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Abstract 

The article proves several new properties of consecutive odd integers. The proved properties reveal divisors’ transition by 

subtracting two terms of an odd sequence, divisors’ stationary with adding or subtracting an item to the terms and 

pseudo-symmetric distribution of a divisor’s power in an odd sequence. The new properties are helpful for finding a 

divisor of an odd composite number in an odd sequence. 
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1. Introduction 

Study of odd integers has been an important topic in number theory for several hundred years, as introduced in Dickson’s 

book (Dickson, L. E., 1971). People have spent much time on studying the prime numbers, which are a special kind of odd 

integers, and obtained many excellent achievements as well as a lot of unsolved problems most of which are closely 

related with odd integers, as illustrated in Rosen’s book (Rosen, K. H., 2011). Nowadays, the problem of factorizing a 

large odd number has still been a well-known difficult problem in the world, as Sarnaik S and Liu XX stated in their 

articles (Sarnaik, S., Gadekar, D., Gaikwad, U., 2014 ; Liu, X. X., Zou, X. X. & Tan, J. L., 2014), and Kessler overviewed 

in his book (Kessler G C. 2016). It is indubitable that, study of odd integers in different perspectives is helpful for 

knowing both the prime numbers and the factorization of integers. Based on such a point of view, WANG made studies on 

odd integers by several different approaches and obtained many new properties (WANG Xingbo, 2014-2017). Following 

the previous studies, this article aims at discovering some more new properties of consecutive odd numbers and intends to 

provide a mathematical foundation in people’s knowing the distributions of odd integers’ divisors. 

2. Preliminaries 

This section introduces symbols, definitions and lemmas that are necessary in later sections. 

2.1 Symbols and Notations 

Throughout this paper, an odd sequence is defined to be a sequence of odd numbers, e.g., 13,15,19,23,31. An odd interval 

[ , ]a b  is a set of consecutive odd numbers that take a as their lower bound and b as their upper bound. For example,

[3,11] {3,5,7,9,11} . An odd interval [ , ]a b is said to contain another odd interval [ , ]c d , denoted by [ , ] [ , ]c d a b , if 

, ,a b c and d satisfy one of the following three conditions 

(1) a c and d b ; 

(2) a c and d b ; 

(3) a c and d b . 

Symbol ( , )a b  denotes the greatest common divisor of integer a and b. Symbol ( , , )m n p  denotes the number of p’s 

multiples from integer m to integer n. Symbol x    is to express x’s floor function defined by 1x x x     , where x is a 

real number; and symbol x is to express x’s odd floor function that is defined by 

,

1,

x when x is odd
x

x when x is even

      
 

      
 

2.2 Lemmas 

Lemma 1 (See in Rosen’s book,2011) Let a, b, c and r be integers such that a bc r  ; then ( , ) ( , )a b b r . If m and n are 

odd integers and m n , then ( , ) ( , )m n n m n   
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Lemma 2 (See in WANG Xingbo’s, 2014&2016) Let p be a positive odd integer; then among p consecutive positive odd 

integers there exists one and only one that can be divisible by p. Let q be a positive odd number and S be a finite set that is 

composed of consecutive odd integers; then S needs at least ( 1) 1n q  elements to have n multiples of q.  

Lemma 3. Let ,m n and p be positive integers such that 1 p m n   ; then number of p’s multiples from m to n is 

calculated by 

,

( , , )

1, |

n m
p m

p p
m n p

n m
p m

p p



    
    

    
 

   
    

   

 

Proof. It is known that, there are 
m

p

 
 
 

 p’s multiples from 1 to m . Let m

m
r m p

p

 
   

 
 and group the all the integers 

from 1 to m by a unit that contains p consecutive integers. It can see that there are 
m

p

 
 
 

complete units, each of which 

contains p consecutive integers, and an incomplete unit that contains only
mr consecutive integers, as shown in figure 1.  

1,2,3,..., , 1,...,2 ..., ( 1) 1..., , 1...,

m

p p

p r

m m m
p p p p p p m

p p p

     
        

     
 

Figure 1. Grouped m integers 

Now group all the integers from 1 to n in the same way, as shown in figure 2.  

