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Abstract

We take into condideration necessary optimality conditions of minimum principle-type, that is for optimization problems
having, besides the usual inequality and/or equality constraints, a set constraint. The first part pf the paper is concerned
with scalar optimization problems; the second part of the paper deals with vector optimization problems.
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1. Introduction

Minimum principle-type necessary optimality conditions usually occur in minimization problems where there is also a
(not open) set constraint or abstract constraint, which takes into account those constraints that cannot be expressed by
means of neither equalities nor inequalities. The name “minimum principle” necessary optimality criterion has been used
by Mangasarian (1969) and has been referred to as a “maximum principle” in Halkin (1966), Halkin and Neustadt (1966),
Canon, Cullum and Polak (1966, 1970) and in other authors, because of its relation to Pontryagin’s maximum principle
of optimal control theory. These minimum principle-type necessary optimality conditions may be considered extensions
of the Fritz John-type necessary conditions and of the Kuhn-Tucker-type necessary conditions (when some constraint
qualification is imposed) for scalar or vector optimization problems.

In the present paper we shall give an account of the main approaches adopted to study the said optimality conditions. We
prefer to treat separately the scalar and the vector optimization problems, as the authors we take into consideration usually
are concerned with only one type of the said problems. Obviously, several results established for scalar problems may be
adapted to the vector case and, viceversa, several results obtained for vector problems may be easily “specialized” to the
scalar case.

We perform our analysis in finite-dimensional spaces, under differentiability and continuous differentiability of the func-
tions involved in the related problems. Minimum/maximum principle-type optimality conditions have been obtained also
for problems in infinite-dimensional spaces; see, e. g., Jahn (1996, 2011), Kirsch and others (1978), Pshenichnyi (1971),
Neustadt (1976), Ponstein (1980), Werner (1984).

We have no pretension to be exhaustive in our account: we take into consideration only some approaches that in our
opinion have been significant for the study of the said problems. The paper is organized as follows.

In the present Section some basic tools and definitions (concerning mainly local cone approximations of sets) are recalled.

Section 2 is concerned with scalar optimization problems with only a set constraint, then with inequality constraints and
a set constraint and finally with both inequality and equality constraints and a set constraint.

Section 3 deals with scalar problems, following the approach of Bertsekas and Ozdaglar (2002) who make use of the
“general normal cone”, introduced, among others, by Rockafellar (1993) and Rockafellar and Wets (1998).

Section 4 is concerned with vector optimization problems having, respectively, only a set constraint, inequality constraints
and a set constraint, both inequality and equality constraints and a set constraint.

In Section 5 we recall few results of R. Cambini, taken from a series of papers of this author, concerning optimality
conditions for general vector optimization problems having a set constraint.

Basic key tools in studying general optimality conditions in scalar and vector optimization problems are local cone ap-
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proximations of a set X ⊆ Rn at a point x0 belonging to its closure. Let X ⊆ Rn be a nonempty set and let cl(X) be its
closure; if x0 ∈ cl(X), then:

• the cone

T (X, x0) =

 v ∈ Rn : ∃
{
xk
}
⊆ X, xk −→ x0, ∃ {λk} ⊆ R+, λk −→ +∞,

such that v = lim
k−→+∞

λk(xk − x0)


is a closed cone, called Bouligand tangent cone to X at x0 or contingent cone to X at x0. Other representations of the
contingent cone are:

T (X, x0) =
{
v ∈ Rn : ∀U(v) ∀λ > 0, ∃t ∈ (0, λ),∃x̄ ∈ U(v) such that x0 + tx̄ ∈ X

}
.

T (X, x0) =

 v ∈ Rn : ∃φ : R −→ Rn with lim
t−→0+
φ(t) = v, ∀λ > 0,

∃t ∈ (0, λ) such that x0 + tφ(t) ∈ X

 .
It is well-known that the closed cone T (X, x0) is not necessarily convex. See, e. g., Aubin and Frankowska (1990), Bazaraa,
Goode and Nashed (1974), Bazaraa and Shetty (1976), Giorgi and Guerraggio (1992, 2002) for other characterizations
and for other remarks on the cone T (X, x0).

The closure of the convex hull of T (X, x0) is called the pseudotangent cone to X at x0 and denoted by P(X, x0) :

P(X, x0) = cl(conv(T (X, x0))).

See Guignard (1969).

Other local cone approximations useful in optimization theory, and which are subcones of T (X, x0), are the following
ones.

• The cone
F(X, x0) =

{
v ∈ Rn : ∃λ > 0 such that ∀t ∈ (0, λ] , x0 + tv ∈ X

}
is called cone of feasible directions to X at x0 or cone of linear directions to X at x0.

• The cone
I(X, x0) =

{
v ∈ Rn : ∃U(v), ∃λ > 0,∀t ∈ (0, λ),∀x̄ ∈ U(v) we have x0 + tx̄ ∈ X

}
is an open cone, called cone of interior directions to X at x0 or inner tangent cone to X at x0. Another representation of
this cone is the following one:

I(X, x0) =

 v ∈ Rn : ∀φ : R −→ Rn lim
t−→0+
φ(t) = v, ∃λ > 0,

such that ∀t ∈ (0, λ) we have x0 + tφ(t) ∈ X

 .
It holds x0 ∈ int(X)⇐⇒ 0 ∈ I(X, x0).

• The cone

Q(X, x0) =
{

v ∈ Rn : ∃U(v),∀λ > 0 ∃t ∈ (0, λ) such that ∀x̄ ∈ U(v),
we have x0 + tx̄ ∈ X

}
is an open cone, called cone of quasi-interior directions to X at x0 or also sequential interior tangent cone to X at x0.
Another representation of this cone is the following one:

Q(X, x0) =

 v ∈ Rn : ∀λ > 0, ∀φ : (0, λ) −→ Rn, with lim
t−→0+
φ(t) = v,

∃t ∈ (0, λ) such that x0 + tφ(t) ∈ X

 .
We have x0 ∈ int(X)⇐⇒ 0 ∈ Q(X, x0).

The structure of all the above local cone approximations depends only from a neighborhood of x0 (they are “infinitesimal
notions”). For eample, it holds

T (X, x0) = T (X ∩ N(x0), x0),

for any neighborhood N(x0).
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With reference to the cones introduced above, we have the following inclusions:

I(X, x0) ⊆ Q(X, x0) ⊆ T (X, x0) ⊆ P(X, x0);
I(X, x0) ⊆ F(X, x0) ⊆ T (X, x0) ⊆ P(X, x0).

