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Abstract

In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly
damped Higher-order Kirchhoff type equations: u; + (—A)"u, + (a' +8 ||V"’u||2)q(—A)mu + g(u) = f(x). At first, we do
priori estimation for the equations to obtain two lemmas and prove the existence and uniqueness of the solution by the
lemmas and the Galerkin method. Then, we obtain to the existence of the global attractor in H{'(€2) x L*(Q) according to
some of the attractor theorem. In this case, we consider that the estimation of the upper bounds of Hausdorff for the global
attractors are obtained. At last, we also establish the existence of a fractal exponential attractor with the non-supercritical
and critical cases.
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1. Introduction

In this paper, we are concerned with the existence of global attractor for the following nonlinear Higher-order Kirchhoff-
type equations:

tty + (—0)"uy + (@ + BIV"ulP) (=A)"u + g(u) = £(x), (x.1) € QX [0, +0), (1.1)
u(x, 0) = o(x), u,(x, 0) = uy (x), x € Q, (12)
u(x, 1) = 0, % =0,i=1,...,m~1,x€dQ,1€ (0, +c), (1.3)

where m > 1 is an integer constant, @ > 0,5 > 0 are constants and ¢ is a real number. Moreover, 2 is a bounded domain
in R" with the smooth boundary dQ and v is the unit outward normal on dQ. g(u) is a nonlinear function specified later.

It is known that Kirchhoff (1883) first investigated the following nonlinear vibration of an elastic string for 6 = f = 0O:

8u ou Eh (L {ou\? 8u
ALy L 22 axl S v g 0<x< Lz, 1.4
P % {”°+2Lf0 (ax) ot * (14

where u = u(x, ) is the lateral displacement at the space coordinate x and the time 7, p the mass density, 4 the cross-section
area, L the length, E the Young modulus, p0 the initial axial tension, ¢ the resistance modulus, and f the external force.

When a = 0,8 = 1 and g > 0 are real number, Yunlong Gao, Yuting Sun and Guoguang Lin (2016) studied existence of
weak solutions for degenerate High-order Kirchhoff equations:

ty + (=) "y + [V"ulP(=AY"u + g(u) = f(x), (x,1) € Q X [0, +00), (L.5)

u(x,0) = up(x), u,(x,0) = u1(x), x € Q, (1.6)

u(x,r) = O,% =0,i=1,....,m—1,x€0Q,t € (0, +00), (1.7)
1%
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where m > 1 is an integer constant. Q is a bounded domain in R" with the smooth boundary Q2 and v is the unit outward
normal on 9Q. g(u) is a nonlinear function specified later.

When @ = 0,8 = 1 and g > 0 is real number and strong linear stamping (—A)"u; is replaced SBu,, Li Yan (2011) studied
The Asymptotic Behavior of Solutions for a Nonlinear Higher Order Kirchhoff Type Equation:

q
iy + (f |D'"u|2d") (=A)"u+Bug +g(w) = O,in - Q = QX (0, +00), (18)
Q
u(xt)—O@—Oi—12 m—1,on Z—Fx(0+oo) (1.9)
’ - £ avi - ] - 9Ly v ey £ - ’ £ .
u(x,0) = up(x), u,(x,0) = u1(x),in  x € Q, (1.10)

where Q is an open bounded set of R*(n > 1) with smooth boundary I' and the unit normal vector.The function g € C!
satisfies some of conditions.

When (a +f IIV’”uIIZ)q is replaced a + bIIV”’uIIzq and g(u) = —|ul’u, Guoguang Lin, Yunlong Gao, Yuting Sun (2017) had
studied local existence and blow-up of solutions:

ty + (=AY"ug + (a + BIUD™ul*) (~A)Y"u = Jul"u, (x, ) € Q X [0, +00), (1.11)
ai

 (x, 1) =o,6—bf =0,i=1,2,,m—1,x€dQ1€ (0, +c0), (1.12)
Vl

u(x,0) = uo (%), ur (x,0) = uy (x), x € Q, (1.13)

where Q is a bounded domain in R" with the smooth boundary dQ and v is the unit outward normal on Q2. Moreover,
m > 1 is an integer constant, and g, p, a and b are some constants such thatg > 1, p >0,a>0,b>0anda+ b > 0.

When g = 0,m = 1, g(u) = —|u|’u, the equation (1.1) becomes a nonlinear wave equation:
uy — Au— Au, = ulPu, (x,1) € Q X [0, +00), (1.14)
u(x, 0) = up(x), uy(x,0) = u1(x), x€Q, (1.15)
u(x,1) =0, (x, 1) €0Qx][0,+00). (1.16)

It has been extensively studied and several results concerning existence and blowing-up have been established (Ball, J.
M., 1997; KOPACKOVA, M, 1989; HARAUX, A. & ZUAZUA, E., 1988).

Whena =0,8=1,m =1, g(u) = —|u|*u and ¢ = y > 0 is real number, Kosuke Ono (1997) had studied global existence,
asymptotic stability and blowing up of solutions for Some Degenerate Non-linear Wave Equations:

Uy — ||Vu||27Au — Au; = |ul®u,  (x,1) € QX [0, +00), (1.17)
u(0) = uop(x), u(0) = u1(x), x€Q, (1.18)
u(x,loo =0, t€l0,+00), (1.19)

where Q is a bounded domain in R"” with the smooth boundary 0.

