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Abstract

In this paper, we study on a special case of generalized matrix algebra that we call it square algebra. According to
that Hochschild cohomology play a significant role in Geometry for example in orbifolds, we study the first Hochschild
cohomology of the square algebra the vanishing of its.
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1. Introduction

Let R be a commutative ring (with unit), let A and B be R-algebras and M be a left A-module and right B-module. A
triangular algebra T over R is the following matrix
A M
7= [ B ] |
Automorphisms, derivations, commuting mappings and Lie derivations on triangular algebras are studied by Cheung
(Cheung, 2001) and (Cheung, 2003). Other useful and valuable literature concerning the structure of derivations and
Lie derivations is (Ji & Qi, 2011). Basic examples of triangular algebras are upper triangular matrix algebras and nest

algebras which derivations of those considered in (Christensen, 1977), (Coelho, & Milies, 1993), (Donsig, Forrest &
Marcoux, 1996).

A generalized matrix algebra is a generalization of triangular matrix algebra. In the triangular algebra 7, the element lies
in the second row and second column is zero. In generalized matrix algebra, we put a right A-module and left B-module N
in zero place. We denote the generalized matrix algebra by G. Algebraic studying on derivations, generalized derivations
and Lie derivations have been studied in (Du, & Wang, 2012), (Li & Wei, 2012), (Li, & Xiao, 2011).

Throughout this paper R is a commutative ring (with unit), A and B are R-algebras with units 14 and 1p, respectively,
M is an R-bimodule, left A-module and right B-module (A, B-module) and N is an R-bimodule, right A-module and left
B-module (B, A-module). Define bimodule homomorphisms @y : M @ N — A and @y, : N ®4 M — B satisfying

the following commutative diagrams:
Oy ® idy

M ®p N M AR M

idM ® (DNM

M®p B - M
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and

Dy ®idM
N 4 M®gN > B®gN

idy ® Oy

N®sA ~ N.

For more details and applications see (Buchweitz, 2003). We define generalized matrix algebra

o-[ v %]

with the usual 2 X 2 matrix-like addition and multiplication

’Z]:aeA,beB,meM,neN},

ay nmy ay np| _|a1ap +m; ®pny aymy + I’I’llbz
nm b n b - mas + byny n®aumy+ bi1by

In this algebra, if M ®p N = 0 = N®4 M, then we denote it by S and we called that a square algebra.

Let R be a commutative ring (with unit), let A be an R-algebra and M be an A-bimodule. Forn =0, 1,2, ..., let C"(A, M)
be the space of all n-linear (as a R-module map) mappings from A X --- X A into M and C°(A, M) = M. Consider the

sequence
0 1 »
0 — C4.M) 5 a5 - (Ca, )
in which
d°x(a) = ax-xa
d'f(a,az, + ,an1) = aif(az, -+ ,aus1)
D™ far @)
+Z(_1)jf(al,”"aj—l7ajaj+la"‘7an+l) (D
j=1
where n > 1, x € M and ay,...,a,+; € A. The above sequence is a complex for A and M. The n-th cohomology group

of C(A, E) is said to be n-th Hochschild cohomology group and denoted by H"(A, M), for more details see (Brodmann &
Sharp, 1998), (Rotman, 2009). A derivation is a linear map D : A — M such that D(ab) = aD(b) + D(a)b (a,b € A) and
for x € M, we define the map D, : A — M by D,(a) = xa — ax. The map D, is a derivation and such derivations called

inner derivations. Let Der(A, M) denote all derivations and Inn(A, M) denote all inner derivations.

Thus, we have
Der(A, M)

H'A,M) = ———.
Inn(A, M)

In this paper, we describe H'(S, S) and vanishing of H'(S, X), where X is a two sided S -module (bimodule) is investigated.

2. Structure of H'(S, S)

We begin with the following simple properties of derivations on S as follows:

Proposition 1 Let D : S — S be a derivation, then there are derivations dy : A — A, dg : B — B, R-linear maps

7T: M — Mando : N— N and elements mp € M and np € N such that
. la O\ _ [0 mp|_ (O O

o ofs o)=L =2 (o o)

. 0 m|\ [0 t(m) 0O 0Oy 10 O

R e e R A
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a Of\ _|da(@) amp 0 Of\_| O —mpb
o5 ol = 0l (lo B} <[ e

@iv) t(am) = ds(a)m + at(m),

s

v) t(mb) = 1(m)b + mdg(b),
(i) o(na) = nds(a) + o(n)a,

(vii) o(bn) = bo(n) + dy(b)n,

forallae A,be Bme M,n € N.