None of the cones introduced above are in general convex. But if we assume X to be a convex set, we obtain the convexity
of the approximating cones. In effect, it is sufficient that X is locally convex at x0, that is there exists an arbitrary
neighborhood N(x0) such that X ∩ N(x0) is convex. We have the following results:

Let X ⊆ Rn be a convex set or even a locally convex set at x0 ∈ cl(X). Then the cones F(X, x0), I(X, x0),Q(X, x0) and
T (X, x0) are convex and it holds

I(X, x0) = Q(X, x0) = cone(int(X), x0);

cl(F(X, x0)) = cl(cone(X, x0));

P(T, x0) = T (X, x0) = cl(cone(X, x0)) = cl(F(X, x0))

where
cone(X, x0) =

{
v ∈ Rn : v = λ(x − x0), λ > 0, x ∈ X

}
is the cone generated by X − x0. This cone is also denoted by R+(X − x0).

If, moreover, int(X) , ∅, then

I(X, x0) = int(T (X, x0));
T (X, x0) = cl(I(X, x0)).

If X is polyhedral, then
F(X, x0) = T (X, x0).

We recall that, given a set S ⊆ Rn, the (negative) polar cone S ∗ of S is given by

S ∗ =
{
v ∈ Rn : vx 5 0, ∀x ∈ S

}
.

It is well-known that if S is a non-empty closed convex cone, then S = (S ∗)∗. If S is a linear subspace, then S ∗ is nothing
else that S ⊥.

2. Scalar Optimization with a Set Constraint. Basic Results

In the present section we shall consider the followinh nonlinear programming problems.

(P)1 : min f (x), x ∈ X;

(P)2 :


min f (x)
gi(x) 5 0, i = 1, ...,m,
x ∈ X;

(P)3 :


min f (x)
gi(x) 5 0, i = 1, ...,m,
h j(x) = 0, j = 1, ..., r < n,
x ∈ X,

where X is a subset (not necessarily open) of Rn, f : Ω −→ R and every gi : Ω −→ R, i = 1, ...,m, are differentiable
on an open set Ω ⊆ Rn containing the feasible set of the above problems, and every h j : Ω −→ R, j = 1, ..., r < n, is
continuously differentiable on Ω (it is obviously possible to assume less stringent differentiability conditions).

With regard to problem (P)1 the following result, due to Gould and Tolle (1971), Guignard (1969), Hestenes (1966, 1975),
Varaiya (1967), is of basic importance.

Theorem 1. If x0 is a local solution of (P)1, then

−∇ f (x0) ∈ (T (X, x0))∗. (1)
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Guignard (1969) gives the following formulation of the thesis of Theorem 1:

−∇ f (x0) ∈ (P(X, x0))∗.

However, as it is true that for any nonempty set C ⊆ Rn, it holds C∗ = (cl(conv(C)))∗, we obtain (T (X, x0))∗ = (P(X, x0))∗.

If the set X is convex, then we have T (X, x0) = cl(cone(X, x0)) and it is easy to see that a vector v belongs to (T (X, x0))∗ if
and only if

v(x − x0) 5 0, ∀x ∈ X. (2)

A vector v satisfying (2), with X a convex set, is said to be normal to X at x0 ∈ X. The set of all normals to X (convex) at
x0 is called normal cone to X at x0 and is denoted by N(X, x0) :

N(X, x0) =
{
v ∈ Rn : v(x − x0) 5 0, ∀x ∈ X

}
,

i.e.
N(X, x0) =

[
cone(X − x0)

]∗
.

Therefore when X is a convex set, (1) becomes

−∇ f (x0) ∈ N(X, x0)

or
0 ∈ ∇ f (x0) + N(X, x0)

or also
∇ f (x0)(x − x0) = 0, ∀x ∈ X.

This necessary condition becomes also sufficient (for the global optimality of x0 in (P)1) if f is convex or psudoconvex
(see, e. g., Mangasarian (1969)). We note moreover, that the Bouligand tangent cone and the normal cone at a point
x0 ∈ X of the convex subset X of Rn are polar cones of each other, i. e.

T (X, x0) =
{
v ∈ Rn : vy 5 0, ∀y ∈ N(X, x0)

}
,

N(X, x0) =
{
y ∈ Rn : yv 5 0, ∀v ∈ T (X, x0)

}
.

Of course if x0 ∈ int(X), it holds T (X, x0 = Rn, (T (X, x0))∗ = {0} and Theorem 1 recovers the classical Fermat’s necessary
condition for an unconstrained local minimum.

Let us now consider problem (P)2. If we define the sets A =
{
x ∈ Rn : gi(x) 5 0, I = 1, ...,m

}
and S = X ∩ A, we have,

under the same assumptions of Theorem 1, that if x0 is a local solution of (P)2, then

−∇ f (x0) ∈ (T (S , x0))∗.

Let us denote by
I(x0) =

{
i : gi(x0) = 0

}
the set of the active constraints at x0 for (P)2 and by

G0 =
{
v ∈ Rn : ∇gi(x0)v 5 0, ∀i ∈ I(x0)

}
the linearizing cone at x0 for (P)2. It is well-known that it holds

T (S , x0) ⊆ G0,

i. e.
(G0)∗ ⊆ (T (S , x0))∗.

As (T (S , x0))∗ is a (closed) convex cone, from

(T (S , x0))∗ = (G0)∗ ∪ ((T (S , x0))∗�(G0)∗ ∪
{
x0
}
)
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we obtain
(T (S , x0))∗ = (G0)∗ + ((T (S , x0))∗�(G0)∗ ∪

{
x0
}
),

that is, thanks to Farkas’ lemma,

(T (S , x0))∗ = Γ0 + ((T (S , x0))∗�(G0)∗ ∪
{
x0
}
),

where

Γ0 =

v ∈ Rn : v =
∑

i∈I(x0)

λi∇gi(x0), λi = 0, ∀i ∈ I(x0)

 ,
is the so-called cone of gradients at x0.

We have therefore the following result, due to Gould and Tolle (1972).