When (@ +BIIV"ul®)" is replaced —m ( [, [Vu(t, x)Pdx), m = 1,g(u) = 0 and no linear damping, Marina Ghisi and
Massimo Gobbino (2009) studied spectral gap global solutions for degenerate Kirchhoff equations. Given a continuous
function m : [0, +c0) — [0, +00), they consider the Cauchy problem:

uy(t,x)+m (f [Vu(z, x)lzdx) Au(t,x) =0,Y(x,1) e Q% [0,7), (1.20)
Q
u(0) = uo, u;(0) = uy, (1.21)

where O C R" is an open set and Vu and Au denote the gradient and the Laplacian of u with respect to the space variables.
They prove that for such initial data (ug, u;) there exist two pairs of initial data (i, i), (fio, i1;) for which the solution is
global, and such that uy = g + g, u; = ity + ;.

When m = 1, (o + B|IV’”u|I2)q and (—A)?u, are replaced M (|IVul?),(~A)w,. Yang Zhijian, Ding Pengyan and Lei Li
(2016) studied Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity:

Uy — M(||Vu||2) Au+ (=A)u; + fu) = g(x), x € Q1> 0, (1.22)
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ulpa = 0,u(x, 0) = up(x), u,(x,0) = u;(x), (1.23)

where a € (%, 1), Q is a bounded domain Ry with the smooth boundary s, and the nonlinearity f(«) and external force
term g will be specified.The main results are focused on the relationships among the growth exponent p of the nonlinearity
f(u) and well-posedness. They show that (i)even if p is up to the supercritical range, thatis, 1 < p < (ijfaa)“ the well-
posedness and the longtime behavior of the solutions of the equation are of the characters of the parabolic equation;
(i) when % <p< %, the corresponding subclass G of the limit solutions exists and possesses a weak global

attractor.

Whenm =1, (a +B ||Vmu||2)q is replaced o(||Aul|?), Yang Zhijian, I.Chueshov ( Yang, Z. J. & et al., 2014; Zhijian Yang &
Zhiming Liu., 2015; Igor Chueshov., 2012) studied the Global attractor and exponential attractors for the Kirchhoff type
equations with strong nonlinear damping and supercritical nonlinearity:

uy — o(|AulP)Auy — d(|Aul)Au + f(u) = h(x) in QxR (1.24)
u(x, Dlga = 0, u(x,0) = up(x), uy(x,0) = us(x), xe€Q. (1.25)

where Q is a bounded domain in RV with the smooth boundary 0Q, o(s), ¢(s) and f(s) are nonlinear functions, and A(x) is
an external force term. They prove that in strictly positive stiffness factors and supercritical nonlinearity case, there exists
a global finite-dimensional attractor in the natural energy space endowed with strong topology.

When m = 1, Xiaoming Fan (2004) consider the following non-degenerate Kirchhoff-type’s Kernel sections and estima-
tion of Hausdorff dimensions:

P
Uy — alAu, — (,B + y(f IVulzdx) )Au + h(uy) + f(u, 1) = gx,6),x € Qt > 1, (1.26)
Q
u(x, 0 lresn = 0,12 7, (1.27)
u(x, 7) = uor(x), u(x, 1) = u1,(x), x € Q, (1.28)

where 8 > 0,p > =1,y > 0. h(u,) and g(u, t) are supposed in paper.

For the most of the scholars represented by Yang Zhijian have studied all kinds of low order Kirchhoff equations and
only a small number of scholars have studied the blow-up and asymptotic behavior of solutions for higher-order Kirchhoff
equation. So, in this context, we study the high-order Kirchhoff equation is very meaningful. In order to study the
high-order nonlinear Kirchhoff equation with the damping term, we borrow some of Li Yan’s (Ball, J. M., 1997) partial
assumptions (2.1)-(2.3) for the nonlinear term g in the equation. In order to prove that the lemma 2.4, we have improved
the results from assumptions (2.1)-(2.3) such that 0 < C, < % Then, under all assumptions, we prove that the equation
has a unique smooth solution (u, u;) € L*((0, +00); H™(Q) N H{'(€) X H{'(€2)) and obtain the solution semigroup S (7) :
H™(Q) N Hi'(€) x Hj'(Q) — H™(Q) N Hy'(Q) x H'(Q) has global attractor A and the upper bounds of Hausdorff
dimensions. At last, we get the exponential attractor by strong quasi-stability.