Conversely, if dy and dg are derivations on A and B, respectively, and ift: M — M and o : N — N are any R-linear
maps satisfy (i), (ii), (iii) and (iv) then the map

D a ml\ _|da(@) 7(m)
n bl |om dgb)
Proof. Let D be a derivation. By the following relations and simple calculation we obtain (i)-(vii):
0 am a 010 m 0 mb 0 m|{0 O
oflo a)=2 (s oo al)-2(5 w25 Sl 2
0 0 0 Off0o 0 0 0 0 Ofla O
o P el S e

D ay myf|lay mp -D ayay aymy +mpby
np b1 ny bz - n1a1+b1n2 blbz

_ ds(araz) T(aymy + myby)
o(may +bny) dp(b1by).

defines a derivation on S.

(=)

and

Conversely, consider,

Moreover,
ar mi| pfla mf) flar mil\ja my [ arda(az) a1t(my) + mydp(by)
n b n, by n bi|)|n2 by |n1da(az) + bro(nz) bidp(by)
da(ap)as da(a))my + t(my)b,
o(ny)ay +dg(b)ny dp(b1)b,

[a1da(az) +dalar)as  ayt(my) + midp(bs)
+da(ar)my + v(my)by

nida(az) + byo(ny)

L+o(n1)ay + dp(bi)ny  bidp(by) + dp(b1)by

da(aiaz) T(aymy) + v(m1by)
|o(maz) + o (biny) dp(b1b2)

Thus D is a derivation on S.

Let ap € A and by € B, then Rosenblum R-linear map Tﬁg’b‘] : M — M is defined by

ng’ho(m) =ag-m—m-by foreach me M.

Now, let Z(A) be the center of A and Z(B) be the center of B, x € Z(A) and y € Z(B). Then the Rosenblum R-linear map
7,7 is called a central Rosenblum R-linear map. We denote the set of all central Rosenblum R-linear maps by ZRy s(M).
Also, we have

ZRA,B(M) - HomA,B(M).
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An R-map 1) : M — M is called a generalized Rosenblum R-linear map if there exist derivations ds and dp on A and
B, respectively, such that 7, satisfies

7(amb) = ds(a)mb + at(m)b + amdg(b)

foreacha € A, b € Band m € M. Similarly, an R-map 7y : N — N is called a generalized Rosenblum R-linear map if
there exist derivations d, and dg on A and B, respectively, such that 7y satisfies

7(bna) = dg(b)na + bry(n)a + bnds(a)
foreachae€ A,be Bandme M.

Lemma 2 Let ¢ € Homy g(M) and o € Homp s(N). Then the map dy : S — S given by

L P
#7\ln b on) 0 |

. . . . . . . . . X,y ), X
is a derivation. Moreover, d,, is an inner derivation if and only if ¢ = 7,7} and o = 1,

' 4 o Iy ~ » where TXA,’Iy € ZRs p(M) and
T]\} S ZRB,A N).

Proof. The first statement follows immediately from assume that ¢ = 7} and o~ = 7);" where x € Z(A) and y € Z(B).

Then (e A

_[xa xm| [ax my
Clyn b nx by

_7xa—ax xm—my| 0 xm — my
" lyn—nx

|yn—nx  yn-—>by 0
_[ 0 eim
loc(n) 0 |
Hence d, is inner. Conversely, assume that d,, .- is inner. Then there exists [:f} ;} € S such thatd,, = d x 2l Then,
M
d a m|\\_|x zfla m| |a m|lx z
x zi\|n b|] " |w y|ln b| |n b|lw y
w.y
_ xa — ax xm + zb — az — my
~ |wa+yn—nx—bw yb — by
If 4, x 7= dy, then xa — ax = 0 for each a € A and yb — by = 0 for each b € B. In particular, x € Z(A) and y € Z(B).
v

Moreover, we have
@(m) = xm + zb — az — my
and
o(n) = wa + yn — nx — bw.
Since ¢ € Homy s(M) and o € Homg 4(N), it follows that zb — az = 0 and wa — bw = 0. Hence ¢(m) = xm —my = 7,7 (m)
and o°(n) = yn — nx = 7,/ (n). In particular, ¢ € ZRs s(M) and o € ZRp s(N).
We can now state the main result of this section for describing H'(S, S).
Theorem 3 If H'(A,A) = 0 = H'(B, B), then

HomA,B(M) X HomB’A(N)
ZR4,p(M) X ZRp A(N)

H'(S,S) = (2)
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Proof. Define ¢ : Homys (M) X Homp s(N) — H'(S,S) by

¢(¢, o) = dcp,(ra

where ZZ‘N represents the equivalence class of d,, - in H 1S, ). Clearly, ¢ is R-linear.