1,2,3,..., ,...,..., , 1..., ,..., ( 1) ,...,..., , 1...,

n

m

rp p

p

p r

m m m n n
p p p m p p p n

p p p p p

         
           

         
 

Fig 2 Grouped n integers 

Then it can see that, if p m , the integers ( 1)
m

p
p

 
 

 
,…,

n
p

p

 
 
 

are p’s multiples. The number of the multiples is 

( 1) 1
n m n m

p p p p

       
           

       
. If |p m , the integers,

m
p

p

 
 
 

, ( 1)
m

p
p

 
 

 
,…,

n
p

p

 
 
 

 are p’s multiples which 

include 1
n m

p p

   
    

   
 integers in all. 

□ 

3. Theorems and Proofs 

Theorem 1. Let n be a positive integer and 1 2{ , ,..., }nS s s s be a sequence that consists in n consecutive odd integers; if 

odd number p has one and only one multiple in S, then 
2

n
p

 
  
 

. 

Proof. Use proof by contradiction. Assume 
2

n
p

 
  
 

, then it yields 1
2

n
p

 
  
 

. Since n n    , it knows 

( 1) 2 1 2 1 1
2 2 2 2 2 2

n n n n n n
n p n

           
                          

           
 

This indicates by Lemma 2 and Lemma 3 that there are at least 2 terms that are p’s multiples in S, which is contradictory 

to the condition that S contains exact one p’s term. 

□ 
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Theorem 2. Let p be an odd number and n be a positive integer with n p . Suppose 
1 2, ,..., na a a are n consecutive 

odd numbers and { |1 }j iS a a i j n     ; then there are 
( 1)

( , )
2

p n n p
 

 


  p’s multiples in S, where 

n

p


 
  
 

. 

Proof. Take arbitrary two numbers ia  and 
ja , where 1 i j n   . Since ia  and 

ja  are odd numbers, 
j ia a is surely 

an even number. Therefore, p’s multiples that are produced by
j ia a  must be 2 , 4 ,6 ,...p p p . Without loss of generality, 

suppose 
1 2 1a s  , where s is a positive integer; then 2( 1) 1ia s i     and 2( 1) 1ja s j    . This yields  

2( )j ia a j i    

and when j i k  it results in 

2i k ia a k    

Consequently it discovers the following facts. 

(1) There are 1n  pairs of ia  and 
ja such that 2j ia a  ; the 1n numbers are 1 2i ia a   when 1,2,..., 1i n  . 

(2) There are 2n   pairs of ia  and 
ja such that 4j ia a  ; the 2n   numbers are 2 4i ia a   . 

(3) There are n k  pairs of ia  and 
ja such that 2j k ia a k   ; the n k  numbers are 2i k ia a k   . 

Consequently, it knows that there are totally n p  numbers that are of the form 2 p which is produced by 

2i p ia a p   , there are totally 2n p  numbers that are of the form 4 p which is produced by 
2 4i p ia a p   , and 

when n p  there are totally n p  numbers that are of the form 2 p which is produced by 
2 2i p ia a p    . As 

a result, the total number ( , )p n of p’s multiples in { |1 }j iS a a i j n      is given by 

( 1)
( , ) ( ) ( 2 ) ... ( )

2
p n n p n p n p n p

 
  


          

where 
n

p


 
  
 

. 

□  

Example 1. Let 3p   and {3,5,7,9,11,13}S  ; then 6n  , 2   and 

2 3
(3,6) 2 6 3 3

2



      

which says there are three 3’s multiples that are produced by subtracting arbitrary two elements in S. In fact, it can see that 

the 3 multiples are 9 3 6,11 5 6     and 13 7 6  . 

