
Journal of Mathematics Research; Vol. 9, No. 4; August 2017
ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

The First Hochschild Cohomology of Square Algebras With it’s
Stability

Feysal Hassani1 & Negin Salehi Oroozaki2

1 Department of Mathematics, Payame Noor University, Tehran, Iran
2 Department of Mathematics, Payame Noor University, Tehran, Iran

Correspondence: Feysal Hassani, Department of Mathematics, Payame Noor University, Tehran, Iran.
E-mail: feysal.hassani.pnu@gmail.com

Received: April 18, 2017 Accepted: May 8, 2017 Online Published: July 15, 2017

doi:10.5539/jmr.v9n4p200 URL: https://doi.org/10.5539/jmr.v9n4p200

Abstract

In this paper, we study on a special case of generalized matrix algebra that we call it square algebra. According to
that Hochschild cohomology play a significant role in Geometry for example in orbifolds, we study the first Hochschild
cohomology of the square algebra the vanishing of its.
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1. Introduction

Let R be a commutative ring (with unit), let A and B be R-algebras and M be a left A-module and right B-module. A
triangular algebra T over R is the following matrix

T =
[

A M
B

]
.

Automorphisms, derivations, commuting mappings and Lie derivations on triangular algebras are studied by Cheung
(Cheung, 2001) and (Cheung, 2003). Other useful and valuable literature concerning the structure of derivations and
Lie derivations is (Ji & Qi, 2011). Basic examples of triangular algebras are upper triangular matrix algebras and nest
algebras which derivations of those considered in (Christensen, 1977), (Coelho, & Milies, 1993), (Donsig, Forrest &
Marcoux, 1996).

A generalized matrix algebra is a generalization of triangular matrix algebra. In the triangular algebra T , the element lies
in the second row and second column is zero. In generalized matrix algebra, we put a right A-module and left B-module N
in zero place. We denote the generalized matrix algebra by G. Algebraic studying on derivations, generalized derivations
and Lie derivations have been studied in (Du, & Wang, 2012), (Li & Wei, 2012), (Li, & Xiao, 2011).

Throughout this paper R is a commutative ring (with unit), A and B are R-algebras with units 1A and 1B, respectively,
M is an R-bimodule, left A-module and right B-module (A, B-module) and N is an R-bimodule, right A-module and left
B-module (B, A-module). Define bimodule homomorphisms ΦMN : M ⊗B N −→ A and ΦNM : N ⊗A M −→ B satisfying
the following commutative diagrams:

M ⊗B N⊗AM

?

idM ⊗ ΦNM

A ⊗A M-

ΦMN ⊗ idM

M ⊗B B
?

- M
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and

N ⊗A M⊗BN

?

idM ⊗ ΦN

B ⊗B N-ΦNM ⊗ idM

N ⊗A A
?

- N.

For more details and applications see (Buchweitz, 2003). We define generalized matrix algebra

G =
[

A M
N B

]
=

{ [ a m
n b

]
: a ∈ A, b ∈ B,m ∈ M, n ∈ N

}
,

with the usual 2 × 2 matrix-like addition and multiplication[
a1 m1
n1 b1

]
·
[
a2 m2
n2 b2

]
=

[
a1a2 + m1 ⊗B n2 a1m2 + m1b2

n1a2 + b1n2 n1 ⊗A m2 + b1b2

]
In this algebra, if M ⊗B N = 0 = N ⊗A M, then we denote it by S and we called that a square algebra.

Let R be a commutative ring (with unit), let A be an R-algebra and M be an A-bimodule. For n = 0, 1, 2, . . ., let Cn(A,M)
be the space of all n-linear (as a R-module map) mappings from A × · · · × A into M and C0(A,M) = M. Consider the
sequence

0 −→ C0(A,M)
d0

−→ C1(A,M)
d1

−→ · · ·
(
C̃(A,M)

)
in which

d0x(a) = ax − xa

dn f (a1, a2, · · · , an+1) = a1 f (a2, · · · , an+1)
+(−1)n+1 f (a1, · · · , an)an+1

