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Abstract

In this paper, we adopt a ‘first-principles’ approach to deriving a cubically convergent unipoint iterative method for a
two-dimensional system of nonlinear equations. We demand that the Jacobian and Hessian of an iteration function be
identically zero at the fixed point, and these conditions allow us to determine various terms in the iteration function.
We present analytical expressions for the inverses of two matrices appearing in the algorithm, which allows the iteration
function to be written explicitly. We demonstrate the cubic convergence rate by means of a few numerical examples, and
we determine the asymptotic error constant for these examples.
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1. Introduction

In this paper, we intend to derive an iterative method for a two-dimensional real-valued nonlinear system that has cubic
convergence for simple roots. Many papers derive such methods based on a multipoint approach, wherein the method is
presented ab initio, and then shown to be of cubic order (Amat & Busquier, 2007; Cordero et al, 2009; Darvishi & Barati,
2007; Hueso et al, 2007 & 2009; Kou, 2007; Nedzhibov, 2008; Traub, 1964; and references therein). Our approach will be
different: we will define an iteration function G, and by imposing conditions appropriate for cubic convergence, we will
construct the method. We have dubbed this a ‘first-principles’ approach. Furthermore, we will find analytical expressions
for any inverted matrices present in the algorithm, so that we will be able to write G in an explicit form that requires no
matrix inversion at all. We emphasize that our approach is a unipoint approach, so that G is written explicitly in terms of
the previous iterate. Lastly, we demonstrate the algorithm by means of a few numerical examples, and we suggest a few
applications. Our paper has a tutorial quality; as such, it represents a contribution to mathematical pedagogy in the field
of numerical methods.

2. Theory

Let

p =
[

p1
p2

]
(1)

denote the solution of the system

f1 (x1, x2) = 0
f2 (x1, x2) = 0 . (2)

Define

G (x) =
[

g1 (x1, x2)
g2 (x1, x2)

]
= x + AF (x) + BF2 (x) (3)

where

x =
[

x1
x2

]
F (x) =

[
f1
f2

]
F2 (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ f1 f1
f1 f2
f2 f2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

and A and B are matrices to be determined. Intuitively, one might expect that f2 f1 should also appear in F2; we will see
later that this would lead to a singularity. Indeed, since f2 f1 = f1 f2 (since f1 and f2 are real and continuous), the inclusion
of f2 f1 in F2 is superfluous, at the very least.

We intend to use G (x) in functional iteration (note that G (p) = p), so consider the following Taylor expansion:

G (x) = G (p + e) = G (p) +G′ (p) e+
1
2

G′′ (p) e2 + h.o.t. (5)
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where

e =

[
e1
e2

]
=

[
x1 − p1
x2 − p2

]
e2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e1e1
e1e2
e2e1
e2e2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

G′ (p) =

[
g1

1 g2
1

g1
2 g2

2

]
x=p

(7)

G′′ (p) =

[
g11

1 g12
1 g21

1 g22
1

g11
2 g12

2 g21
2 g22

2

]
x=p

(8)

and we have used the notation

g
j

i
=
∂gi

∂x j

g
jk

i
=
∂2gi

∂xk∂x j

(9)

in which i, j, k = 1, 2.We refer to G′ as the Jacobian of G, and G′′ as the Hessian of G.

Functional iteration on G implies

xt+1 = G (xt)

⇒ et+1 = xt+1 − p = G (xt) − p
= G

(
p + et

) − p

= G′ (p) et+
1
2

G′′ (p) e2
t + O

(
e3

t

)
. (10)

since G (p) = p, and where t denotes the iteration count. Clearly, for cubic convergence, we require

G′ (p) = 0
G′′ (p) = 0 (11)

The first of these conditions leads to the well-known result

A = −J−1 (12)

where J is the Jacobian of F, so that
G (x) = x − J−1F (x) + BF2 (x) . (13)

The second condition G′′ (p) = 0 enables us to determine B, and such analysis is the subject of this section.