Theorem 2. If x0 is a local solution of (P)2, then there exist scalars λi = 0, i ∈ I(x0), such that

−(∇ f (x0) +
∑

i∈I(x0)

λi∇gi(x0)) ∈ ((T (S , x0))∗�(G0)∗ ∪
{
x0
}
). (3)

On the previous theorem the following remarks can be useful.

Remark 1. If it holds
(G0)∗ = (T (S , x0))∗, (4)

obviously relation (3) becomes
∇ f (x0) +

∑
i∈I(x0)

λi∇gi(x0) = 0. (5)

Relation (4) is a well-known constraint qualification for problem (P)2 and it was proved by Gould and Tolle (1971) that
this condition is both necessary and sufficient for the so-called “Lagrangian regularity” for (P)2, i. e. for the validity of
(5) with respect to any differentiable objective function, having a local constrained minimum at x0 ∈ S .When condition
(4) is not satisfied, Theorem 2 gives a sort of generalization of the classical Karush-Kuhn-Tucker conditions. The fact that
in (3) the multiplier of ∇ f (x0) is just the unity, is not in contrast with what specified in the classical Fritz John conditions,
as the cone ((T (S , x0))∗�(G0)∗ ∪

{
x0
}
) does not vecessarily shrink to {0} if x0 ∈ int(X).

The last lines of the previous remark induce to find necessary optimality conditions for (P)2, expressed by the belonging
of the negative of the gradient of the Lagrangian function of (P)2 to the cone (T (X, x0))∗. The next result is due to Gould
and Tolle (1972).

Theorem 3. Let x0 be a local solution of (P)2 and let the following condition be satisfied:

((T (S , x0))∗ = (G0)∗ + (T (X, x0))∗. (6)

Then, there exist scalars λi = 0, i ∈ I(x0), such that

−(∇ f (x0) +
∑

i∈I(x0)

λi∇gi(x0)) ∈ (T (X, x0))∗. (7)

The same authors prove that condition (6) is both necessary and sufficient for the validity of (7) with respect to any
differentiable objective function f having a local minimum at x0 ∈ S .More generally (see Guignard (1969)), we have also
the following optimality condition for (P)2. Suppose that K is a closed convex cone in Rn satisfying the assumptions

a) G0 ∩ K = P(S , x0);

b) (G0)∗ + K∗ is closed.

If x0 is a local solution of (P)2, then there exist multipliers λi = 0, i ∈ I(x0), such that

−(∇ f (x0) +
∑

i∈I(x0)

λi∇gi(x0)) ∈ K∗.

We remark that if K is a polyhedral cone, then assumption b) is surely satisfied, as G0 is clearly a polyhedral cone. If
relint(G0) ∩ relint(K) , ∅, the above assunmption b) holds.
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The next result is a Fritz John-type optimality condition (or minimum principle-type optimality condition) for (P)2 and
was proved by Giorgi and Guerraggio (1994).

Theorem 4. Let x0 be a local solution of (P)2. Then, there exist scalars λ0 = 0, λi = 0, i ∈ I(x0), not all zero, such that

−(λ0∇ f (x0) +
∑

i∈I(x0)

λi∇gi(x0)) ∈ (T1(X, x0))∗, (8)

where T1(X, x0) is any convex subcone of T (X, x0), with vertex at 0 ∈ T1(X, x0).

Remark 2. If (6) holds, then in (8) we have λ0 = 1 and T1(X, x0) can be chosen equal to T (X, x0). If T (X, x0) is a convex
cone, then (8) gives a sharper result, as T1(X, x0) can be chosen equal to T (X, x0). If T (X, x0) is not a convex cone, there
exist some convex subcones of the same, that can be chosen to represent T1(X, x0) in (8). It is well-known that one of
these convex subcones of T (X, x0) is the Clarke tangent cone (see the next Section and see, e. g., Giorgi and Guerraggio
(1992), Ward (1987)). Obviously, if we can choose the largest convex subcone of T (X, x0), Theorem 4 will be sharper; a
convex subcone of T (X, x0) larger than the Clarke tangent cone is the Michel-Penot proto-tangent cone (see Michel and
Penot (1984), Ward (1987) and also Martin and Watkins (1985), where the expression “external cone” is used). Treiman
(1991) has shown that there are infinite convex cones lying between the Clarke tangent cone and the Michel-Penot proto-
tangent cone. Therefore we have the possibility to choose all the convex subcones of T (X, x0) we wish. For the reader’s
convenience we quote also the results of Nagahisa and Sakawa (1969) who reformulate Theorem 4, replacing T1(X, x0)
with an arbitrary convex set K ⊆ Rn such that

0 ∈ K, K ⊆ T (X, x0).

Other considerations on (P)2 are given in the recent papers of Flores-Bazan (2014) and Flores-Bazan and Mastroeni
(2015).

If X is convex (or locally convex at x0 ∈ X), then (8) can be expressed in the form

−(λ0∇ f (x0) +
∑

i∈I(x0)

λi∇gi(x0))(x − x0) = 0, ∀x ∈ X, (9)

with λ0 = 0, λi = 0, i ∈ I(x0), not all zero. Perhaps more usually, relation (9) is written in the form

0 ∈ λ0∇ f (x0) +
∑

i∈I(x0)

λi∇gi(x0) + N(X, x0),

where N(X, x0) is the normal cone to X at x0 ∈ X. A sufficient condition to have in (9) λ0 > 0 is: for some x̂ ∈ X it holds

∇gi(x0)(x̂ − x0) < 0, ∀i ∈ I(x0).

We now consider (P)3. In the usual classical treatments of the Fritz John necessary conditions for (P)3, the set X is assumed
to be open or that the optimal point x0 belongs to int(X); of course this last assumption can be verified if int(X) , ∅. See,
e. g., Mangasarian and Fromovitz (1967). When none of the said assumptions is verified, it is no longer assured that x0

is a stationary point for the associated (augmented) Lagrangian function of (P)3, similarly to what said for (P)2. See the
counterexample of Bazaraa and Goode (1972) and Bazaraa and Shetty (1976). Mangasarian (1969) treats the case of X
convex and assumes that int(X) , ∅. This author then proves the following result.

Theorem 5. Let X be a convex set, with int(X) , ∅; let x0 be a local solution of (P)3. Then there exist multipliers λ0, λi,
i = 1, ...,m; µ j, j = 1, ..., r, such that

a) (λ0∇ f (x0) +
∑m

i=1 λi∇gi(x0) +
∑r

j=1 µ j∇h j(x0))(x − x0) = 0, ∀x ∈ X,

b) λigi(x0) = 0, i = 1, ...,m,

c) λ0 = 0, λi = 0, i = 1, ...,m, (λ0, λ1, ..., λm, µ1, ..., µr) , 0.

