∈ T 0
Ω(x∗)(x∗) (66)

Proof

By the proposition (3.3), if there exists k0 such that Γk = ϕ, ∀ k ≥ k0, then x∗ feasible and g(x∗) = 0.
Otherwise, ∥ρk∥ → ∞
By S tep4 we have

∥PΩ[xk+1 − ∇xL(xk+1, λk+1, ρk+1)] − xk+1∥∞ ≤ εk+1 (67)
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which means that
[PΩ(xk)(xk − (∇ f (xk) +

∑
i∈I

([λk]i + [ρk]igi(xk))∇gi(xk))) − xk] ≤ εk (68)

Hence by relation (51) we obtain∥∥∥∥∥∥∥PΩ

xk −
∇ f (xk)
∥ρk∥

+
∑
i∈I

(
[λk]i

∥ρk∥
+

[ρk]i

∥ρk∥
gi(xk)

)
∇gi(xk)

 − xk

∥∥∥∥∥∥∥
∞

≤
∥∥∥PΩ(xk)

[
xk − ∇xL(xk, λk, ρk)

] − xk

∥∥∥∞ ≤ εk (69)

As k → +∞, we have
(∇ f (xk)
∥ρk∥

)
k
→ 0,

(
[λk]i
∥ρk∥

)
k
→ 0 and

(
[ρk]i
∥ρk∥

)
k
→ ω∗i and so:∥∥∥∥∥∥∥PΩ(x∗)

x∗ −
∑
i∈I

ω∗i gi(x∗)∇gi(x∗)

 − x∗
∥∥∥∥∥∥∥ = 0 (70)

Thus−∑
i∈I

ω∗i gi(x∗)∇gi(x∗)

 = x∗ −
∑
i∈I

ω∗i gi(x∗)∇gi(x∗)

 − x∗
 ∈ T 0

Ω(x∗)(x∗), that is to say

∑
i∈I

ω∗i (−gi(x∗)) · ∇gi(x∗)

 ∈ T 0
Ω(x∗)(x∗) (71)

Hence if x∗ is feasible −gi(x∗) ≥ 0 ∀ i, then there exists λi ≥ 0 ∀ i such that∑
i∈I(x∗)

λi · ∇gi(x∗) ∈ T 0
Ω(x∗)(x∗) (72)

Note that the results of propositions (3.2) and (3.4) are an implication of the optimality condition defined in. Thus, they
do not allow us to assert the optimality of the limit given by each algorithm. The following theorem 3.1 will give us a
sufficient condition for the limit to be an optimal point.
We note that the convergence towards an admissible point of the algorithms depends on the convergence of the penalty
parameters.

Theorem 3.1. (Convergence to an optimal point)
Assume that the sequence (xk)k is generated by algorithm C1 or C2 and that a limit point x∗ is a feasible point. Then

there exists λ∗ ∈ Rm
+ and ρ∗ ∈ Rm

++ such that ∇xL(x∗, λ∗, ρ∗) = 0. That is to say x∗ is an optimal point and the associated
Lagrange multiplicateur is λ∗.

Proof

Let us recall that at each iteration k, the set Ω(xk) being a closed convex set, the projection probem

min
v∈Ω(xk)

1
2
∥v − (xk − ∇xL(xk, λk, ρk))∥22 (73)

has unique solution vk = PΩ(xk)[xk − ∇xL(xk, λk, ρk)]. Apply the KKT conditions to (73), there exists λ̃k ∈ Rm
+ , µl

k ∈ Rn
+

and µu
k ∈ Rn

+ such that:
vk − xk + ∇xL(xk, λk, ρk) +

m∑
i=1

[̃λk]i∇gi(xk) +
n∑

j=1

[µu
k] je j −

n∑
j=1

[µl
k] je j = 0

[̃λk]i ·
[∇gi(xk) · vk − ∇gi(xk) · xk + gi(xk)

]
= 0 ∀ i

[µu
k] j([xk]i − u j) = [µl

k] j(l j − [xk] j) = 0 ∀ j

(74)

By S tep4 ∥vk − xk∥ = ∥PΩ(xk)[xk − ∇xL(xk, λk, ρk)] − xk∥ ≤ εk which implies

lim
k→∞
∥vk − xk∥ = 0 (75)