Theorem 3. Let p be an odd integer and n be a positive integer with n p . Suppose 1 2{ , ,..., }nS a a a  is composed of 

n consecutive odd integers with 1a p ; if * { |1 }iS a p i n    , then the number   of p’s multiples in 
*S is 

estimated by 

1

1

1 1
1, ( )

1 1
1 2, | ( )

n n
p a p

p p

n n
p a p

p p



     
     

    
  

     
      

    

 

Proof. Since p and 
1a  are odd integers, let 

1 2a p s  ; then the set 
*S  can be equivalently rewritten by 

* {2( ) | 0 1}S s i i n      

Let 

{ | 0 1}S s i i n      
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then terms in S are one-to-one mapping to the terms in 
*S and S contains n consecutive integers. By Lemma 3, the 

number of p’s multiples in S is calculated by  

1 1

1

1 1

1 1

1

1
, ( )

( , 1, )
1

1, | ( )

a p n a p
p a p

p p
a p a p n p

a p n a p
p a p

p p



       
     

    
     

      
     

   

 

Since 1 111 1
1

a p n a pn n

p p p p

           
          

       
, it yields 

1

1 1

1

1 1
1, ( )

( , 1, )
1 1

1 2, | ( )

n n
p a p

p p
a p a p n p

n n
p a p

p p



     
     

    
      

     
      

    

 

□ 

Corollary 1. Let p be an odd integer and n be a positive integer with n p . Suppose 
1 2{ , ,..., }nS a a a is composed 

of n consecutive odd integers with 
1a p and 

* { |1 }iS a p i n    ; then S contains at most one p’s multiple and 

*S contains at most two p’s multiples. When 
*S contains one p’s multiple, it is either 

1

2

kp aa p   with 

1 12 2
1

a n a
k

p p

    
     

   
 or 

1( 1)

2

k p aa p    with 1 12 2
1

a n a
k

p p

    
     

   
; when 

*S contains two p’s multiples, 

{(2 1) ,(2 1) 2,...,(2 3) }S k p k p k p     and 
* {2 ,2 2,...,2( 1) }S kp kp k p   . 

Proof. By Lemma 2, if S contains more than one p’s multiples, then 1n p  . That is contradictory to n p . Hence S 

contains at most one p’s multiples.  

Now consider p’s multiples in 
*S . Note that n p leads to 

1
0

n

p

 
 

 
. By Theorem 2, there are two cases, 

1( )p a p  and 
1| ( )p a p , to be investigated. First consider the case 

1( )p a p . This time 
*S contains at most 

one p’s multiples by Theorem 2. Actually, it can show that
1

2

kp aa p  is p’s multiple when 1 12 2
1

a n a
k

p p

    
     

   
, 

and 
1( 1)

2

k p aa p   is p’s multiple when 1 12 2
1

a n a
k

p p

    
     

   
. 

Direct calculations show  

1

1

1

2

2 ( 1)
2

kp a

kp a
a p a p k p


         

and 

1

1

( 1) 1

2

( 1)
2

2
k p a

k p a
a p a p kp 

 
       

which leads to 

1 1( 1)

2 2

( ) ( )k p a kp aa p a p p                                     (1) 
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Note that, the equality (1) asserts that, 
1

2

kp aa p   and 
1( 1)

2

k p aa p    cannot simultaneously be in 
*S  because 

*S  

contains at most p numbers while there are 1p  numbers from 
1

2

kp aa p   to 
1( 1)

2

k p aa p   .  

Now considering 1 12 2
1

a n a
k

p p

    
     

   
yields 2 12a n a

k
p p


  , namely 11

2

kp a
n


  , and 

1 12 2
1

a n a
k

p p

    
     

   
 yields 1( 1)

1
2

k p a
n

 
  , it knows that the first assertion of the corollary is sure to hold. 

Now it turns to the case 
1| ( )p a p . This time 

*S might contain at least 1 and at most 2 p’s multiples by Theorem 2. 

In fact, 
1| ( )p a p means 

1 (2 1)a p k  for some integer 1k  since 
1a and p are odd; then 

1 2 2 2ia p a i p kp i      ; when i p , 
ia p is a multiple of p. Consequently, n p is the solution that

*S

contains 2 multiples of p. The solution is 

{(2 1) ,(2 1) 2,...,(2 3) }S k p k p k p      and 
* {2 ,2 2,...,2( 1) }S kp kp k p    

□ 

Corollary 2. Let p be an odd integer and n be a positive integer with n p . Suppose 
1 2{ , ,..., }nS a a a is composed 

of n consecutive odd integers with 
1a p  and it contains exact one p’s multiple. If 

* { |1 }iS a p i n    , then S 

contains exact one p’s multiple if 
1p a or 

1|p a together with n p ; S contains exact two p’s multiples if 
1|p a and

n p . 