+

n∑
j=1

(−1) j f (a1, · · · , a j−1, a ja j+1, · · · , an+1) (1)

where n ≥ 1, x ∈ M and a1, . . . , an+1 ∈ A. The above sequence is a complex for A and M. The n-th cohomology group
of C̃(A, E) is said to be n-th Hochschild cohomology group and denoted by Hn(A,M), for more details see (Brodmann &
Sharp, 1998), (Rotman, 2009). A derivation is a linear map D : A −→ M such that D(ab) = aD(b) + D(a)b (a, b ∈ A) and
for x ∈ M, we define the map Dx : A −→ M by Dx(a) = xa − ax. The map Dx is a derivation and such derivations called
inner derivations. Let Der(A,M) denote all derivations and Inn(A,M) denote all inner derivations.

Thus, we have

H1(A,M) =
Der(A,M)
Inn(A,M)

.

In this paper, we describe H1(S , S ) and vanishing of H1(S , X), where X is a two sided S -module (bimodule) is investigated.

2. Structure of H1(S , S )

We begin with the following simple properties of derivations on S as follows:

Proposition 1 Let D : S −→ S be a derivation, then there are derivations dA : A −→ A, dB : B −→ B, R-linear maps
τ : M −→ M and σ : N −→ N and elements mD ∈ M and nD ∈ N such that

(i) D
([

1A 0
0 0

])
=

[
0 mD

nD 0

]
= −D

([
0 0
0 1B

])
,

(ii) D
([

0 m
0 0

])
=

[
0 τ(m)
0 0

]
and D

([
0 0
n 0

])
=

[
0 0
σ(n) 0

]
,
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(iii) D
([

a 0
0 0

])
=

[
dA(a) amD

nDa 0

]
and D

([
0 0
0 b

])
=

[
0 −mDb
−bnD dB(b)

]
,

(iv) τ(am) = dA(a)m + aτ(m),

(v) τ(mb) = τ(m)b + mdB(b),

(vi) σ(na) = ndA(a) + σ(n)a,

(vii) σ(bn) = bσ(n) + dB(b)n,

for all a ∈ A, b ∈ B,m ∈ M, n ∈ N.

Conversely, if dA and dB are derivations on A and B, respectively, and if τ : M −→ M and σ : N −→ N are any R-linear
maps satisfy (i), (ii), (iii) and (iv) then the map

D
([

a m
n b

])
=

[
dA(a) τ(m)
σ(n) dB(b)

]
defines a derivation on S .

Proof. Let D be a derivation. By the following relations and simple calculation we obtain (i)-(vii):

D
([

0 am
0 0

])
= D

([
a 0
0 0

] [
0 m
0 0

])
, D

([
0 mb
0 0

])
= D

([
0 m
0 0

] [
0 0
0 b

])
,

and

D
([

0 0
bn 0

])
= D

([
0 0
0 b

] [
0 0
n 0

])
, D

([
0 0
na 0

])
= D

([
0 0
n 0

] [
a 0
0 0

])
.

Conversely, consider,

D
([

a1 m1
n1 b1

] [
a2 m2
n2 b2

])
= D

([
a1a2 a1m2 + m1b2

n1a1 + b1n2 b1b2

])
=

[
dA(a1a2) τ(a1m2 + m1b2)

σ(n1a1 + b1n2) dB(b1b2).

]
Moreover,[

a1 m1
n1 b1

]
D

([
a2 m2
n2 b2

])
+ D

([
a1 m1
n1 b1

]) [
a2 m2
n2 b2

]
=

[
a1dA(a2) a1τ(m2) + m1dB(b2)

n1dA(a2) + b1σ(n2) b1dB(b2)

]
+

[
dA(a1)a2 dA(a1)m2 + τ(m1)b2

σ(n1)a2 + dB(b1)n2 dB(b1)b2

]

=


a1dA(a2) + dA(a1)a2 a1τ(m2) + m1dB(b2)

+dA(a1)m2 + τ(m1)b2
n1dA(a2) + b1σ(n2)
+σ(n1)a2 + dB(b1)n2 b1dB(b2) + dB(b1)b2


=

[
dA(a1a2) τ(a1m2) + τ(m1b2)

σ(n1a2) + σ(b1n2) dB(b1b2)

]
Thus D is a derivation on S .