Hence by (74)

xk − vk = ∇xL(xk, λk, ρk) +
m∑

i=1

[̃λk]i∇gi(xk) +
n∑

j=1

[µu
k] je j −

n∑
j=1

[µl
k] je j (76)

= ∇xL(xk, λk, ρk) +
n∑

j=1

[µu
k] je j −

n∑
j=1

[µl
k] je j (77)
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were λk = λk + λ̃k

Hence, according to (75) we have

lim
k→∞

[
∇xL(xk, λk, ρk) +

∑
[µu

k]iei −
∑

[µl
k]iei

]
= 0 (78)

Let us denote Ω = {x ∈ Rn, lb ≤ x ≤ ub} it is necessary to choose lb and ub such that K ⊂ int(Ω) where
int(Ω) denote the interior of Ω . Since xk −→ x∗ and ∥vk − xk∥ = ∥PΩ(xk)[xk − ∇xL(xk, λk, ρk)] − xk∥ −→ 0 then
vk −→ x∗ ∈ int(Ω). Then there exists N ∈ N such that ∀ k ≥ N, lb < vk < ub. According to the exclusion condition in
the system (74), [µu

k] j = [µl
k] j = 0 ∀ j. Hence

lim
k→∞

[
∇xL(xk, λk, ρk)

]
= 0 (79)

There exists λ∗ ∈ Rm
+ and ρ∗ ∈ Rm

++ such that

∇xL(x∗, λ∗, ρ∗) = 0 (80)

Then x∗ is an optimal point and the Lagrange multiplicateur associated is λ∗.

Consequence 3.1. (Convergence to an optimal point)
Assume that the sequence (xk)k is generated by algorithm C2 and that a limit point x∗ and that there exists k0 ≥ 0 such
that ∀ k ≥ k0, Γk is empty set. Then x∗ is a KKT point.

Proof

According to the proposition (3.3), x∗ is feasible and g(x∗) = 0. Apply the proposition (3.1) we have λ∗ ∈ Rm
+ and

ρ∗ ∈ Rm
++ such that

∇xL(x∗, λ∗, ρ∗) = ∇ f (x∗) +
∑
i∈I

([λ∗]i + [ρ∗]igi(x∗)) · ∇gi(x∗) (81)

= ∇ f (x∗) +
∑
i∈I

[λ∗]i · ∇gi(x∗) +
∑
i∈I

[ρ∗]igi(x∗) · ∇gi(x∗) (82)

= ∇ f (x∗) +
∑
i∈I

[λ∗]i · ∇gi(x∗) (83)

According to (80), we can conclude tha x∗ is a KKT point and the Lagrange multiplicateur associat is λ∗.

Consequence 3.2. (Convergence to KKT point)
Assume that the sequence (xk) is generated by algorithm C1 or C2 and that a limit point x∗ is feasible and the familly
{∇g(x∗)}i∈I(x∗) is positively linearly dependent with the coeficient αi = −ρ∗i gi(x∗) ∀ i ∈ I r I(x∗). Then x∗ is KKT point.

Proof

It is easy to se that

∇xL(x∗, λ∗, ρ∗) = ∇ f (x∗) +
∑
i∈I

([λ∗]i + [ρ∗]igi(x∗)) · ∇gi(x∗) (84)

= ∇ f (x∗) +
∑
i∈I

[λ∗]i · ∇gi(x∗) +
∑
i∈I

[ρ∗]igi(x∗) · ∇gi(x∗) (85)

= ∇ f (x∗) +
∑
i∈I

[λ∗]i · ∇gi(x∗) +
∑

i∈IrI(x∗)

[ρ∗]igi(x∗) · ∇gi(x∗) (86)

= ∇ f (x∗) +
∑
i∈I

[λ∗]i · ∇gi(x∗) −
∑

i∈IrI(x∗)

[ρ∗]i(−gi(x∗)) · ∇gi(x∗) (87)

(88)

∀ i ∈ I r I(x∗), −gi(x∗) > 0, as
∑

i∈IrI(x∗)

[ρ∗]i(−gi(x∗)) · ∇gi(x∗) = 0 because {∇g(x∗)}i∈I(x∗) is positively lineairely dependent

with the coeficient αi = −ρ∗i gi(x∗) ∀ i ∈ I r I(x∗), we have

∇ f (x∗) +
∑
i∈I

[λ∗]i · ∇gi(x∗) = ∇xL(x∗, λ∗, ρ∗) = 0 (89)