Proof. (Omitted) 

□ 

Theorem 4. Given p is an odd integer bigger than 1, n is a positive integer with n p and 
1 2{ , ,..., }nS a a a is 

composed of n consecutive odd integers with 
1a ep for an even integer 2e  ; let 

* { |1 }iS a ep i n    ; if S 

contains exact one p’s multiple 
ma , then 

ma ep is the unique p’s multiple in 
*S . 

Proof. Obviously, 
*S contains n consecutive odd numbers and 

ma ep is a p’s multiple since 
ma ps for some odd 

integer 1s  . If 
*S contains some other p’s multiples, then by Lemma 2 it needs at least 1p  numbers in

*S . This is 

contradictory to n p . Hence the theorem holds.  

□ 

Corollary 3. Given p is an odd integer, n is a positive integer with n p , 
1 2{ , ,..., }nS a a a is composed of n 

consecutive odd integers with 
12 2( 1)p a p     or for an integer 1  and 

* { | 2 ,i i iS s s a p    1 }i n  ; 

suppose S contains only one p’s multiple; then 
*S also contains only one p’s multiple which is either 

1(2 1)

2

k p as  
with 

12 (2 1)kp a k p   or 
1(2 3)

2

k p as  
with 

1(2 1) (2 3)k p a k p    . And thus the sole p’s multiple in S is either 

1(2 1)

2

k p aa    with 
12 (2 1)kp a k p   or 

1(2 3)

2

k p aa    with 
1(2 1) (2 3)k p a k p    . 

Proof. Let 
1 2a p r  ; then r is odd and 1 2 1r p   . Obviously 

*S  can be rewritten by  

* { , 2,..., 2 ,..., 2( 1)}S r r r s r n      

with r and 2( 1)r n  being respectively the smallest term and the biggest term.  

Since 1 n p  , it holds 2( 1) 4 3r n p    . Hence the suspicious p’s multiples in 
*S are either ( )r p r  with 

r p  or (3 )r p r   with 3p r p  . Direct calculations shows 

1(2 1) 1

2

(2 1)k p as r k p a p        

1(2 3) 1

2

(2 3) 3k p as r k p a p        
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1(2 1) 1 1

2

(2 1) (2 1)k p aa a k p a k p         

and 

1(2 3)

2

(2 3)k p aa k p     

□ 

Example 2. Let 127p  , 
11 127

{1297,1299,...,1395,1397,1399,...,1497}S


 ; then
1 1297a  , 5   and 27r  . Since 

127 10 1297 127 11    , it yields 

1397 1297 50

2

27 2 50 127s s       

Theorem 5. Let p be an odd integer, n be a positive integer,
1 2{ , ,..., }nS a a a be composed of n consecutive odd integers 

with 
1a p  for an integer 1  and * { | ,1 }i i iS s s a p i n     ; then ( , ) ( , )i ip a p s  for 1 i n  . 

Proof. Rewrite 
i is a p   by 

i ia p s  ,1 i n   

Then by Lemma 1it yields  

( , ) ( , )i ia p p s ,1 i n   

□ 

Theorem 6. Let a and p be two odd integers with |p a . Suppose 2 1p s    (or 2 1p s   ), where 1s   is odd, 

 and  are positive integers with 1  and 0  ; then there must exist an odd integer b and an odd integer c such that 

(1) b a c   and | ( , )s b c
; 

(2) there are at most 1s  consecutive odd integers from b to a or from c to a. 

Proof. First prove the case 2 1p s   . Let ..., 2 ,..., 2, , 2,..., 2 ,...a k a a a a k    be consecutive odd integers; then by 

Lemma 2, it knows that, among s
consecutive odd integers next to a’s left there must be a b such that |s b . Since b is 

among the s
 a’s consecutive odd neighboring integers, it knows there are at most 1s  consecutive odd numbers from 

b to a. Similarly, it knows that, among s
consecutive odd integers next to a’s right there must exist a c such that |s c

and there are at most 1s  consecutive odd numbers either from c to a or from b to a. The case 2 1p s   can be 

proved in the same way. 