Let a0 ∈ A and b0 ∈ B, then Rosenblum R-linear map τa0,b0
M : M −→ M is defined by

τa0,b0
M (m) = a0 · m − m · b0 f or each m ∈ M.

Now, let Z(A) be the center of A and Z(B) be the center of B, x ∈ Z(A) and y ∈ Z(B). Then the Rosenblum R-linear map
τ

x,y
M is called a central Rosenblum R-linear map. We denote the set of all central Rosenblum R-linear maps by ZRA,B(M).

Also, we have

ZRA,B(M) ⊆ HomA,B(M).
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An R-map τM : M −→ M is called a generalized Rosenblum R-linear map if there exist derivations dA and dB on A and
B, respectively, such that τM satisfies

τ(amb) = dA(a)mb + aτ(m)b + amdB(b)

for each a ∈ A, b ∈ B and m ∈ M. Similarly, an R-map τN : N −→ N is called a generalized Rosenblum R-linear map if
there exist derivations dA and dB on A and B, respectively, such that τN satisfies

τ(bna) = dB(b)na + bτN(n)a + bndA(a)

for each a ∈ A, b ∈ B and m ∈ M.

Lemma 2 Let φ ∈ HomA,B(M) and σ ∈ HomB,A(N). Then the map dφ,σ : S −→ S given by

dφ,σ

([
a m
n b

])
=

[
0 φ(m)
σ(n) 0

]
,

is a derivation. Moreover, dφ,σ is an inner derivation if and only if φ = τx,y
M and σ = τy,x

N , where τx,y
M ∈ ZRA,B(M) and

τ
y,x
N ∈ ZRB,A(N).

Proof. The first statement follows immediately from assume that φ = τx,y
M and σ = τy,x

N where x ∈ Z(A) and y ∈ Z(B).
Then

dx 0
0 y


([

a m
n b

])
=

[
x 0
0 y

] [
a m
n b

]
−

[
a m
n b

] [
x 0
0 y

]

=

[
xa xm
yn yb

]
−

[
ax my
nx by

]
=

[
xa − ax xm − my
yn − nx yn − by

]
=

[
0 xm − my

yn − nx 0

]
=

[
0 φ(m)
σ(n) 0

]
.

Hence dφ,σ is inner. Conversely, assume that dφ,σ is inner. Then there exists
[
x z
w y

]
∈ S such that dφ,σ = d x z

w y


. Then,

d x z
w y


([

a m
n b

])
=

[
x z
w y

] [
a m
n b

]
−

[
a m
n b

] [
x z
w y

]

=

[
xa − ax xm + zb − az − my

wa + yn − nx − bw yb − by

]
.

If d x z
w y


= dφ,σ, then xa − ax = 0 for each a ∈ A and yb − by = 0 for each b ∈ B. In particular, x ∈ Z(A) and y ∈ Z(B).

Moreover, we have

φ(m) = xm + zb − az − my

and

σ(n) = wa + yn − nx − bw.

Since φ ∈ HomA,B(M) and σ ∈ HomB,A(N), it follows that zb− az = 0 and wa− bw = 0. Hence φ(m) = xm−my = τx,y
M (m)

and σ(n) = yn − nx = τy,x
N (n). In particular, φ ∈ ZRA,B(M) and σ ∈ ZRB,A(N).

We can now state the main result of this section for describing H1(S , S ).

Theorem 3 If H1(A, A) = 0 = H1(B, B), then

H1(S , S ) �
HomA,B(M) × HomB,A(N)

ZRA,B(M) × ZRB,A(N)
. (2)

203



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 4; 2017

Proof. Define ϕ : HomA,B(M) × HomB,A(N) −→ H1(S , S ) by

ϕ(φ, σ) = dφ,σ,

where dφ,σ represents the equivalence class of dφ,σ in H1(S , S ). Clearly, ϕ is R-linear.