Mangasarian (1969, p. 169) remarks that the assumption int(X) , ∅ “is a mild restriction, since in general a convex set
without an interior is equivalent to the intersection of a convex set with a nonempty interior and a linear manifold

{x : x ∈ Rn, h(x) = 0} ,

h linear on Rn”. However, this author does not further develop this remark.

173



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 4; 2017

An equivalent expression of relation a) of Theorem 5 is

0 ∈ λ0∇ f (x0) +
m∑

i=1

λi∇gi(x0) +
r∑

j=1

µ j∇h j(x0) + N(X, x0).

Always with reference to (P)3 it must be noted that Theorem 2 can be immediately fitted to (P)3; let us assume the
following notations:

A =
{
x ∈ Rn : gi(x) 5 0, i = 1, ...,m

}
;

B =
{
x ∈ Rn : h j(x) = 0, j = 1, ..., r

}
;

S 1 = X ∩ A ∩ B = X ∩C, where C = A ∩ B.

H0 = ker(∇h(x0)) =
{
v ∈ Rn : ∇h j(x0)v = 0, ∀ j = 1, ..., r

}
,

E0 = G0 ∩ H0.

Theorem 6. Let x0 be a local solution of (P)3; then there exist multipliers λi = 0, i ∈ I(x0), µ j ∈ R, j = 1, ..., r, such that

∇ f (x0) +
∑

i∈I(x0)

λi∇gi(x0) +
r∑

j=1

µ j∇h j(x0) ∈ (T (S 1, x0))∗�E∗0 ∪ {0} .

Bazaraa and Goode (1972) have obtained for (P)3 a version similar to the optimality conditions for (P)2, given in Theorem
4. However, the presence in (P)3 of equality constraints, does not allow to use a closed cone, such as the Bouligand tangent
cone. The said authors use the cone of interior directions at x0 ∈ X, which is an open cone. They prove the following
result.

Theorem 7. Let x0 be a local solution of (P)3 and let the cone of interior directions I(X, x0) be convex. Then, there exist
multipliers λ0 = 0, λi = 0, i ∈ I(x0), µ j ∈ R, j = 1, ..., r, with (λ0, λi, µ j) , 0, such that

−(λ0∇ f (x0) +
∑

i∈I(x0)

λi∇gi(x0) +
r∑

j=1

µ j∇h j(x0)) ∈ (I(X, x0))∗. (10)

Theorem 7 has been sharpened by Giorgi and Guerraggio (1994) who obtain an optimality condition for (P)3, similar to
(10), but with the cone of quasi-interior directions Q(X, x0) replacing the cone I(X, x0); indeed it holds, as previously re-
marked, I(X, x0) ⊆ Q(X, x0).A result similar to Theorem 7 has been established by Pshenichnyi (1971) and by Pshenichnyi
and Danilin (1978). Canon, Cullum and Polak (1969, 1970) give necessary conditions of optimality for a mathematical
programming problem with a set constraint and equality constraints only, by means of rather complicate definitions of
local cone approximations: the linearization of the first kind and the linearization of the second kind of the constraint
set X. For interesting considerations on these approximation cones the reader is referred to Martin, Gardner and Watkins
(1981). Halkin and Neustadt (1966) and Neustadt (1969, 1976) give a general multiplier rule in an infinite-dimensional
setting by means of particular “differentiability” assumptions on the functions involved in their problem and by means of
a rather complicate approximation of the constraint set. Similar comments can be made for the paper of Nagahisa (1988).

Remark 3. When X is convex and int(X) , ∅, Theorem 7 recovers Theorem 5 of Mangasarian (1969). Indeed, in this
case it holds

T (X, x0) = cl(I(X, x0)) = cl(Q(X, x0)) = cl(cone(X, x0)).

If, moreover, there exists x̂ ∈ int(X)or even x̂ ∈ relint(X) such that

∇gi(x0)(x̂ − x0) < 0, ∀i ∈ I(x0),
∇h j(x0)(x̂ − x0) = 0, ∀ j = 1, ..., r

and ∇h j(x0), j = 1, ..., r, are linearly independent, then in relation a) of Theorem 5 we can take λ0 = 1. This one is a
slight generalization of the well-known Mangasarian-Fromovitz constraint qualification (see Mangasarian and Fromovitz
(1967), Mangasarian (1969)).

If X is convex with int(X) = ∅, then I(X, x0) and Q(X, x0) are empty and therefore (I(X, x0))∗ = (Q(X, x0))∗ = Rn and
hence Theorem 7 is of no utility. However, several authors (see, e. g., Bertsekas and Ozdaglar (2002), Jimenez and Novo
(2002a), Giorgi, Jimenez and Novo (2004), Robinson (1976)) have shown that condition int(X) , ∅, with X convex, can
be dispensed, in order to obtain Theorem 5. See the next Section and the Sections concerning vector optimization.
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Remark 4. Similarly to what previously remarked for (P)2, the set S 1 is said to be Lagrange regular at x0 ∈ S 1 if,
for every differentiable objective function f having a constrained local minimum at x0, relation (10) holds with λ0 = 1.
Bazaraa and Goode (1972) have shown that the following constraint qualification

(T (S 1, x0))∗ = (I(X, x0))∗ + (G0)∗ + (H0)∗

is both necessary and sufficient for the Lagrange regularity of S 1 at x0 ∈ S 1. Finally, if the Guignard-Gould-Tolle con-
straint qualification is imposed to hold at x0 ∈ S 1, i. e. if

(T (S 1, x0))∗ = (G0 ∩ H0)∗,

then (10) becomes the classical relation:

∇ f (x0) +
∑

i∈I(x0)

λi∇gi(x0) +
r∑

j=1

µ j∇h j(x0) = 0. (11)

It is well-known that the Guignard-Gould-Tolle constraint qualification is both necessary and suffcient for relation (11) to
hold (together with the non-negativity of the multipliers and with the complementarity conditions) for any differentiable
objective function having a local minimum at x0 ∈ S 1. See Gould and Tolle (1971).