Now, since G is 2 × 1 and F2 is 3 × 1, we must have that B is 2 × 3, i.e. B has six elements. This means that we need to
impose six independent conditions in order to determine these elements. The condition G′′ (p) = 0 implies[

g11
1 g12

1 g21
1 g22

1
g11

2 g12
2 g21

2 g22
2

]
x=p
=

[
0 0 0 0
0 0 0 0

]
(14)

which provides eight independent conditions, two too many. However, assuming that g1 and g2 are continuous functions
of x1 and x2, we have that

g12
1 = g21

1
g12

2 = g21
2

(15)

so that we actually only have six independent conditions[
g11

1 g12
1 g22

1
g11

2 g12
2 g22

2

]
x=p
=

[
0 0 0
0 0 0

]
. (16)

So, we have [
g1
g2

]
=

[
x1
x2

]
+

[
a11 a12
a21 a22

] [
f1
f2

]
+

[
b11 b12 b13
b21 b22 b23

] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ f1 f1
f1 f2
f2 f2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (17)

which gives
g1 = x1 + a11 f1 + a12 f2 + b11 f1 f1 + b12 f1 f2 + b13 f2 f2
g2 = x2 + a21 f1 + a22 f2 + b21 f1 f1 + b22 f1 f2 + b23 f2 f2

. (18)

Computing the relevant second-order derivatives and evaluating at p, and imposing the conditions (16), yields
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0 = g11
1 =

(
a1

11 f 1
1 + a1

11 f 1
1 + a1

12 f 1
2 + a1

12 f 1
2

)
+

[
a11 f 11

1 + a12 f 11
2

]
+2b11 f 1

1 f 1
1 + b12

(
f 1
1 f 1

2 + f 1
1 f 1

2

)
+ 2b13 f 1

2 f 1
2 (19)

0 = g12
1 =

(
a1

11 f 2
1 + a2

11 f 1
1 + a1

12 f 2
2 + a2

12 f 1
2

)
+

[
a11 f 12

1 + a12 f 12
2

]
+2b11 f 2

1 f 1
1 + b12

(
f 1
1 f 2

2 + f 2
1 f 1

2

)
+ 2b13 f 2

2 f 1
2 (20)

0 = g22
1 =

(
a2

11 f 2
1 + a2

11 f 2
1 + a2

12 f 2
2 + a2

12 f 2
2

)
+

[
a11 f 22

1 + a12 f 22
2

]
+2b11 f 2

1 f 2
1 + b12

(
f 2
1 f 2

2 + f 2
1 f 2

2

)
+ 2b13 f 2

2 f 2
2 (21)

0 = g11
2 =

(
a1

21 f 1
1 + a1

21 f 1
1 + a1

22 f 1
2 + a1

22 f 1
2

)
+

[
a21 f 11

1 + a22 f 11
2

]
+2b21 f 1

1 f 1
1 + b22

(
f 1
1 f 1

2 + f 1
1 f 1

2

)
+ 2b23 f 1

2 f 1
2 (22)

0 = g12
2 =

(
a1

21 f 2
1 + a2

21 f 1
1 + a1

22 f 2
2 + a2

22 f 1
2

)
+

[
a21 f 12

1 + a22 f 12
2

]
+2b21 f 2

1 f 1
1 + b22

(
f 1
1 f 2

2 + f 2
1 f 1

2

)
+ 2b23 f 2

2 f 1
2 (23)

0 = g22
2 =

(
a2

21 f 2
1 + a2

21 f 2
1 + a2

22 f 2
2 + a2

22 f 2
2

)
+

[
a21 f 22

1 + a22 f 22
2

]
+2b21 f 2

1 f 2
1 + b22

(
f 2
1 f 2

2 + f 2
1 f 2

2

)
+ 2b23 f 2

2 f 2
2 (24)

It is a consequence of the evaluation at p that all terms proportional to either f1 or f2 have vanished (since f1,2 (p) = 0).

Now, if we define the matrices

L1 =

[
f 1
1 f 2

1 f 1
2 f 2

2
0 0 0 0

]
L2 =

[
0 0 0 0
f 1
1 f 2

1 f 1
2 f 2

2

]
(25)

Z1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2a1

11 a2
11 0

0 a1
11 2a2

11
2a1

12 a2
12 0

0 a1
12 2a2

12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Z2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2a1

21 a2
21 0

0 a1
21 2a2

21
2a1

22 a2
22 0

0 a1
22 2a2

22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

H =
[

f 11
1 f 12

1 f 22
1

f 11
2 f 12

2 f 22
2

]
M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 2 f 1
1 f 1

1 2 f 2
1 f 1

1 2 f 2
1 f 2

1
2 f 1

1 f 1
2 f 1

1 f 2
2 + f 2

1 f 1
2 2 f 2

1 f 2
2

2 f 1
2 f 1

2 2 f 2
2 f 1

2 2 f 2
2 f 2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (27)

equations (19)−(24) can be written as

L1Z1 + L2Z2 − J−1H + BM = 0
⇒ B = −

(
L1Z1 + L2Z2 − J−1H

)
M−1. (28)

This gives
G (x) = x − J−1F (x) −

(
L1Z1 + L2Z2 − J−1H

)
M−1F2 (x) . (29)