□ 

Corollary 4. Let a and p be two odd numbers and |p a . Suppose 2 1p s    (or 2 1p s   ), where 1s   is 

odd,  and  are positive integers with 1  and 0  ; then among s
 consecutive odd numbers next to a’s left 

there are odd numbers 
ib such that |i

is b , where , 1,..., 2,1i    , and among s
 consecutive odd numbers next to 

a’s right there are jc such that |j

js c , where 1, 2,...,j  . 

Proof.(Omitted) 

□ 

Corollary 5. Let a and p be two odd integers and |p a . Suppose 2 1p s t     (or 2 1p s t    ), where s and t 

are odd integers bigger than 1;  ,  and are positive integers that with 1  , 0   and 0  ; then among s
 

consecutive odd numbers next to a’s left there are odd numbers 
isb such that |is

iss b , among t  consecutive odd 
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numbers next to a’s left there are odd numbers 
ib

such that |i

it b

 where , 1,..., 2,1is     and 

, 1,...,2,1i    ; among s
 consecutive odd numbers next to a’s right there are odd numbers 

isc such that |is

iss c

and among t  consecutive odd numbers next to a’s right there are odd numbers 
ic

such that |i

it c

 where 

, 1,..., 2,1is     and , 1,...,2,1i    . 

Proof. (Omitted) 

□ 

Theorem 7. Let 1s  be an odd number and 1  be a positive integer; suppose e is an odd number such that 

|s e

 ; then | ( 2 )s e s 

  , where  and 
 are positive integers with 1    , and 1  . 

Proof. |s e

  yields e s t  with some odd integer 1t  ; then 2e s   2s t s 

   ( 2 )s s t  


  . 

□ 

Theorem 8. Let 1p  be an odd number and 1  be a positive integer; then there are
1 1p    p’s multiples in odd 

interval ( , ( 2))p e p e   , where e is an odd integer. 

Proof. Since p and e are odd, , 2 , 4 ,..., 2 ,..., 2ep ep p ep p ep kp ep p         are all p’s multiples. Eliminating the 

starting number p e  and the ending number ( 2)p e  , which are multiples of p
, remains 

1 1p    p’s multiples 

that are given by 

12 , 4 ,..., 2 ,..., 2 4 , 2( 1)ep p ep p ep kp ep p p ep p p               

□ 

Theorem 9. Suppose 1p  , 
0 1e  are odd numbers that satisfy 

0|p e and let 0

2

e
e

p
 ; then 

2 2

0 [ , ( 2))e p e p e  . 

Proof. Let 0

2

e
e

p

 
  
 

; if e is odd, then taking 0

2

e
e

p

 
  
 

 yields  

2 2 20 0

02 2

e e
p e p p e

p p

 
    

 
 

and  

2 2 20 0

02 2
( 2) ( 2)

e e
p e p p e

p p

 
      

 
 

If e is even, then taking 0

2
1

e
e

p

 
  
 

 leads to 

2 2 20 0

02 2
( 1)

e e
p e p p e

p p

 
     

 
 

and  

2 2 20 0

02 2
( 2) ( 1)

e e
p e p p e

p p

 
      

 
 

□ 
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Theorem 10. Suppose odd numbers 
0e and p  satisfy 

0 1e p  ; let 1  be a positive integer and 0e
e

p
 , then 

1 1

0 0[ , ( 2)] [ , ( 2)]p e p e p e p e       . 

Proof. Let 0e
e

p

 
  
 

. Direct computation can show that 0e
e e

p

 
   

 
matches to the theorem if e  is odd, and

01 1
e

e e
p

 
    

 
 matches to the theorem if e  is even. 

In fact, when e  is odd, both 1p e   and 1( 2)p e    are odd.  