For more related results we refer the reader to (Xiaoming Fan & Shengfan Zhou., 2004; HD Nguyen., 2014; Yaojun Ye,
2013; Teman, R., 1998; S. Zhou., 1999; Ke Li., 2017; Zhang Yan & et al., 2008; Xueli Song & Yanren Hou., 2015; L. H.
Fatori, et al, 2015; Lin, G. G., 2011; Teman, R., 1998; Wu, J. Z. & Lin, G. G., 2009; Robert A. Adams, et al., 2003; Z.
J. Yang, 2010; Zhijian Yang & Pengyan Ding, 2016). In order to make these equations more normal, in section 2 and in
section 3, some assumptions, notations and the main results are stated. Under these assumptions, we prove the existence
and uniqueness of solution, then we obtain the global attractors for the problems (1.1)-(1.3). In section 4, we consider that
the estimation of the upper bounds of Hausdorff for the global attractors are obtained according to (Yaojun Ye., 2013). In
section 5, we obtain the fractal exponential attractor by (Yang, Z. J. & et al., 2016; Yang, Z. J. & et al., 2014; Zhijian Yang
& Zhiming Liu, 2015; Igor Chueshov, 2012).

2. Preliminaries

In this section, we introduce material needed in the proof our main result. We use the standard Lebesgue space L”(€2) and
Sobolev space H™(£2) with their usual scalar products and norms. Meanwhile we define

Hp(Q) = {u e H"(Q): 4% =0,i=0,1,...,m — 1} and introduce the following abbreviations: Ey = H'(Q)x L(Q), E; =
H™(Q) N HG(Q) x HY' (@),A = =A Il = Il ez = s I = 12 IFl, = Hlzq) for any real number
p>1.

According to (Li, Y., 2011), we present some assumptions and notations needed in the proof of our results. For this reason,
we assume nonlinear term g(u) € C 1(Q) satisfies that
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(Hy) Setting G(s) = [ g(r)dr, then

lim inf G(;) >0; 2.1)
|s]—00 N
(Hy) If
lim Ig (f)| 0, 2.2)
IsI—><>o ||

where 0 < r < +oo(n =1,2),0<r<2(n=3),r=0n > 4).
(H3) There exist constant Cy > 0, such that

of 3809 = CoGls)

li 23
|s|l—I>Igol s2 2.3)
(H4) There exist constant C; > 0, such that
lg()I < Ci (1 +1s1”), 2.4
g )] < ci(1+1s77), (2.5)
where 1 < p < %(I’l >2m)and 1 < p < +oo(n < 2m).
For every y > 0, by (H}) — (H3) and apply Poincaré inequality, there exist constants C(y) > 0, such that
Jw) + YIV"ull* + C(y) 2 0, Vu e H™(Q), (2.6)
(8(u),u) = CoJ () + YIV"ull> + C (y) 2 0, Vu € H™(Q), 2.7
where J(u) = fg Gw)dx,0 < Cy < L is independent of 7.
Lemma 2.1.(Young’s Inequality*"¢-¢-201Dy For any £ > 0 and a, b > 0, then
&l 1
ab < —ap + — (2.8)
P qet’

Where%+é:l,p>l,q>l.

Lemma 2.2.(Sobolev-Poincaré inequalityYe>/#7e-20139)y [ et s be a number with 2 < s < +oco,n < 2mand 2 < s <

nf'z"m, n > 2m. Then there is a constant K depending on Q and s such that

llully < K||(=A)2u||, Yu € Hy (€. (2.9)
Lemma 2.3.(Gronwall’s inequality“-C-G-201D) If V¢ € [£,, +00), y(¢) > 0 and d’ + gy < h, such that
—g(t—to) h
(O < y(to)e ™8 + =t > 1, (2.10)
g

where g > 0,4 > 0 are constants.

Lemma 2.4. Assume (H,) — (H3) hold, and (ug,u;) € Hy'(Q) x L*(Q), f(x) € L*(Q). Then the solution (x,v) of the
problem (1.1) = (1.3) satisfies (u, v) € L ((0, +00); H'(Q) x LA(Q)), and

f +C

y(0) _e,Cot
mln{l ﬂq_g‘}e " +81C2m1n{ il 8‘}

IV ull® + VP < 2.11)

. o AN Q+Cy)?+164,"-2-C . . .
where v = u, + &1u,0 < £ < min {ﬁ‘/, ZAAIIV"H’ (2+Co) +4 ’ 2}, Ay is the first eigenvalue of —A in Hy(€2), and

g+1
(0) = lluy + £1uol + 5k (@ + BV uolP) = &1V uol? + 2 (o) + 2C(31) + L5

148



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 4; 2017

,C3 = (20)2 2t m (ZCO’I) + q+1) + 5 : 5+ 281C0n),

my = m1n{2/ll —-2& — 2812,M},71 = ﬁq “

£l
,72—-—81 T

Thus, there exists Ry and 7y = 1,(Q2) > 0, such that
G P gz = IVl + IMP < Ro?, (&> to). (2.12)
Proof. We take the scalar product in L? of equation (1.1) with v = u,+&;u. Then
(s + (=", + (e + BIV"ull?) (—8)"u + g(w). v) = (F(x). ). (2.13)
By using Poincaré’s inequality and Young’s inequality, after a computation in (2.13), we have

d
S—IVIP = a1V + &% (u, v)