We shall show that ¢ is surjective. Let d : S — S be a derivation. Then there are derivations dy, dg, and R-linear maps
T:M-— M,o0 : N — N and elements my; € M, n; € N that satisfy in the conditions (i)-(vii) of Proposition 1. Since
H'(A,A) = H{(B,B) =0, we can find x € A and y € B such that dy = d, and dg = dy. Definedy : S — § by

do ([a mD d(a) TxMy(m) + (amy — mdb)} .

no b 7|7 m) + (nga - bng) dy(b)

Then dj is an inner derivation on S induced by [ );l _ymd}. Furthermore, if d; = d — d,, then d; is a derivation and
—Ng

d a mf| _ d.(a) 7(m) + (amyg — myb)
"\[n b|] ™ |o®) + (n4a - bng) d,(b)
B d.(a) Ty (m) + (amg — mgb)
Ty () + (nga — bng) dy(b)
3 0 m)y—7t,m| [ 0 7(m)
T o) - Ty(n) 0 o) 0
where 7; = 7 — 7,7 and o = o — 7). It follows from Proposition 1, that 7; € Hom, (M) and oy € Homp 4(N). Finally,

setd = d; = ¢(t1,071), and so ¢ is surjective. This implies that

Homy p(M) x Homp 4(N)

H'(S,S) =
5.5) ker ¢

3)

However, (p,0) € kerg if and only if ds is inner. By Lemma 2, ker ¢ = ZR4 (M) X ZRp o(N). Thus, by this fact and
(3), (2) holds.

Corollary 4 Let A and B be a commutative ring. By hypothesis of the above Theorem, we have H'(S,S) = Homy g(M) X
Hom B.A (N ) .

3. Vanishing of the First Cohomology Group

Let X be a unitary S -bimodule, denote X4 = 14X 14, Xpp = 15X 1p, Xap = 14X 1p and Xps = 15X 14. For example,
when X = S, we have X4y = A, Xpg = B, Xup = M and X4 = N. In this section, the relations between the first
cohomology of S with coefficients in X and those of A and B with coefficients in X44 and Xpp, respectively, whenever
Xap = 0, are investigated.

We started by illustrating the structure of derivations from a square algebra into its bimodules.

Let6 : S — X be a derivation. Then d4 : A — X4 defined by d4(a) = 1A6([(a) 8]) 14 and 6p : B — Xpp defined by
op(b) = 136([8 2}) 1 are derivations. Moreover, the R-linear maps 7 : M — Xap, defined by 7(m) = lAé([g ’g}) 1p

and o : N — Xpu defined by o(n) = 136([2 8]) 14 satisfy

1) t(am) = at(m) + 54(a)m,

(i) 7(mb) = T(m)b + még(b),

>iii) o(na) = oc(n)a + nds(a),

(iv) o(bn) = bo(n) + nég(b)n.

Conversely, if §; and , are derivation from A and B into X44 and Xpp, respectively, and 7 : M — Xypand o : N — Xpy

’ZD = 61(a) + 62(b) + T(n) + o(n) defines
a derivation from § into X. If X4p = 0 = Xp,4, then we may assume that 7 and o are zero. Note that, in this case,

oa(@)m = mog(b) = 0 = 6p(b)n = no,(a), foreveryae A,be B,me Mandn € N.

are any R-linear maps satisfy in (i), (ii), (iii) and (iv), then the map D Z
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Now, we have the following:

Theorem 5 If X4p = 0 = X4, where X is a unitary S-module. Then
H'(S,X) = H'(A, Xa1) ® H'(B, Xps)
Proof. Suppose that X45 = 0 = X34 and consider the R-linear map p : Der(S,X) — H'(A, Xa4) ® H' (B, Xpp) defined

by
o — (6A + Inn(A,XAA), 53 + Inn(B, XBB)).

If 01 € Der(A,XAA) and 0 € DEV(B, XBB), then

D([Z ’ZD = 51(a) + 62(b)

is a derivation from S into X and

(64 + N'(A, X4a), 65 + N' (B, Xpp))
(61 + N'(A, X44),62 + N'(B, Xpp)).

p(D)

The last equation is deduced from the fact that 54(a) = 14(01(a) + 62(0))14 = 6;(a) and 65(b) = 15(51(0) + 52(b)). Thus p
is surjective.