Moreover, analytical expressions for J−1 and M−1 are easily determined:

J−1 =
1(

f 1
1 f 2

2 − f 2
1 f 1

2

) [
f 2
2 − f 2

1− f 1
2 f 1

1

]
(30)

M−1 =
1

4
(

f 1
1 f 2

2 − f 2
1 f 1

2

)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 f 2

2 f 2
2 −4 f 2

1 f 2
2 2 f 2

1 f 2
1

−4 f 2
2 f 1

2 4
(

f 1
1 f 2

2 + f 2
1 f 1

2

)
−4 f 1

1 f 1
2

2 f 1
2 f 1

2 −4 f 2
1 f 1

1 2 f 1
1 f 1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (31)
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Note that J−1 and M−1 are singular only when

det (J) = f 1
1 f 2

2 − f 2
1 f 1

2 = 0. (32)

At this juncture we can comment about the exclusion of the term f2 f1 from F2, as mentioned earlier. Had f2 f1 been
included (so that F2 was a 4 × 1 vector), the matrix M would have had the form

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 f 1

1 f 1
1 2 f 2

1 f 1
1 2 f 2

2 f 1
2 2 f 2

1 f 2
1

2 f 1
1 f 1

2 f 1
1 f 2

2 + f 2
1 f 1

2 f 1
2 f 2

1 + f 2
2 f 1

1 2 f 2
1 f 2

2
2 f 1

2 f 1
1 f 1

2 f 2
1 + f 2

2 f 1
1 f 1

1 f 2
2 + f 2

1 f 1
2 2 f 2

2 f 2
1

2 f 1
2 f 1

2 2 f 2
2 f 1

2 2 f 2
1 f 1

1 2 f 2
2 f 2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (33)

and, since the second and third rows are identical, this matrix is singular.

It is worth checking to see that this method reduces to the expected form for the scalar case. In the scalar case we have

x = x L1 = f ′
F (x) = f (x) L2 = f ′

F2 (x) = f 2 Z1 = 2 d
dx

(
− 1

f ′
)
=

2 f ′′

[ f ′]2

J = f ′ Z2 = 0
J−1 = 1

f ′ H = f ′′

A = −J−1 = − 1
f ′ M = 2

[
f ′
]2

M−1 = 1
2[ f ′]2

(34)

and so

G (x) = x − f

f ′
−

⎛⎜⎜⎜⎜⎝2 f ′ f ′′[
f ′
]2 − f ′′

f ′

⎞⎟⎟⎟⎟⎠ f 2

2
[
f ′
]2

= x − f

f ′
− f ′′ f 2

2
[
f ′
]3 (35)

as expected (see Schröder’s formula in Traub, 1964). In the above, Z2 = 0 because Z2 is composed of elements from the
second row of A but, in the scalar case, there are no such elements.

3. Implementation

Given the analytical expressions derived above, the implementation of the algorithm is clear: using f1 (x1, x2) and
f2 (x1, x2) , we construct an explicit expression for G (x1, x2) , which is then used for functional iteration. In this way,
there is no need to explicitly invert matrices, or to evaluate functions through the passing of arguments. The function G
can be constructed using computer algebra software, as we have done in our own work, and thereafter functional iteration
is applied numerically.

4. Limitation

We acknowledge a limitation on the quality of this method - the fact that the matrix M scales rapidly with the dimen-
sionality of the system. As the dimension increases, so does the size of M. For example, a three-dimensional system
requires that M be 6 × 6, and a four-dimensional system requires that M be 10 × 10. In general, for a d-dimensional
system, the Jacobian J is d × d, and M is d(d+1)

2 × d(d+1)
2 . Note that the dimensions of M are dictated by those of F2 : for

a d-dimensional system there are d(d+1)
2 elements in F2 since, if the term fi f j is in F2, then f j fi is not (refer to our earlier

discussion regarding f2 f1). By contrast, in the method of Kou (Kou, 2007), no matrix exceeds d × d, although admittedly
Kou’s method is a multipoint method - an observation that certainly informs the superiority of multipoint methods over
unipoint methods, in terms of computational efficiency.