(Uy,v) = 2 dr
1d 2 &’
> S ZIWIP = 1P = Sl — - i (2.14)
1 d 2 8]2 2
> —— - + — V"u
> 5 (el 2 Ly £,

e d
(=A"ur,v) = == V"l + [V = 2Vl

o (2.15)
1 m. (12 m 2 21om,, (12
> —
2 =5 V"l + 4 IVE - 829"l
((+BIv"ulP) (=2)"u, v)
= l(a+f3||vmu||2)"iuvmuu2 + &1 (a+BIV"ull?) 19"l
=3 I (2.16)
1 d " &1 m 2\atl gl m. 12\4
= %D —(eBIv ulf)™ + E(awnv ull’) —7(a+ﬁuv uy’,
(g),v) = %Jw) + &1(g(w), u), (2.17)
12
(f@.v) < 3 ||f||2 —IMIP. (2.18)
Substituting (2.14)-(2.18) into (2.13), then
1 g+1
2 m. 112 m. 112
E[nvn + ST AVl = sVl +2J(u>]
2e +1 e
+ (240" = 281 = 280°) > + ?l(mﬂnvmunz)" = = (a+BIvV" )’ (2.19)
e’ m ||f||2
" +2¢&,° [V u|| +2e (g(u),u) < —-
Next, some of the items are estimated in (2.19). By Young’s inequality, we have
1 q
VP < T , 2.20
I9"ull* < — IV"ulP™ + — (2.20)
B 2 +2 q(ﬁ");
VUl < ———[[V"ul 221
IV"ull® < sl (2.21)

149



http://jmr.ccsenet.org Journal of Mathematics Research

Vol. 9, No. 4; 2017

20)
q+1+(01)

(e + BIV"ulP)” < %(a +IV"ulP) —.

By (2.6), (2.20) and &, < 9, we get

1 2\a+1 2 qp?
A% — A% 2J 2C
T+ py{a + BIV"ul?) = el V7wl + 20w) + 2Cr) + v
q
> PP - e vl + 20 + 2C0n) + ﬂ
(q+1) g+
> (B = eIV ull® + 2J(u) + 2C(y1)
>0,
where y; = ﬁ?%.
By (2.22) ,we have
€ - +1 e - Qa)i*le
“Ha+pIvrullP) - = e+ BIVTl?) +
B B 9B

208 NG
> ——|a+ BVl

7 | )
> 0.

Inserting (2.23)-(2.24) into (2.19), we obtain

d 2
— +
7 [Ivll

1 . ,
Blg + hl +BIVP)™ = eVl + 200 +2C0n) + qqf 1]

2
m £ m q+1 2 m
+ (24" - 281 —2812>||V||2+El<a +BIV"ull’) —(/l%,,+2812)llv ull®
1

||f||2 Qa)*e
B

we have

+ 2 (g(u),u) < —-

In (2.25), by (2.7), 2.21) and &; < 720

(241" - 261 = 2°) > + %(a +BIvTulP)” - ( + 2812) IV ull® + 281 (g(w), )
> (24 - 261 - 2&/%) IV + %(a + BT u?)"
+ ‘”—fq||vmu||24+2 - (%,2” + 2812) IVl + 21 (g(u), u)
> (24" - 28, - 26,°) IP + %(a + B u)
‘91—fq||vmu||2q+2 = &IVl + 281 C2J (u) - 281 C(y2)

m 2 m

> (240" - 281 = 21 %) IV + 2ﬁ(oz + BVl
g+l
mo2 40q
+ Qg1+ e) IVl +261C2J(0) = 2= = 2e1C()
2 1 m. 12 g+1 4%q
> my{Ivlf + 2= 1)(a + BIV"ul?)" | + 281 Cod ) g~ 260
1

> m [nvn2 * (@ AT ) = el + 200 + ﬂl]

g+l

4%
) +2£1CrJ(u) — 7;] —2&1C(y2),

qB?
m (ZC(%) + ey

and m, = min {2,11'" —2& - 28,2, M}

=1_
where y, = 5 — &1 — 5

2/1'”’
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V(@2+C2)?+164,"-2-C;

7 and0 < C; < 2,suchthatm1 > &10Cs.

Since 0 < g; <

Therefore, inserting (2.26) into (2.25), we have

I .
= [||v||2 * Sy @BV P) = eV 42060 +2C0n) + qqi}

1 g+1 qﬂq
2 ViulP) - eIV ull® + 2C | +26/CyJ
+my ||Vl +ﬂ(q+1)(a+,3ll ull’) ei|IV"ull” + (71)+q+1 +281C2J(u)
d 2 1 m p2\d+! m. 112 Qﬂq
< E[II I~ + Ba+ 1)(a +pBIV uII) —&llIV"ull +21(u)+2C(71)+m (2.27)
e [uvn2+ (o + IV l) = eIVl + 20+ 2C0n) + “’ﬁq}
Blg+1) g+1
2
IIfII LG
£1?

. o “81 q
with C3 = S22 4y (2C(y1) + £7) + 4—‘1 +2&C(y2).