Di and Poliquin (1994) have relaxed the usual assumptions of continuous differentiability of functions h j, j = 1, ..., r,
imposed by several authors to obtain optimality condition (11). Other considerations on (P)3 along similar lines of Di and
Poliquin, are made in Di (1996).

3. Scalar Optimization with a Set Constraint: the Approach by Means of General Normal Cones

Besides the classical normal cone of the Convex Analysis, recalled in Section 2, there are other notions of normal cone,
useful in nonsmooth analysis, optimization theory, variational analysis, etc. In the present Section we consider a set
X ⊆ Rn to be a closed set and a point x0 ∈ X. The general normal cone or Mordukhovich normal cone to X at x0 (see
Mordukhovich (1976), Rockafellar (1993), Rockafellar and Wets (1998)) consists of all vectors v ∈ Rn for which there is
a sequence of vectors vk −→ v and a sequence of points xk −→ x0 in X, such that, for each k,

(vk(x − xk)) 5 o(
∥∥∥x − xk

∥∥∥), ∀x ∈ X. (12)

The general normal cone will be denoted by Ng(X, x0). Rockafellar and Wets (1998) prove that v ∈ Ng(X, x0) if and only
if there exist sequences

{
xk
}
⊆ X and

{
vk
}
, such that xk −→ x0, vk −→ v and vk ∈ (T (X, x0))∗ for all k. Ng(X, x0) is a closed

cone, but in general is not convex. If, in relation (12) the sequences can be chosen constant, i. e.

(v(x − x0)) 5 o(
∥∥∥x − x0

∥∥∥), ∀x ∈ X,

we obtain the regular normal cone to X at x0, denoted Nr(X, x0) and also called (Mordukhovich (2005)) Fréchet normal
cone to X at x0.

Nr(X, x0) is a closed convex cone. In general it holds

(T (X, x0))∗ ⊆ Ng(X, x0) (13)

but
(T (X, x0))∗ = Nr(X, x0).

When relation (13) holds with an equality sign, then set X is called “regular” at x0 ∈ X. A normal vector v to X at x0 is
then called regular normal vector, i. e. it holds Ng(X, x0) = Nr(X, x0), or

v ∈ Nr(X, x0)⇐⇒ vy 5 0, for all y ∈ T (X, x0).

If X is convex, then X is regular at each x ∈ X and it holds

Ng(X, x0) = Nr(X, x0) = N(X, x0) =
{
v ∈ Rn : v(x − x0) 5 0,∀x ∈ X

}
.

If X is regular at some x ∈ X, then T (X, x) is convex and the cones T (X, x) and Nr(X, x) are polar to each other.

Moreover, Rockafellar (1993) and Rockafellar and Wets (1998) prove the following interesting proposition which char-
acterizes the gradients of regular normals.
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Theorem 8. For any closed set X ⊆ Rn the following properties of a vector v ∈ Rn are equivalent:

a) v is a regular normal to X at x0 ∈ X.

b) v ∈ (T (X, x0))∗.

c) On some neighborhood U(x0) of x0 there is a smooth function f , with −∇ f (x0) = v, such that f attains its minimum
relative to X ∩ U(x0) at x0.

Bertsekas and Ozdaglar (2002) consider problem (P)3, with X a nonempty closed set of Rn and with f , every gi and every
h j continuously differentiable functions (C1-functions) from Rn to R. They prove the following interesting “enhanced
Fritz John conditions”.

Theorem 9. Let x0 be a local solution of (P)3, where X is a nonempty closed set of Rn. Then, there exist scalars
λ0, λ1, ..., λm and µ1, ..., µr satisfying the following conditions:

i) −
[
λ0∇ f (x0) +

∑m
i=1 λi∇gi(x0) +

∑r
j=1 µ j∇h j(x0)

]
∈ Ng(X, x0);

ii) λi = 0 for all i = 0, 1, ...,m;
iii) λ0, λ1, ..., λm, µ1, ..., µr are not all equal to zero;
iv) if the index set I ∪ J is nonempty, where I = {i : i , 0, λi > 0} ; J =

{
j : µ j , 0

}
,

there exists a sequence
{
xk
}
⊆ X that converges to x0 and is such that for all k,

f (xk) < f (x0), µ jh j(xk) > 0, ∀ j ∈ J, λigi(xk) > 0, ∀i ∈ I, g+i (xk) = o(w(xk)), ∀i < I;∣∣∣h j(xk)
∣∣∣ = o(w(xk)), ∀ j < J, where

w(x) = min
{

min
i∈I

g+i (x),min
j∈J

∣∣∣h j(x)
∣∣∣}

and
g+i (x) = max {0, gi(x)} .

Following Bertsekas and Ozdaglar, we point out that condition iv) of the previous theorem is stronger than the usual
complementarity conditions. We note moreover that when X is a convex set, relation i) collapses to relation a) of Theorem
5, and this without requiring that int(X) , ∅.

On the other hand, Clarke (1976) presented the following generalized Lagrangian multipliers rule for (P)3, where f , every
gi and every h j are supposed to be locally Lipschitz at the feasible point x0 and that X is a closed subset of Rn.

Theorem 10. Let x0 be a local solution of (P)3; then there exist multipliers r0, ri, s j (i = 1, ...,m; j = 1, ..., r), not all zero,
such that

a) r0 = 0, ri = 0, i = 1, ...,m;

b) rigi(x0) = 0, i = 1, ...,m;

c) −
[
r0∂

C f (x0) +
∑m

i=1 ri∂
Cgi(x0) +

∑r
j=1 s j∂

Ch j(x0)
]
∈ NC(X, x0).

In the previous theorem ∂C f (x0) is the Clarke subdifferential of f at x0, i. e.

∂C f (x0) =
{
ξ ∈ Rn : f ◦(x0, v) = ξ⊤v, ∀v ∈ Rn

}
,

where
f ◦(x0, v) = lim sup

y−→x0, λ↓0
λ−1 [ f (y + λv) − f (y)

]
is the Clarke directional derivative at x0 ∈ Ω in the direction v. It is well-known that ∂C f (x0) is a nonempty convex
compact subset of Rn and that

f ◦(x0, v) = max
{
ξ⊤v : ξ ∈ ∂C f (x0)

}
.

Similarly for ∂Cgi(x0) and ∂Ch j(x0). The cone NC(X, x0) is the Clarke normal cone to X at x0 ∈ X (see Clarke (1983)), i.
e.