5. Numerical examples

As an example, consider
f1 (x1, x2) = x1x2 + x2 − 4
f2 (x1, x2) = x2

1 − x2
2 + 3 (36)

which has solution

p =
[

1
2

]
. (37)
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Iteration with initial value x0 =

[
2
3

]
gives

e1 =

[
0.724 × 10−1

0.298 × 10−1

]
, e2 =

[
0.419 × 10−4

−0.323 × 10−4

]
e3 =

[ −0.921 × 10−14

0.799 × 10−14

]
, e4 =

[
0
0

]
(38)

and with initial value x0 =

[
0.5
2.5

]
gives

e1 =

[ −0.266 × 10−2

−0.204 × 10−1

]
, e2 =

[
0.866 × 10−6

−0.437 × 10−6

]
e3 =

[ −0.726 × 10−19

0.122 × 10−19

]
, e4 =

[
0
0

]
(39)

which clearly indicates cubic convergence. The value for e4 indicates that the error is smaller than the machine precision.

Now, since G′ (p) = 0 and G′′ (p) = 0, by construction, we have in the expansion (10)

et+1 =
1
6

G′′′ (p) e3
t + h.o.t. (40)

where

G′′′ (p) =
[

g111
1 g112

1 g121
1 g211

1
g111

2 g112
2 g121

2 g211
2

g122
1 g212

1 g221
1 g222

1
g122

2 g212
2 g221

2 g222
2

]
x=p

(41)

e3
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1e1e1
e1e1e2
e1e2e1
e2e1e1
e1e2e2
e2e1e2
e2e2e1
e2e2e2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

(42)

and

g
jkl

i
=

∂3gi

∂xl∂xk∂x j

(43)

where i, j, k, l = 1, 2. For the example considered here, we have

G′′′ (p) =
[

0 5
9

5
9

5
9− 1

2 − 2
9 − 2

9 − 2
9

1
9

1
9

1
9 − 6

9
7
18

7
18

7
18

1
6

]
. (44)

The quantity 1
6 G′′′ (p) is the ‘asymptotic error constant’ for this example.

As another example, consider
f1 (x1, x2) = x1 − cos x2
f2 (x1, x2) = x2

2 + sin x1
(45)

which has solution

p =
[

0.53038868953899
−1.01173733418201

]
. (46)

Iteration with initial value x0 =

[
1
−2

]
gives

e1 =

[
0.117
−0.018

]
, e2 =

[
0.312 × 10−3

0.331 × 10−3

]
e3 =

[ −0.014 × 10−10

0.128 × 10−10

]
, e4 =

[
0
0

]
. (47)

The asymptotic error constant for this example is

G′′′ (p)
6

=
1
6

[ 2159
2254 − 555

6272 − 555
6272 − 555

6272
87
77

367
2404

367
2404

367
2404

− 227
3026 − 227

3026 − 227
3026 − 575

984− 555
6272 − 555

6272 − 555
6272

3223
3197

]
, (48)
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where the entries in this matrix are rational approximations.

6. Applications

Although the method presented here is a generic one, and is applicable to any situation in which a two-dimensional system
must be solved, there are a few specific applications worth noting.

6.1 Root of a complex function

Say f (z) is a complex-valued function, where z = α + βi, α, β ∈ R. Furthermore, assume that f has the explicit form

f (z) = f1 (z) + f2 (z) i
= f1 (α, β) + f2 (α, β) i

where f1 and f2 are real-valued. The root of f can be found by solving the system

f1 (α, β) = 0
f2 (α, β) = 0

for α and β.

6.2 Extremum of a two-dimensional function

If we seek the extremum (maximum or minimum) of the function f (x, y) , then we might seek to solve the system

∂ f

∂x
= 0

∂ f

∂y
= 0

for x and y.

6.3 Implicit Runge-Kutta method

The two-stage fourth-order Runge-Kutta method (Butcher, 2003)

c1 a11 a12
c2 a21 a22

b1 b2

=

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

for solving the initial-value problem
y′ = f (x, y)

requires solving the two simultaneous stage equations

k1 = f (xi + c1h,wi + ha11k1 + ha12k2)

k2 = f (xi + c2h,wi + ha21k1 + ha22k2)

for k1 and k2, where xi,wi and h are known input. The compuational effort required to solve these stage equations could
render the method inefficient; hence, a cubically convergent algorithm can contribute positively to the overall efficiency
of this Runge-Kutta method.

7. Conclusion

We have shown how a cubically convergent iteration scheme for solving a system of two nonlinear equations can be
constructed, by appealing to fixed-point theory. We have defined a unipoint iteration function and, by demanding that the
Jacobian and Hessian of this function should vanish at the fixed point, we have determined the entries of relevant matrices
in the method. From a consistency point of view, we have shown that, in the univariate case, the method reduces to the
known one-dimensional algorithm of Schröder. Some numerical examples serve to illustrate the cubic character of the
method, and we have given values for the asymptotic error constant in these examples.
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