We set y(7) = |[v||* + ﬁ(qlﬂ)(a + ,8||V’"u||2)q — &lIV"ul? + 2J(u) + 2C(yy) + ‘1/3“ . Then, (2.27) is simplified as

2
30+ 1oy < m LG (228)

From conclusion (2.23), we know y() > 0. So, by Gronwall’s inequality and (2.23), we obtain

AP
q _ =+ C3
P + BN < o) < ()i 4 (2.29)
£1C;
q+
where y(0) = [lu1 + eyl + gt (o + BV uolP) = exllV ol + 27(up) + 2C(r1) + Lo
Therefore, we get
LA
0 2 + C3
W,y = V7l + P < —2 e oT T (2.30)
0 mm{l B 8‘} glszin{l,/%}
Then,
1, e,
Tim|l(e, WPz = IVl + WP < ———— (2.31)
Ut 81C2m1n{1, 5 ‘}
So, there exist Ry and fy = 19(2) > 0, such that
I P sz = IVl + IMP < Ro, (2> 1) (2.32)

Lemma 2.5. In addition to the assumptions of Lemma 2.4., (H;) — (Hy) hold.If (Hs) : f(x) € H(€2), and (up,u1) €

H™Q)N H{' (€)x Hy'(€2). Then the solution (u, v) of the problems (1.1)-(1.3) satisfies (v, v) € L™ ((O, +o0); H2™(Q) N Hy(Q) x H(”f(Q)),
and

2(0) Cs + HIV"£IP

ey ———2 (2.33)

IV + A" ) < ———
min {1, — &) mm{l,u—ez}mz

where (-A)Y"v = (=A)"u, + &(-A)"u, A; is the first eigenvalue of —A in Hé(Q), and z(0) = |IV™u; + eV™uo|* +

o2
(1 — £2) A7l % 11y = min d 4,7 — 26y — 26,2, AT
2 oll =, my = 1 2 2%, =S .
Thus, there exists Ry and #; = £,(Q) > 0, such that
2 2 2
1t Ml s = IA™ul? + IV < R, (2> 1), (2.34)
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Proof. Taking L-inner product by (=A)"v = (=A)"u; + &5(~A)"u in (1.1), we have

(s + (=AYt + (0 + BIV"ulP) (= A" + g(w), (~A)"™V) = (F(2), (~AY").

After a computation in (2.35) one by one, as follow

Gt (=A)") = S|V VP = &V + £:2(V"u, V")

1 d 2 2 822 2 822 2
> Vm _ Vm _ s Am _ £ Vm .
2 5 gV = &allVVIF = S ATl = -V
m m m 8 d m m
(=AY"uy, (=AY"v) = A" - fd_t”A ull® = &2 |A ull>.

By Lemma 2.4., we know it exists Cy4, such that
a? < (a+pIV"ul?)" < Cs.
We set

_ et LA >0
21 co o iama? <o,

By (2.38) and (2.39), we get
((a +BIV"ul)' (=A)"u, (-A)"v)

q
(+pIval) g NG Am 1
= L A"l + safa + BVl Y 1A

IA™ul* + &0 ||A™ull*.

| &

JH
2

U

t
By Young’s inequality, we get

2 my,|12
(50w, (81" = = gl v = -GN I

Next to estimate ||g(u)||2 in (2.41). By (Hy):lg(s)] < C; (1 +|s”) and Young’s inequality, we have

lg@)l* < f C3(1 + ulP)2dx
Q
< f (C% +2C3ul + c%|u|2p) dx
Q
< f (2€7 + 2CT1uP?) dx
Q

2
<207 100 + 267 Il o, -

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

Byl<p< Zf—%:ﬁ,n > 2m(l < p < +oo,n < 2m). So, there exists K > 0, such that ||ull;2q) < K[[V"ul. ||[V"ul| bounded

by Lemma 2.4. Then, (2.42) turns into
lg@IP < Cs (p,C1, K, 1)
Collecting with (2.43), from (2.41) we have

2
Cs lla™vll

(g(w), (=A)"v) 2 R

By f(x) € H'(€2) and Young’s inequality, we obtain

m m m 1 m g2 8% m, 12
(f(x0), (=A)"v) = (V7 f(x), V) < —[[V7FII7 + = IV7II7.
2&5 2
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Integrating (2.36)-(2.40),(2.44)-(2.45), from (2.35) entails
d
7 (192 + = e)lA" | + A

822

—2er + &IV + (—W —2&% + 2aq82) lA" u))? (2.46)
1

1
< Cs+ —IV"fIP
&

By Poincaré inequality, such that [[V"v|* < [|A"v|*. So, (2.46) turns into

d m m m m
— [IV"IP + = el AP [ + (17" = 262 = 267V

&2 | (2.47)
+[ =22 =287 + 20 | |A™ Ul < Cs + — V" fIP.
/l]m 822
—:{2—,2,,—2522+2a”a‘2
Taking my = min{ A, — 2, — 2,2, 'T , then
d 1 m g2
—2(t) + maz(t) < IV fII” + Cs, (2.48)
dt &
where z(1) = [V™[* + (u — &2) [|A™ul| %,
By Gronwall’s inequality, we have
1 2
IV fIE+ C
2(1) < z(0)e ™™ + g (2.49)
my
where z(0) = [IV"u; + & V"ug|l* + (1 — &) |A" ug|| .
Therefore, we have
1 m £)12
0 Cs + IV 1l
||VmV||2 + ”Amu”2 < — 20 ety 2 G . (2.50)
min (1,1t — &) min (1,4 — &2} m3
Then
— , 2 ,  Cs+ LIvsP
Tim (1t VIR o et = A"l 4+ V7P < ——— 2.51)
oo (e min (1,41 — &2} m
So,there exists R; and #; = () > 0, such that
Gt oo st = 18" ull? + VP S RZ, (> 1), (2.52)