Since 

1 1 10 0

0( )
e e

p e p p p e
p p

      
    

 
 

and 

1 1 10 0

0( 2) ( 2) ( 1) ( 2)
e e

p e p p p e
p p

      
        

 
 

it is sure that 1 1

0 0[ , ( 2)] [ , ( 2)]p e p e p e p e       .  

If e  is even, then 01 1
e

e e
p

 
    

 
,

1p e 
 and 

1( 2)p e    are odd. 

Since 0 01
e e

p p

 
  

 
, it yields 

1 1 10 0

0( 1)
e e

p e p p p e
p p

      
     

 
, 

Next it shows 
1

0( 2) ( 2)p e p e     .  

Actually,  

1

2 0 2 0

0 0

0 0

0

0

( 2) ( 2) ( ) (2 2)

( ) 2 ( ( )) 2

( ( )) 2

p e p e p pe e p p

e e
p p p e p p p e p p

p p

e
p p e p p

p

   

   

 

       

   
          

   

 
    

 

 

Note that 0

0

e
e p

p

 
  

 
is the remainder of 

0e divided by p and its value must be one of 1,3,…,p-2, the biggest of which 

is 2p  ; hence it holds 0

0( ) 2
e

p e p
p

 
   

 
 and further  

1 0

2 0 0( 2) ( 2) ( ( )) 2 0
e

p e p e p p e p p
p

     
        

 
 

□ 

Example 3. Taking
03, 5p e  yields 
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2 2 0

3 3

[3 5,3 7] [45,63], 1

[3 1,3 3] [27,81] [45,63]

e

p

 
    

 

    

 

Taking 
05, 15p e   

2 2 0

3 3

[5 15,5 17] [375,425], 3

[5 3,5 5] [375,625] [375,425]

e

p

 
    

 

    

 

Taking 
05, 11p e   yields 

2 2 0

3 3

[5 11,5 13] [275,325], 2

[5 1,5 3] [125,375] [275,325]

e

p

 
    

 

    

 

Taking 
03, 7p e  yields 

2 2 0

3 3

[3 7,3 9] [63,81], 2

[3 1,3 3] [27,81] [63,81]

e

p

 
    

 

    

 

and taking 
03, 19p e  yields 

2 2 0

3 3

[3 19,3 21] [171,189], 6

[3 5,3 7] [135,189] [171,189]

e

p

 
    

 

    

 

Corollary 6 Let a ps be an odd composite integer, where p and s are odd numbers with 1 p s  ; if 
1k kp a p   , 

then  

2 2

1 1 1 1... ...k k

k kp b p b a ps p c p c         

where 
1

s
b

p
 1

i

i

b
b

p
  , 2i ic b  , 1, 2,..., 1i k  . 

In other words, some of the p’s powers, 
1 2, ,...,k kp p p

, are in some way symmetrically distributed as divisors of odd 

numbers around a , as depicted in figure 2. 

Figure 2. Symmetrically distributed powers of a’s divisor p 

Example 4. Odd number 46189=114199 satisfies 
4 511 46189 11  ;  

then 1

4199
381

11
b

 
  
 

, 2 3

381 33
33, 3

11 11
b b

   
      
   

 and 
1 2 3383, 35, 5c c c   , which result in 

4 3 2 2 3 4

43923 43923 46101 46189 46343 46585 73205

11 3 11 33 11 381 11 4199 11 383 11 35 11 5              

Corollary 7 Let a ps be an odd composite integer, where p and s are odd numbers with 1 p s  ; then there always 

exist an odd sequences 
2 11 ...kb b b     and 

1 2 ... 1kc c c    that satisfy 

1 2 2 1

1 1... ...k k

k kp b p b a ps p c p c         

 
 … 

3

2p b           
2

1p b          a ps          
2

1p c            
3

2p c  … 
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4. Conclusions 

Consecutive odd integers always express a sequence of odd numbers. Knowing the properties of consecutive odd integers 

is undoubtedly helpful for knowing the distribution of a odd integer’s divisors, as stated in the theorems and corollaries 

that are proved in previous sections. This can also help people to design fast algorithms to find a divisor of an odd integer, 

and thus solve the problem of factoring big integers. This is my original intention and I hope the day come soon. 
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