We shall show that ϕ is surjective. Let d : S −→ S be a derivation. Then there are derivations dA, dB, and R-linear maps
τ : M −→ M, σ : N −→ N and elements md ∈ M, nd ∈ N that satisfy in the conditions (i)-(vii) of Proposition 1. Since
H1(A, A) = H1(B, B) = 0, we can find x ∈ A and y ∈ B such that dA = dx and dB = dy. Define d0 : S −→ S by

d0

([
a m
n b

])
=

[
dx(a) τ

x,y
M (m) + (amd − mdb)

τ
y,x
N (n) + (nda − bnd) dy(b)

]
.

Then d0 is an inner derivation on S induced by
[

x −md

−nd y

]
. Furthermore, if d1 = d − d0, then d1 is a derivation and

d1

([
a m
n b

])
=

[
dx(a) τ(m) + (amd − mdb)

σ(n) + (nda − bnd) dy(b)

]
−

[
dx(a) τ

x,y
M (m) + (amd − mdb)

τ
y,x
N (n) + (nda − bnd) dy(b)

]
=

[
0 τ(m) − τx,y

M (m)
σ(n) − τy,x

N (n) 0

]
=

[
0 τ1(m)
σ1(n) 0

]
where τ1 = τ − τx,y

M and σ1 = σ − τx,y
N . It follows from Proposition 1, that τ1 ∈ HomA,B(M) and σ1 ∈ HomB,A(N). Finally,

set d̄ = d̄1 = φ(τ1, σ1), and so φ is surjective. This implies that

H1(S , S ) �
HomA,B(M) × HomB,A(N)

kerφ
. (3)

However, (φ, σ) ∈ kerφ if and only if dϕ,σ is inner. By Lemma 2, kerφ = ZRA,B(M) × ZRB,A(N). Thus, by this fact and
(3), (2) holds.

Corollary 4 Let A and B be a commutative ring. By hypothesis of the above Theorem, we have H1(S , S ) � HomA,B(M)×
HomB,A(N).

3. Vanishing of the First Cohomology Group

Let X be a unitary S -bimodule, denote XAA = 1AX 1A, XBB = 1BX 1B, XAB = 1AX 1B and XBA = 1BX 1A. For example,
when X = S , we have XAA = A, XBB = B, XAB = M and XBA = N. In this section, the relations between the first
cohomology of S with coefficients in X and those of A and B with coefficients in XAA and XBB, respectively, whenever
XAB = 0, are investigated.

We started by illustrating the structure of derivations from a square algebra into its bimodules.

Let δ : S −→ X be a derivation. Then δA : A −→ XAA defined by δA(a) = 1Aδ

([
a 0
0 0

])
1A and δB : B −→ XBB defined by

δB(b) = 1Bδ

([
0 0
0 b

])
1B are derivations. Moreover, the R-linear maps τ : M −→ XAB, defined by τ(m) = 1Aδ

([
0 m
0 0

])
1B

and σ : N −→ XBA defined by σ(n) = 1Bδ

([
0 0
n 0

])
1A satisfy

(i) τ(am) = aτ(m) + δA(a)m,

(ii) τ(mb) = τ(m)b + mδB(b),

(iii) σ(na) = σ(n)a + nδA(a),

(iv) σ(bn) = bσ(n) + nδB(b)n.

Conversely, if δ1 and δ2 are derivation from A and B into XAA and XBB, respectively, and τ : M −→ XAB and σ : N −→ XBA

are any R-linear maps satisfy in (i), (ii), (iii) and (iv), then the map D
([

a m
n b

])
= δ1(a) + δ2(b) + τ(n) + σ(n) defines

a derivation from S into X. If XAB = 0 = XBA, then we may assume that τ and σ are zero. Note that, in this case,
δA(a)m = mδB(b) = 0 = δB(b)n = nδn(a), for every a ∈ A, b ∈ B, m ∈ M and n ∈ N.
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Now, we have the following:

Theorem 5 If XAB = 0 = XBA, where X is a unitary S -module. Then

H1(S , X) = H1(A, XAA) ⊕ H1(B, XBB)

Proof. Suppose that XAB = 0 = XBA and consider the R-linear map ρ : Der(S , X) −→ H1(A, XAA) ⊕ H1(B, XBB) defined
by

δ→ (δA + Inn(A, XAA), δB + Inn(B, XBB)).