3. Global Attractor
3.1 The Existence and Uniqueness of Solution

Theorem 3.1. Assume (H;) — (H4) hold, and (ug, u;) € H*(Q) M H'(Q) X H'(Q), f(x) € Hi'(Q),v = u, + g1u. So
Equation (1.1) exists a unique smooth solution

(@Cx, 1, v(x, 1)) € L ((0, +00); H"(Q) (| H'(€) x HY'(Q)). (3.1)

Proof. By the Galerkin method, Lemma 2.4. and Lemma 2.5. , we can easily obtain the existence of Solutions. Next, we
prove the uniqueness of Solutions in detail.

Assume u, v are two solutions of the problems (1.1)-(1.3), let w = u — v, then w(x,0) = wo(x) = 0, w,(x,0) = wi(x) =0
and the two equations subtract and obtain

Wi+ (=A)"w, + (@ + BIV"ulP ) (~8Y"u — (o + BIVYP) (=AY + g(u) — g(v) = 0. (32)
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By multiplying (3.2) by w;, we get

(wa + (=0)"w, + (a + BIV"ull?) (~A)"u = (e + BIV™VIP) (—A)" + g(u) — gv), wy) = 0.

| =

2
Wi, wp) = [lwill~,

| —
QU

t
(=A)"wi, wp) = V"Wl

(o +BIV"ul?) (=8)"u — (@ + BIV"VIP) (=AY, ;)
= (a+BIV"ulP) (=AY"w, w) + [(a + BIV"ulP)" = (@ + BIV"P) ] (=A)"v, w)
= 2 (1R + BT aP)| = Sl + BTl

+ [(a + BIV"ulP)" = (a + BIV™P)] ((=A)"v, wi)
= %d% (197w (a + BV )] = gB(a + BIV"ulP)' ™ 19"l 197 119" w1

(e + 19" ulP) = (@ + BIV"IP) ] (=AY, w).

Exploiting (3.4)-(3.6), we receive

d 2 m, 12\ rom, 12 m 2
< [l + (a+ IVl 19" |+ 209wl
-1
= 2gB(c + BIV"ull’) ™ IV ull V"2, V"I
—2[(a+Iv"ulP) = (e +BIV"IP) | (—AY"v. W) — 2(8() — g(v)) = 0.
In (3.7), according to Lemma 2.4. and Lemma 2.5., such that
-1
2gB(cr + BV ull®) 1" ull 19" 19"
=2 (e +BIV"uP)" = (@ + BIV™WIP) | (=AY, wy)

m. 12 2 q-1 m m
< CellV"wil® + 4qBe(cr+ )" 1Al Iwill V"]
< CollV"wI* + C lIwel V" wi|

C7 2 m, 12
< (Co+ 52) (il + 19"wIP)
where min {||[V™ul|, |[V™"V|]} < € < max {||[V™ul|,||V™|},Cs > 0, and C7 > 0 are constants.
te[0,+00) t€[0,+00)

By (H4), Lemma 2.2., Lemma 2.4. and Lemma 2.5., we obtain

|=2(g(w) — g(v), wy)
< 21g@) = gW)IH Iwll

1
<2 Hf ig(su + (1 = syv)ds|| [|will
0 ds

<(C

1
f [1+1su+ (1= sy~ ds xw ‘ (w|
0

< [[1+ Gt o 1w
< Cy [T+ (Al 1A )] ihwll Il
< C (Ibwill* + 19" wi)
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where Cg > 0 is constant. From the above, we have

d [||w,||2 + (o + BP9l

(Ce + 2+ Gy (IwilP + 197 wiP)

Co+ S +Cs . i (3.10)
< (Co T+ Gl 4 =8 BT ) R
(e +BIV™ulP)
C;
Cy Co+ = +Cyg m [/ p——
< max {C6 + 5 +Cs. # (1wl + (@ + BIV"ull?) 19wl .
By using Gronwall’s inequality for (3.10), we obtain
wil? + (o + BIV"ull) 19wl
2 m 2\ om 2] Cot (311)
< 1w I + (@ + BIV"uol?) IV w(O)I*] €' = 0,
c Co+F+C
where C9 = max {C6 +3F+ Cg, ah] } > 0.
Hence , we can get [w/|[? + (e + B[[V"ulP)"||V"w|[* = 0. That shows that
m q m
il =0, (@ +BIV"ulP) V"W (3.12)
That is
w(x,t) = 0. (3.13)
Therefore,
u=nv. 3.14)

So, we get the uniqueness of the solution.
3.2 The Existence of Global Attractor

Theorem 3.2.LinG:G-2011) [ et E be a Banach space, and {S (¢)}(t > 0) are the semigroup operator on Ey. S(t) : Ey —
Ep,St+1)=S®OS@Nt, T >0),5(0) =1, where I is a unit operator.Set S (¢) satisfy the follow conditions:

1) S (¢) is uniformly bounded, namely YR > 0, ||lul|z < R, it exists a constant C(R), so that
I S@ulle< C(R) (1 € [0, +00)); (3.15)
2) It exists a bounded absorbing set By C E, namely, VB C E, it exists a constant 7y, so that
S(HBC By (t=1); (3.16)

where By and B are bounded sets.