If 6 € kerp, then 64 € Inn(A, Xas) and 6 € Inn(B, Xpp). Then d4(a) = ax — xa for some x € Xa4 and 55(b) = by — yb for
some y € Xgg. Then

)
=
_
I 2
S 3
e

) = 6a(a) + 65(b) = (ax — xa) + (by — yb)

IS ©
o 3
| S
SN —

Il
=) - = S f = S
r " 'S o ‘ ‘
S o3 S o3 I o3

—_—
=

(14 0][0 m] [0 0
0 oflo o]0 1
0 0][1a o')

n 0]|

(r+3) - (x4 [ ’Z]=5x+y([z ’Z])

+
—~
S Q
S 3
<
|
~<
—_—
S
S 3
—_
|

O -
=)

+
o
—
>
<

m
b

Thus D = 6,,,. Itis straightforward to show that
[a 0 [a
ol o) =1l

0 ol i
(o 5])=1s((o

(e}
o O

O o

o s )
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Also,

i e

and

A0 el ol 2E
ool 3

Therefore, we have 6 — D € Inn(S, X), and so ¢ € Inn(S, X).

These follow that

Iy Oj]u (Z

Conversely, let 6 € Inn(S, X). Then there exists x € X such that

ol

0
1p

gl

o 3= el 51

So that

5A(a>=1A6([g 8])1A=1A([g 8]x—x[

a 0 a
2[0 O} lAzlA—lelA

Similarly, 63(b) = 61,x 1,(b). Hence 64 and dp are inner and so 6 € ker p. Thus Inn(S, X) = ker p. We conclude that

_ Der(S,X)  Der(S,X)

H'(S,X) = =
( ) Inn(S, X) ker p

Corollary 6 H'(S, M) =0 = H'(S,N).
Proof. With X = M (X = N) we have

H'(S, M) = H'(A,0)® H'(B,0) (H‘(S, N)=HYA,0)® H'(B, 0))

and this is zero.

Corollary 7 H'(S,A) = 0 where
A A a a
s=[3 Al

] forn > 1, then H'(S,Z,) = 0.

7 Z
Z, 7

4. Stability of the First Hochschild Cohomology

Example 8 If § = [

Let A and R be Banach algebras such that A is a Banach R-algebra with compatible actions, that is

a 0
0 0

a-(ab) = (a-a)b, (ab)-a =ab- a)

forall a,b € A,a € R. Let X be a Banach A-bimodule and a Banach R-bimodule with compatible actions, that is

a-(a-x)=(@-a)-x,(@-x)-a=a-(x-a)

x-(aa)y=(x-a)-a, (@ x)-a=a-(x-a)

a-(@-x)=@-a) - x,x-(@-a)=x-a)-a

206

I

0
0 0] = 61Ax1A(a)~

4 0
0 ODIA

)

= H'(A, Xaa) ® H' (B, Xp3).

“4)

&)

(6)
)
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foralla € A, € R, x € X. Then we say that X is a Banach A-R-module. If moreover
a-x=x-a (@eR,xeX)

then X is called a commutative A-R-module.

Let A and B are Banach R-algebras with units 14 and 1, respectively, M is a Banach R-bimodule, left Banach A-module
and right Banach B-module (A, B-module) and N is a Banach R-bimodule, right Banach A-module and left B-module
(B,A-module). Then S = {[ Z ’Z } |laeAbe Bme M,n € N} is a Banach R-algebra equipped with the defined

operations in section 1 and the following norm
a m
II[ n b ]II = llalla + lIblls + llmlly + linlly.

Let X be a unitary S -bimodule and X44, Xgp, Xap and Xp4 be similar to section 3. Assume that X45 = 0 = Xp4. Leta € R
and let fi, f>, f3 : § — X be mappings. Define

D, [f1, f2, 31051, 82) = filas: + asy) — afo(s1) — afz(s2),

and

OLf1, fo, 31051, $2) = s1f(52) — f(s1852) + f3(s1)52,

for all 51, s, € S. Similar to section 3, we obtain the mappings f/§ :A — X4 and fé : B —> Xpp fori=1,2,3 that are

defined as

fita) = eAfi([ - ])eA and fi(b) = egﬁ([ 0 ])eg,

foralla € Aand b € B.
Theorem 9 Let A,y € R* and f1, f5, f5 : S — X be mappings that satisfy

1Dl f1, f2, f3](s1, $2)Il £ 4, ¥
I6Lf1, f2, F31(s1, s < . )

If for any s; = 0, i = 1,2, we have f;(s;) = 0, then there exists a unique inner derivation D such that

l/1(s) = D(s)Il < 64, (10)
I/2(s) = D(s)ll < 124, (11)
I/3(s) = D(s)ll < 124, (12)
forall s € S.
Proof. Let @ = 1g (unit of R) and s, = 0, then
I/1(s1) = fa(sDIl < 4, (13)
for all s; € S. Similarly,
1f1(s2) = f3(s2ll < 4, (14)

for all s, € S. By repeating the above stated relations we obtain the desire.
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