Then x∗ is a KKT point.
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3.3 Numerical Tests

We applied these algorithms to solve several problems of references (Hock, W. & Schittkowski, K., 1981; Asaadi, J., 1973;
Miele, A. & et al., 1972; Miele, A. & et al., 1972; Biggs, M. C., 1971; Bracken J., 1976; Klaus, S., 2009), and results are
presented in the following tables. For simulations, essentially with the algorithm C2, let τ = 10−5, γ = 10, εopt = 10−8

and ε f es = 10−8. The numerical tests were performed by using the software Python (Python Software Foundation) on a
computer: 5Intel(R) Core(TM)4 Duo CPU 2.60GHz, 8.0Gb of RAM, under UNIX system.

The difference between the two algorithms is in their ways of computations of Lagrange multipliers and penalty parame-
ters. The algorithm C1 is specifically designed to solve the large-scale problems.

The Figures 1 2 3 4 5 and 6 (at the end of the tables) represent the evolution of the optimal value as well as the norm
of the lagrangian gradient. The behavior of the curves demonstrates the rapid convergence of the algorithm towards the
optimum point. However, in the case of problem 5, although the exact solution has been obtained, the curves show us an
insufficiency in the convergence that we must solve for the continuation of our work in this direction.

We define by: NIter: Number of iterations, MaxIter: Maximal number of iterations, Nv: Number of variable, Nc: Number
of constraints, f(x): Objective function, Sol.Alg: the solution found by our algorithm, Sol.ex: Solution found by the source.

Table 1. Results of Problem 1

Problem 1
Classification PRB-TP37
Source Hock W. (Hock, W. & Schittkowski, K., 1981)
Nv n = 3
Nc m = 2
f(x) −x1 · x2 · x3

Constraints


x1 + 2x2 + 3x3 − 72 ≤ 0
−x1 − 2x2 − 3x3 ≤ 0

0 ≤ x ≤ 42 ∀ i = 1, 2, 3
Start point x0 = (10, 10, 10)
Stop criterions ∥xk+1 − xk∥ ≤ εopt or ∥ f (xk+1) − f (xk)∥ ≤ εopt

NIter/MaxIter 141/1000
Sol.Alg (23.99999993, 12.00000002, 12.00000002) (feasible)
Sol.ex (24, 12, 12)

Table 2. Results of Problem 2

Problem 2
Classification PRB-T1-3
Source: Asaadi, J.(Asaadi, J., 1973)
Nv n = 2
Nc m = 2
f(x) 1

3 (x1 + 1)3 + x2)

Constraints
{

1 − x1 ≤ 0
−x2 ≤ 0

Start point x0 = (1.125, 0.125)
Stop criterions ∥xk+1 − xk∥ ≤ εopt or ∥ f (xk+1) − f (xk)∥ ≤ εopt

NIter/MaxIter 4/1000
Sol.Alg (1.00000000e + 00, 1.10201928e − 08) (feasible)
Sol.ex (1, 0)
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Table 3. Results of Problem 3

Problem 3
Classification GPR-T1-1
Source Miele et al.(Miele, A. & et al., 1972; Coggins, G. M. & et al, 1972)
Nv n = 2
Nc m = 1
f(x) log(x2

1 + 1) − x2

Constraints (x2
1 + 1)2 + x2

2 − 4 = 0
Start point x0 = (2, 2)
Stop criterions ∥xk+1 − xk∥ ≤ εopt or ∥ f (xk+1) − f (xk)∥ ≤ εopt

NIter/MaxIter 8/1000
Sol.Alg (2.23896809e − 09, 1.73205081e + 00) (feasible)
Sol.ex (0,

√
3) (feasible)

Table 4. Results of Problem 4

Problem 4
Classification GLR-T1-1
Source Miele et al.(Miele, A. & et al., 1972)
Nv n = 2
Nc m = 1
f(x) sin( x1π

12 ) · cos( x2π
12 )

Constraints 4x1 − 3x2 ≤ 0
Start point x0 = (0, 0)
Stop criterions ∥xk+1 − xk∥ ≤ εopt or ∥ f (xk+1) − f (xk)∥ ≤ εopt