If δ1 ∈ Der(A, XAA) and δ2 ∈ Der(B, XBB), then

D
([

a m
n b

])
= δ1(a) + δ2(b)

is a derivation from S into X and

ρ(D) = (δA + N1(A, XAA), δB + N1(B, XBB))
= (δ1 + N1(A, XAA), δ2 + N1(B, XBB)).

The last equation is deduced from the fact that δA(a) = 1A(δ1(a) + δ2(0))1A = δ1(a) and δB(b) = 1B(δ1(0) + δ2(b)). Thus ρ
is surjective.

If δ ∈ ker ρ, then δA ∈ Inn(A, XAA) and δB ∈ Inn(B, XBB). Then δA(a) = ax − xa for some x ∈ XAA and δB(b) = by − yb for
some y ∈ XBB. Then

D
([

a m
n b

])
= δA(a) + δB(b) = (ax − xa) + (by − yb)

=

([
a m
n b

] [
1A 0
0 0

]
x − x

[
1A 0
0 0

] [
a m
n b

]
+ x

[
0 m
n 0

])
+

([
a m
n b

] [
0 0
0 1B

]
y −

[
0 m
n 0

]
y − y

[
0 0
0 1B

] [
a m
n b

])
=

([
a m
n b

] [
1A 0
0 0

]
x − x

[
1A 0
0 0

] [
a m
n b

]
+ x

[
0 m
0 0

]
−

[
0 0
n 0

]
x
)

+

([
a m
n b

] [
0 0
0 1B

]
y −

[
0 m
0 0

]
y − y

[
0 0
0 1B

] [
a m
n b

]
+ y

[
0 0
n 0

])
=

( [a m
n b

]
x − x

[
a m
n b

]
+

[
1A 0
0 0

]
x
[
0 m
0 0

] [
0 0
0 1B

]
−

[
0 0
0 1B

] [
0 0
n 0

]
x
[
1A 0
0 0

] )
+

( [a m
n b

]
y − y

[
a m
n b

]
−

[
1A 0
0 0

] [
0 m
0 0

]
y
[
0 0
0 1B

]
+

[
0 0
0 1B

]
y
[
0 0
n 0

] [
1A 0
0 0

] )
=

[
a m
n b

]
(x + y) − (x + y)

[
a m
n b

]
= δx+y

([
a m
n b

])
.

Thus D = δx+y. It is straightforward to show that

δ

([
a 0
0 0

])
= 1Aδ

([
a 0
0 0

])
1A − 1Bδ

([
1A 0
0 0

])
1A

[
a 0
0 0

]
.

Similarly,

δ

([
0 0
0 b

])
= 1Bδ

([
0 0
0 b

])
1B −

[
0 0
0 b

]
1Bδ

([
1A 0
0 0

])
1A.
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Also,

δ

([
0 m
0 0

])
= 1Bδ

([
0 0
0 b

])
1A

[
0 m
0 b

]
−

[
a m
0 0

]
1Bδ

([
1A 0
0 0

])
1A

and

δ

([
0 0
n 0

])
= 1Aδ

([
0 0
0 1B

])
1B

[
a 0
n 0

]
−

[
0 0
n b

]
1Aδ

([
0 0
0 1B

])
1B.

These follow that

(δ − D)
([

a m
n b

])
= −δ

1Bδ


1A 0

0 0


1A

([
a m
n b

])
.

Therefore, we have δ − D ∈ Inn(S , X), and so δ ∈ Inn(S , X).

Conversely, let δ ∈ Inn(S , X). Then there exists x ∈ X such that

δ

([
a m
n b

])
=

[
a m
n b

]
x − x

[
a m
n b

]
.

So that

δA(a) = 1Aδ

([
a 0
0 0

])
1A = 1A

([
a 0
0 0

]
x − x

[
a 0
0 0

])
1A

=

[
a 0
0 0

]
1A = 1A − 1Ax1A

[
a 0
0 0

]
= δ1A x1A (a).