3) When ¢ > 0, S (¢) is a completely continuous operator. Therefore, the semigroup operator S(t) exists a compact global
attractor A.

Theorem 3.3. Under the assume of Lemma 2.4., Lemma 2.5. and Theorem 3.1., equations have global attractor

A = w(By) = ﬂUS(t)BO, (3.17)

™0 127
where By = {(u,v) € H*"(Q) HG'(Q) X H' () = 1w, )llgen (y mpsry = Nuall gz gy + VIl < Ro + Ry}, By is the bounded
absorbing set of H>" x H{' and satisfies
DSOA=A1t>0;
2) limdist(S (£)B, A) = 0, here B ¢ H*" N H{' x Hj and it is a bounded set,
t—o0
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dist(S (1)B, A) = sup(inf IS () x — yllgom  prixpm) —> 0,1 — o0, (3.18)
xeB YA oo

Proof. Under the conditions of Theorem 3.1., it exists the solution semigroup S(t),S (¢) : H>" Hy xHy' — H 2m N Hj' X
H{', here Ey = H™Q)N H'(€) X Hi' ().

(1) From Lemma 2.4. to Lemma 2.5., we can get that VB ¢ H*"(Q) ) H{'(Q) X H(€) is a bounded set that includes in
the ball {”(M, V)”HZm ﬂH(’]"XHgl < R},
IS (D)o, vo)llz A HoxH = llull?,.., Amp t IIVIIIZL,Sf
< Mutollizn g+ IWollzgy + € (3.19)

<R} +C,(t 20, (ug, o) € B).

This shows that S (£)(¢ > 0) is uniformly bounded in H*"(Q) N H(Q) X H ().
(2) Furthermore, for any (uo, vo) € H*"(Q) N H'(Q) X Hij'(Q2), when t > max{ty, 11}, we have

2 2 2 2 2
”S (t)(uo’ VO)”HZm mH(')"XH[’;l = ”u”HZm ﬂH(']" + ”V”Hg' < RO + Rl' (320)

So we get By is the bounded absorbing set.

(3) Since E; := H*™(Q)N HF ()X H}(Q) — Eo := Hj'(Q) xL2(Q)is compact embedded, which means that the bounded
set in E; is the compact set in Ey, so the semigroup operator S(t) exists a compact global attractor A.

4. The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor
4.1 Differentiability of the Semigroup

In order to estimate dimensions, we suppose: (Hs) for every M > 0, there exist k = k(M), such that:
8" = & W iy 2y S KIV" 01 = V72l .1)

for any uy, uy € Hiy (), [[V"ui|l < M, ||V"up|| < M, 6, > 0.
We define A = —A, Ey = H' () X [*(Q). The inner product and the norm in Ej space are defined as follows:
Yo; = (u;,v;) € Eo, (i = 1,2), we have

(g2, = (AT, AT w0 ) + 0,2, “2)
2 mo? 2
il = (01,90, = [AZu| + w11 (43)
_S5_am / 5 m\2 m

Setting Yo = (u,v)" € Eo,v = u; + £u,0 < £ < min {1’ AIT’ o (ZMI Ral }, the equation (1.1) is equivalent to

o+ H(p) = F(p), 4.4)
where
EUu —v

Hig) = [ —ev+ A" + g2u + (1 — &)A™u] ] ’ “.5)

0
For= { [1 = (e + BIV"ul?)"] A7~ g(u) + f2) } ' 0
Lemma 4.1.1. For any ¢ = (u,v)" € Ey, we have

H@), 90, 2 5 ol + 5 45 .7
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Proof. By (4.2)-(4.6), we get

(H(®), ©),
= (aA%u - A%V,A%u) + (—sv + A" + &2u + (1 -8&)A"u, v) (4.8)

8'|A% qu - <9||v||2 + HA%VHZ + sz(u, V) — E(A% u,A%v).

By using holder inequality, Young’s inequality and Poincaré inequality, we deal with the terms in (4.8) by as follows:

& () 2 —%2||u||2 - 8—22||v||2 > _zijA%qu - %2||v||2, “9)
—e(A%u,A%v) > —;”A%u”z - ;HA%vHZ. (4.10)

_s_amy [(5..m)? m
By 0 < & < min {1, A‘T, e (22+/h ) +4d } and substituting (4.9)-(4.10) into (4.8), we obtain

(H@),9)g,

2 (5w I8l (5 - 3 I (-5 - o 3|

> St + (% e %)”V”z e 3l @.11)
(X N

-t .

The proof of Lemma 4.1.1 is completed.

The linearized equations of (1.1)-(1.3), the above equations as follows:

m

24
Uy + AU, + (a +ﬁ”A7u“ ) AU

m 2\47! m m 4.12)

+ 2qﬁ(a +BHA7uH ) (AE U,Aiu)Amu +¢ WU =0,
U(x,1) |xesn = 0,1 >0, (4.13)
U(x,0) = & U, (x,0) = ¢, (4.14)

where (&,() € Ey, (u, u;) = S(t) (ug, uy) is the solution of (1.1)-(1.3) with (ug, u;) € A.