NIter/MaxIter 34/1000
Sol.Alg (−2.99998922,−3.99998563) (feasible)
Sol.ex (−3,−4)
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Table 5. Results of Problem 5

Problem 5 (cattel-feed)
Classification LGI-P1-1
Source Biggs(Biggs, M. C., 1971), Bracken, McCormick(Bracken J. & McCormick, G. P.,

1976) & Schittkowski K. PRB-73(Klaus, S., 2009)
Nv n = 4
Nc m = 3
f(x) 24.55x1 + 26.75x2 + 39x3 + 40.5x4

Constraints


x1 + x2 + x3 + x4 − 1 = 0
−2.3x1 − 5.6x2 − 11.1x3 − 1.3x4 + 5 ≤ 0
−12x1 − 11.9x2 − 42.8x3 − 51.4x4 + 21+
1.645[0.28x2

1 + 0.19x2
2 + 20.5x2

3 + 0.62x2
4)]

1
2 ≤ 0

Start point x0 = (1, 1, 1, 1)
Stop criterions ∥xk+1 − xk∥ ≤ εopt or ∥ f (xk+1) − f (xk)∥ ≤ εopt

NIter/MaxIter 5/1000
Sol.Alg (6.42805324e−01, 1.18335296e−08, 3.11958636e−01, 4.52360285e−02) (feasible)
Sol.ex (0.6355216,−0.12e − 11,−0.3127019, 0.05177655) (unfeasible)

Table 6. Results of Problem 6

Problem 6
Classification PQR-T1-2
Source Asaadi J.(Asaadi, J., 1973)
Nv n = 2
Nc m = 2
f(x) 100(x2 − x2

1)2 + (1 − x1)2

Constraints


x1 + x2

2 ≥ 0
x2

1 + x2 ≥ 0
−2 ≤ x1 ≤ 0.5, x2 ≤ 1

Start point x0 = (0, 1)
Stop criterions ∥xk+1 − xk∥ ≤ εopt or ∥ f (xk+1) − f (xk)∥ ≤ εopt

NIter/MaxIter 11/1000
Sol.Alg (0.5, 0.25) (feasible)
Sol.ex (0.5, 0.25)
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Table 7. Results of Problem 7

Problem 7
Classification PQ-T1-1
Source Liang, J., J., Thomas, P.(Liang, J. J., 1972)
Nv n = 13
Nc m = 9

f(x) 5

 4∑
i=1

xi

 − 5

 4∑
i=1

x2
i

 − 13∑
i=5

xi

Constraints



2x1 + x2 + x10 + x11 − 10 ≤ 0
2x1 + 2x3 + x10 + x12 − 10 ≤ 0
2x2 + 2x3 + x11 + x12 − 10 ≤ 0

−8x1 + x10 ≤ 0
−8x2 + x11 ≤ 0
−8x3 + x12 ≤ 0

−2x4 − x5 + x10 ≤ 0
−2x6 − x7 + x11 ≤ 0
−2x8 − x9 + x12 ≤ 0

Start point x0 = cos(ones(13))
Stop criterions ∥xk+1 − xk∥ ≤ εopt or ∥ f (xk+1) − f (xk)∥ ≤ εopt

NIter/MaxIter 11/1000
Sol.Alg (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 0.99999999) (feasible)
Sol.ex (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)

Figure 1. Evolution of the optimal value and the norm of the Lagrangian gradient
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Figure 2. Evolution of the optimal value and the norm of the Lagrangian gradient

Figure 3. Evolution of the optimal value and the norm of the Lagrangian gradient
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Figure 4. Evolution of the optimal value and the norm of the Lagrangian gradient

Figure 5. Evolution of the optimal value and the norm of the Lagrangian gradient

51



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 2; 2018

Figure 6. Evolution of the optimal value and the norm of the Lagrangian gradient

Figure 7. Evolution of the optimal value and the norm of the Lagrangian gradient
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4. Conclusion

In this work, we proposed an algorithm for solving optimization problems under inequality constraints. We obtained
convergence of generated sequence to an optimal solution, satisfying the Karush-Kuhn-Tucker qualification constraints.
Simulations on academic data have shown the performance of our method. Indeed, we maded changes in the calculation
of the multipliers for searching the point xk+1 when xk is already determined; and defined new set Ω(xk) associated to
each point xk for the projection in order to promote rapid convergence to an feasible point.
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