Similarly, δB(b) = δ1B x 1B (b). Hence δA and δB are inner and so δ ∈ ker ρ. Thus Inn(S , X) = ker ρ. We conclude that

H1(S , X) =
Der(S , X)
Inn(S , X)

=
Der(S , X)

ker ρ
= H1(A, XAA) ⊕ H1(B, XBB).

Corollary 6 H1(S ,M) = 0 = H1(S ,N).

Proof. With X = M (X = N) we have

H1(S ,M) = H1(A, 0) ⊕ H1(B, 0)
(
H1(S ,N) = H1(A, 0) ⊕ H1(B, 0)

)
and this is zero.

Corollary 7 H1(S , A) = 0 where

S =
[
A A
A A

]
=

{[
a a
a a

]∣∣∣∣∣∣ a ∈ A
}
.

Example 8 If S =
[
Z Zn

Zn Z

]
for n > 1, then H1(S ,Zn) = 0.

4. Stability of the First Hochschild Cohomology

Let A and R be Banach algebras such that A is a Banach R-algebra with compatible actions, that is

α · (ab) = (α · a)b, (ab) · α = a(b · α) (4)

for all a, b ∈ A, α ∈ R. Let X be a Banach A-bimodule and a Banach R-bimodule with compatible actions, that is

α · (a · x) = (α · a) · x, (α · x) · a = α · (x · a) (5)

x · (a · α) = (x · a) · α, (a · x) · α = a · (x · α) (6)

a · (α · x) = (a · α) · x, x · (α · a) = (x · α) · a (7)
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for all a ∈ A, α ∈ R, x ∈ X. Then we say that X is a Banach A-R-module. If moreover

α · x = x · α (α ∈ R, x ∈ X)

then X is called a commutative A-R-module.

Let A and B are Banach R-algebras with units 1A and 1B, respectively, M is a Banach R-bimodule, left Banach A-module
and right Banach B-module (A, B-module) and N is a Banach R-bimodule, right Banach A-module and left B-module

(B, A-module). Then S =
{ [ a m

n b

]
| a ∈ A, b ∈ B,m ∈ M, n ∈ N

}
is a Banach R-algebra equipped with the defined

operations in section 1 and the following norm

∥
[

a m
n b

]
∥ = ∥a∥A + ∥b∥B + ∥m∥M + ∥n∥N .

Let X be a unitary S -bimodule and XAA, XBB, XAB and XBA be similar to section 3. Assume that XAB = 0 = XBA. Let α ∈ R
and let f1, f2, f3 : S −→ X be mappings. Define

Dα[ f1, f2, f3](s1, s2) = f1(αs1 + αs2) − α f2(s1) − α f3(s2),

and
δ[ f1, f2, f3](s1, s2) = s1 f (s2) − f (s1s2) + f3(s1)s2,

for all s1, s2 ∈ S . Similar to section 3, we obtain the mappings f i
A : A −→ XAA and f i

B : B −→ XBB for i = 1, 2, 3 that are
defined as

f i
A(a) = eA fi

([
a 0
0 0

])
eA and f i

B(b) = eB fi

([
0 0
0 b

])
eB,

for all a ∈ A and b ∈ B.

Theorem 9 Let λ, γ ∈ R+ and f1, f2, f3 : S −→ X be mappings that satisfy

∥Dα[ f1, f2, f3](s1, s2)∥ ≤ λ, (8)

∥δ[ f1, f2, f3](s1, s2)∥ ≤ γ. (9)

If for any si = 0, i = 1, 2, we have fi(si) = 0, then there exists a unique inner derivation D such that

∥ f1(s) − D(s)∥ ≤ 6λ, (10)

∥ f2(s) − D(s)∥ ≤ 12λ, (11)

∥ f3(s) − D(s)∥ ≤ 12λ, (12)

for all s ∈ S .

Proof. Let α = 1R (unit of R) and s2 = 0, then

∥ f1(s1) − f2(s1)∥ ≤ λ, (13)

for all s1 ∈ S . Similarly,
∥ f1(s2) − f3(s2)∥ ≤ λ, (14)

for all s2 ∈ S . By repeating the above stated relations we obtain the desire.
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