NC(X, x0) = (TC(X, x0))∗,

where TC(X, x0) is the Clarke tangent cone to X at x0 ∈ X :

TC(X, x0) =

 v : Rn : ∀
{
xk
}
−→ x0, with xk ∈ X, ∀ {tk} −→ 0+,

∃
{
vk
}
−→ v with xk + tkvk ∈ X

 ,
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or equivalently,

TC(X, x0) =
{

v : Rn : ∀N(v), ∃N(x0), ∃λ > 0 such that ∀t ∈ (0, λ),
∀x̄ ∈ N(x0) ∩ X, ∃v̄ ∈ N(v) with x̄ + tv̄ ∈ X

}
.

It is well-known that this cone is closed and convex and that TC(X, x0) ⊆ T (X, x0). Moreover, if f is continuously differ-
entiable in a neighborhood of x0, then ∂C f (x0) =

{
∇ f (x0)

}
. So, in this case we have another Fritz John-type optimality

condition for (P)3. Moreover, if X is a closed convex set, then the Clarke normal cone collapses to the classical normal
cone of the Convex Analysis, and therefore relation a) of Theorem 10 becomes relation a) of Theorem 5, again without
the requirement int(X) , ∅.

Besides the fruitful approach of Clarke (1976, 1983), problem (P)3 has been considered also by Hestenes (1975), who
makes use of the so-called “derived sets”, which suitably approximate the image of X under the mapping

x ∈ X −→ ( f (x), g1(x), ..., gm(x), h1(x), ..., hr(x))

near the image of the solution of (P)3. We point out a paper of Breckner and Kolumban (1988), in which these authors
overcome some difficulties and restrictions imposed by Hestenes.

4. Vector Optimization with a Set Constraint. Basic Results

We first introduce the usual order relations in Rn. If x ∈ Rn and y ∈ Rn, then:

• x = y⇐⇒ xi = yi, i = 1, ..., n;

• x < y⇐⇒ xi < yi, i = 1, ..., n;

• x 5 y⇐⇒ xi 5 yi, i = 1, ..., n;

• x ≤ y⇐⇒ x 5 y, but x , y; i. e. x 5 y but there exists an index i such that xi < yi.

In this Section we shall consider the following vector optimization problems or Pareto optimization problems or multiob-
jective optimization problems.

(VP)1 : V- min f (x), x ∈ X;

(VP)2 :


V- min f (x)
gi(x) 5 0, i = 1, ...,m,
x ∈ X;

(VP)3 :


V- min f (x)
gi(x) 5 0, i = 1, ...,m,
h j(x) = 0, j = 1, ..., r < n,
x ∈ X,

where X is a subset of Rn, f : Ω −→ Rp, g : Ω −→ Rm, h : Ω −→ Rr,Ω open set of Rn containing X, f and g differentiable
on Ω and h continuously differentiable on Ω.

Definition 1. A feasible point x0 for (VP)1 is said to be an efficient point or efficient solution or Pareto optimal point for
(VP)1 if there does not exist another point x ∈ X such that f (x) ≤ f (x0). In other words, if

f (x) − f (x0) < −Rp
+� {0} , ∀x ∈ X.

Definition 2. A feasible point x0 for (VP)1 is said to be a weakly efficient point or weakly efficient solution or weak Pareto
optimal point for (VP)1 if there does not exist another point x ∈ X such that f (x) < f (x0). In other words, if

f (x) − f (x0) < −int(Rp
+), ∀x ∈ X.

If the previous conditions are verified in U(x0) ∩ X, where U(x0) is a suitable neighborhood of x0, then x0 is said to be
a local efficient point or a local weakly efficient point, respectively. Obviously (local) efficiency implies (local) weak
efficiency. In the scalar case (p = 1) a weakly efficient (local weakly efficient) and an efficient point (local efficient point)
collapse to the usual definition of a minimum (local minimum) point.

As we are concerned with necessary optimality conditions for (VP)i, i = 1, 2, 3, usually we shall make reference to the
concept of weakly efficient points. The following necessary optimality conditions for (VP)1 hold.

Theorem 11. If x0 ∈ X is a local weakly efficient point for (VP)1, then

T (X, x0) ∩ F0 = ∅,
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where
F0 =

{
v ∈ Rn : J f (x0)v ∈ −int(Rp

+)
}
.

In other words, the system
J f (x0)v < 0

has no solutions v ∈ T (X, x0).

Proof. See Corley (1985), Jimenez and Novo (2004), Giorgi and Zuccotti (2012).

Remark 5. Another way to express Theorem 11 is the following one: if x0 is a local weakly efficient point for (VP)1, then

max
i=1,...,p

[
∇ fi(x0)v

]
= 0,

for all v ∈ T (X, x0). In the single-objective case this condition holds at an optimal point considering any direction v in the
closed convex hull of T (X, x0), i. e. in the cone P(X, x0). This is no longer true in the multiobjective case, as Wang and
Yang (1991) have shown. However (see Castellani and Pappalardo (2001)), if f is convexlike on X, then if x0 ∈ X is a
weakly efficient point for (VP)1, then

max
i=1,...,p

[
∇ fi(x0)v

]
= 0, ∀v ∈ P(X, x0),

or, equivalently, by the strict separation theorem,

conv
{
∇ fi(x0), i = 1, ..., p

}
∩ (T (X, x0))∗ , ∅.

Remark 6. If x0 ∈ int(X), then T (X, x0) = Rn and the thesis of Theorem 11 becomes: the system

J f (x0)v < 0

has no solution v ∈ Rn. Applying the Gordan theorem of the alternative (see, e. g., Mangasarian (1969)), this is equivalent
to the proposition: there exists y ∈ Rp such that

yJ f (x0) = 0, y ≥ 0. (14)

Condition (14) was obtained, in an autonomous way, by Craven (1977); a feasible vector x0 satisfying (14), is also called
a “vector critical point” for (VP)1.

We now consider (VP)2, i. e. a vector optimization problem with only inequality constraints and an abstract constraint.
For this case Jiménez and Novo (2002b) have proved the following results, which “parallel” the corresponding results of
Theorem 4, established for scalar problems.

Theorem 12. Let x0 be a local weakly efficient point for (VP)2 and assume that T (X, x0) is a convex cone. Then, there
exist multipliers αs, s = 1, ..., p, λi, i = 1, ...,m, not all zero, such that

0 ∈
p∑

s=1

αs∇ fs(x0) +
m∑

i=1

∇gi(x0) + (T (X, x0))∗ (15)

αs = 0, s = 1, ..., p; λi = 0, i = 1, ...,m;

λigi(x0) = 0, i = 1, ...,m.

Remark 7. A similar result holds with reference to any convex subcone T1(X, x0) of T (X, x0), with vertex at 0 ∈ T1(X, x0).
Under the assumptions of the previous theorem, if, moreover, it holds the following constraint qualification

G+0 ∩ T (X, x0) , ∅ (16)

or
G+0 ∩ T1(X, x0) , ∅

where
G+0 =

{
v ∈ Rn : ∇gi(x0)v < 0, i ∈ I(x0)

}
,

then (15) holds with α = [α1, ..., αs] , 0, i. e. with α ≥ 0.
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If X is a convex set, then T (X, x0) is convex and in relation (15) the cone (T (X, x0))∗ equals the normal cone N(X, x0).
Moreover, in this case relation (16) can be substituted with the equivalent condition

G+0 ∩ (X − x0) , ∅.

If we assume that f and g are convex, X is a convex set, x0 is an efficient solution for (VP)2 and that the weak Slater
constraint qualification holds:

there exists x̄ ∈ X such that gi(x̄) < 0, i ∈ I(x0),

then (15) holds with α , ∅ (i. e. with α ≥ 0). If, moreover, we assume that the strong Slater constraint qualification
holds:

for each s = 1, ..., p, there exist x̄s such that

fk(x̄s) < fk(x0),∀k , s, gi(x̄s) < 0,∀i ∈ I(x0), x̄s ∈ X,

then (15) holds with α > 0.

We now consider (VP)3; this vector optimization problem has been treated by several authors, but here we follow mainly
the approach of Giorgi, Jiménez and Novo (2004), Jiménez and Novo (2002a) and Jiménez and Novo (2002b). We first
treat the case of a convex constraint set X.

A) The constraint set X is a convex set.

We do not assume (contrary, e. g. to Jahn (2011)) that int(X) , ∅. Also Robinson (1976, Theorem 3) obtains a minimum
principle-type optimality condition for (VP)3, with a convex constraint set X and in infinite spaces for Fréchet differen-
tiable functions (and without the condition int(X) , ∅), by means of a “separation property” (Robinson (1976), Definition
5). In finite-dimensional spaces it is possible to obtain the following results (see the above quoted papers of Jiménez and
Novo).

Theorem 13. Let X ⊆ Rn be a convex set and let x0 be a local weakly efficient point for (VP)3. Then, there exist
multipliers αs, s = 1, ..., p; λi, i = 1, ...,m; µ j, j = 1, ..., r, not all zero, such that

i) 0 ∈ ∑p
s=1 αs∇ fs(x0) +

∑m
i=1 λi∇gi(x0) +

∑r
j=1 µ j∇h j(x0) + N(X, x0);

ii) λigi(x0) = 0, i = 1, ...,m;
iii) (α, λ) = 0.

Remark 8. If we impose some “regularity condition”, we can obtain that iii) of the previous theorem holds in the form
(α, λ) ≥ 0. This is assured, for example, by the condition:

0 ∈
r∑

j=1

µ j∇h j(x0) + N(X, x0) =⇒ µ = 0. (17)

If, in addition to (17), we impose also the following constraint qualification:

G+0 ∩ H0 ∩ (X − x0) , ∅,

then i) of the previous theorem holds with α ≥ 0, i. e. we obtain for (VP)3 the so-called Karush-Kuhn-Tucker conditions
(in a weak form). Other constraint qualifications assuring α ≥ 0 in i) of Theorem 13, are presented in Giorgi, Jiménez and
Novo (2004).

B) The constraint set X is an arbitrary set of Rn.

As for the scalar case, in order to obtain a minimum principle-type optimality condition for (VP)3, we have to make use
of the cone of interior directions I(X, x0) or better, of the cone of quasi-interior directions Q(X, x0).

Theorem 14. Let X ⊆ Rn be an arbitrary set and let x0 be a local weakly efficient point for (VP)3. Let Q(X, x0) be a
convex cone; then there exist multipliers αs, s = 1, ..., p; λi, i = 1, ...,m; µ j, j = 1, ..., r, not all zero, such that

a) 0 ∈ ∑p
s=1 αs∇ fs(x0) +

∑m
i=1 λi∇gi(x0) +

∑r
j=1 µ j∇h j(x0) + (Q(X, x0))∗;

b) λigi(x0) = 0, i = 1, ...,m;

c) (α, λ) = 0.

Remark 9. Under the assumptions of Theorem 14, if, moreover,

G+0 ∩ H0 ∩ Q(X, x0) , ∅
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and the Jacobian matrix Jh(x0) has full rank, then a) of the previous theorem holds with α ≥ 0.

Remark 10. It is possible to obtain for (VP)3 minimum principle-type optimality conditions with the use of the Bouligand
tangent cone T (X, x0), instead of the cone I(X, x0) or the cone Q(X, x0), by imposing a suitable regularity condition or
constraint qualification, as shown in Jiménez and Novo (2002b) and in Giorgi, Jiménez and Novo (2004).

Theorem 15. Let x0 be a local weakly efficient solution for (VP)3 and let

a) either T (X, x0) be convex,

b) or T1(X, x0) be convex, where T1(X, x0) is any subcone of T (X, x0), with 0 ∈ T1(X, x0).

Assume the following “extended Abadie constraint qualification”:

G0 ∩ H0 ∩ T (X, x0) ⊆ T (C ∩ X, x0),

where C = A ∩ B =
{
x ∈ Rn : gi(x) 5 0, i = 1, ...,m

} ∩ {x ∈ Rn : h j(x) = 0, j = 1, ..., r
}
.

(If we use the convex subcone T1(X, x0), in the previous relation the cone T (X, x0) has to be substituted with T1(X, x0)).

Then, there exist multipliers αs, s = 1, ..., p; λi, i = 1, ...,m; µ j, j = 1, ..., r, not all zero, such that

i) 0 ∈ ∑p
s=1 αs∇ fs(x0) +

∑m
i=1 λi∇gi(x0) +

∑r
j=1 µ j∇h j(x0) + (T (X, x0))∗;

ii) λigi(x0) = 0, i = 1, ...,m;
iii) (α, λ) = 0.

Remark 11. If lin
{
∇h j(x0), j = 1, ..., r

}
+ (T (X, x0))∗ is closed, then i) is satisfied with (α, λ) , 0 (lin {S } is the linear span

of S ).

If cone conv
{
∇gi(x0), i ∈ I(x0)

}
+ lin

{
∇h j(x0), j = 1, ..., r

}
+ (T (X, x0))∗ is closed, then i) is satisfied with α , 0. A

sufficient condition for the validity of the last “closedness” relation is:

G+0 ∩ H0 ∩ relint(T (X, x0)) , ∅.

Bender (1978) uses, instead of the “extended Abadie constraint qualification”, another regularity condition, i. e.

H0 ∩ T (X, x0) ⊆ T (B ∩ X, x0).

Obviously, if the inequality constraints are not considered, the extended Abadie constraint qualification collapses to the
Bender constraint qualification. However, if the inequality constraint are present, the two conditions are not comparable.
See Jimenéz and Novo (2002b).

Remark 12. Giorgi, Jiménez and Novo (2004) consider (VP)3, with X an arbitrary set constraint, and by means of
an “extended Bender constraint qualification” they obtain the following minimum principle-type optimality conditions
(under weaker differentiability assumptions than the ones of the present paper).

Theorem 16. Let in (VP)3 be X an arbitrary set of Rn and let P ⊆ Rn be a convex set with 0 ∈ P. Let the following
“extended Bender constraint qualification” hold:

H0 ∩ P ⊆ T (B ∩ X, x0).

If x0 is a local weakly efficient solution of (VP)3, then there exist multipliers αs, s = 1, ..., p; λi, i = 1, ...,m; µ j, j = 1, ..., r,
not all zero, such that

1) 0 ∈ ∑p
s=1 αs∇ fs(x0) +

∑m
i=1 λi∇gi(x0) +

∑r
j=1 µ j∇h j(x0) + P∗;

2) λigi(x0) = 0, i = 1, ...,m;

3) (α, λ) = 0.

Remark 13. We obtain the same conclusions of Theorem 16, by choosing P = I(X, x0) ∪ {0} or P = Q(X, x0) ∪ {0} ,
with I(X, x0) and Q(X, x0) convex, without assuming the extended Bender constraint qualification (see Giorgi, Jiménez
and Novo (2004)). However, we note once again that if int(X) = ∅, we have I(X, x0) = Q(X, x0) = ∅, and so (I(X, x0))∗ =
(Q(X, x0))∗ = Rn, therefore condition 1) of Theorem 16 becomes trivially satisfied and not useful.

On the other hand, the Bender constraint qualification allows to deduce directly form Theorem 16 the minimum principle-
type optimality conditions for the case of X convex, without assuming int(X) , ∅. Indeed. if X is convex and regularity
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condition (17) holds, i. e.

(RC) 0 ∈
r∑

j=1

µ j∇h j(x0) + N(X, x0) =⇒ µ = 0,

Jiménez and Novo (2002a) have proved that we have

H0 ∩ T (X, x0) = T (B ∩ X, x0),

i. e. a Bender constraint qualification (where P = T (X, x0), convex cone, being X convex). If (RC) does not hold, it is
always possible to choose multipliers µ j, not all zero, such that the thesis of Theorem 16 holds. A similar approach is also
used by R. Cambini: see the next Section.

5. Vector Optimization with a Set Constraint. The Approach of R. Cambini

Riccardo Cambini has been concerned with vector optimization problems with a set constraint in several papers; see
Cambini (1998, 1999, 2002, 2003, 2007). This author studies a vector optimization problem more general than (VP)3,
in the sense that the ordering cone is not necessarily the Paretian cone, but it is given by a closed convex pointed cone
with a nonempty interior. Moreover, the differentiability assumptions on the functions involved in the said problem are
more general than ours, as also the Hadamard directional differentiability is taken into account and, finally, the optimality
conditions are expressed both in the image space and in the decision space. We shall give a brief account of Cambini’s
results, referred to (VP)3 under Fréchet differentiability and continuous Fréchet differentiability, following the usual
decision space approach.

Theorem 17. Consider problem (VP)3 and assume f and g to be Fréchet differentiable at the feasible point x0.Moreover,
let h be continuously differentiable in a neighborhood of x0. Let U ⊆ Rn be a cone which verifies one of the following
regularity conditions:

R1) U is convex and
U ∩ T (B, x0) ⊆ T (B ∩ X, x0);

R2) U = I(X, x0) is convex;

R3) U = T (X, x0) and X is convex.

If the feasible point x0 is a local efficient point for (VP)3, then there exist multipliers αs = 0, s = 1, ..., p; λi = 0,
i = 1, ...,m; µ j ∈ R, not all zero, such that

λigi(x0) = 0, i = 1, ...,m; p∑
s=1

αs∇ fs(x0) +
m∑

i=1

λi∇gi(x0) +
r∑

j=1

µ j∇h j(x0)

 v = 0, ∀v ∈ cl(U).

Proof. See Cambini (2007).

Remark 14. The previous results hold also if x0 is a local weakly efficient point for (VP)3. If X is convex and the feasible
point x0 is a local efficient point for (VP)3, then the following minimum principle-type optimality conditions hold:

There exist multipliers αs = 0, s = 1, ..., p; λi = 0, i = 1, ...,m; µ j ∈ R, not all zero, such that λigi(x0) = 0, i = 1, ...,m; p∑
s=1

αs∇ fs(x0) +
m∑

i=1

λi∇gi(x0) +
r∑

j=1

µ j∇h j(x0)

 (y − x0) = 0, ∀y ∈ X.

Indeed, this result follows at once from R3) of Theorem 17, by choosing U = F(X, x0) ⊆ T (X, x0). Note that the assump-
tion int(X) , ∅ is not required. Obviously, if x0 ∈ int(X) all the minimum principle-type necessary optimality conditions
taken into consideration in the present paper collapse to the usual Fritz John conditions or to the usual Karush-Kuhn-
Tucker conditions.
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Michel, P., & Penot, J. P. (1984). Calcul sous-différentiel pour des fonctions Lipshitziennes et non-Lipshitziennes, C. R.
Acad. Sciences, Paris, Série I, Mathématique, 298, 269-272.
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