Given (ug,u;) € Aand S(¢) : Ey — Ey , the solution S (¢) (g, u;) € Eo, by stand methods we can show that for any (£, ) €
Ey, the linear initial boundary value problem (4.12)-(4.14) possess a unique solution (U(?), U,(¢)) € L™ ((0, +o0); Ey).

Lemma 4.1.2. For any ¢+ > 0,R > 0, the mapping S(¢) : Ey — Ey is Fréchet differentiable on. Its differential at
¢ = (up, uy)" is the linear operator on F : (¢, OT —= (U@, V1)), where U(r) is the solution of (4.12)-(4.14).

Proof. Let ©wo = (Mo, M])T € E07¢0 = (I/lo + §,u1§)T € E() with ”‘POHEO < R, ”¢O”Eo < R, we denote (M, MZ)T =
S (O, (i, TALERY (H)@o. We can get the Lipchitz property of S (¢) on the bounded sets of Ej, that is

IS (o — S Dol < € I, DI, - (4.15)
Let 6 = it — u — U is the solution of problem

m 2\4
G, + A"O, + (a +ﬁ“A7uH ) A" = h, (4.16)
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6(0) = 6,(0) = 0,

with

h=

m 12\¢ m 2\?
(a+,8||A7uH) —(a +ﬁ||A7a|| }A’"ﬁ

m 2\9 m m
+ 2q,8(a/ +ﬁ”A7uH ) (AE U,A2 u)A’”u + o(u) — (@) + g (W)U.

Taking the scalar product of each side of (4.16) with 6,.Because of
m 2\4 m 2\4 m o2
(lo-=all 2l ) - (o lj 2l ) [ 20 a2

~(|(e e} - (aatal) |40

m 2\ m m
; (Zqﬁ(a A% ) (Ai(u . 9),A7u)A'"u, el)

-1, .

< Ci(Ry) HA% —A%H HA%,

+ Cra(Ro) HA%H HA%,

By (Hs), we have

(g(w) — g(@) + g'w)U, 6,)
= (g(u) — g(@) — g'(w)(u — it) - &' ()0, 6,)

1+

< CooaFu-afa] " o+ cowolate |a%a

By (4.19)-(4.20) and Young’s inequality, we have
& v+ (o= 2 e |

< cufm+ (s

By the Gronwall’s inequality and (4.15), we get

le? + %6l

< Ci6e”1" ft (“A%u _A%IZHZ + ”A%u —A%ﬁ 2+25,)dT
0

( Ate + ||§||2) - (Hﬁfﬂz - ||§||2)1+6l],

< Clgec“)t

where C16, C17, Clg, C19 > 0.
From (4.22), we obtain

30 — (1) = UMD,
2
& O,

o m 12 1+6;
<[ ) oo aa] o

as (¢, g)T — 01in Ey. The proof is competed.
4.2 The Upper Bounds of Hausdor{f Dimensions for the Global Attractor

Consider the first variation of (4.4) with initial condition:

¥/ + P@Y =T1(@)¥ + Do), ¥(0) = (£,0" € Eo,1 >0,
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m m 2 m
e Jafu-a3d + a%u-a

4.17)

(4.18)

(4.19)

(4.20)

421

4.22)

(4.23)

(4.24)
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where ¥ = (U, V)" € Ey,V = U, + €U and ¢ = (u,v)T € Eyis a solution of (4.3),

Ple) :[ 821+(TI— £)A™ —sl_f Am ] (425)
f0=| o o (426)
0
-1
r= { 1= (el ) |0 - 2asfa a2l | (a2 va%)ar “2D

It is easy to show from Lemma 4.1.2 that (4.24) is a well-posed problem in Ey, the mapping S o(7) : {ug, vi = u; +eup} —
{u(1), v(T) = u () + eu(r)}, ¥(t) = {u(r), vi(1) = u, () + eu(r)} is Fréchet differentiable on E( for any ¢ > 0, its differential
at ¢ = (ug, uy + &up)’ is the linear operator on Ey, (£,2)T — (U(), V(1))T, where (U(t), V(1))" is the solution of (4.24).

Lemma 4.2.1.7¢manR-1998) Eor any orthonormal family of elements of (Eo, ||||E0) JELE)T,j=1,2,--+ ,ny, we have
n m 2 n
> ”Ai%,»” <23 velo.n), (4.28)
Py Py

where {,u ]} is the eigenvalue of A™.

Proof. This is a direct consequence of Lemma VI 6.3 of [17].

1+(a+ﬁR02)"+2q/3R0 (a+BRe2)"!

Theorem 4.2.2. If we take proper a, 8 satisfies — § < 0and (H,) — (Hs) hold, then there exists
p(Rp) > 0, such that the Hausdorff dimension of global attractor Ain Ey satlsﬁes

dy(A) < min {nl

1 & e
meN,— ) u'< , (4.29)
! n ]Z:; J 8pn; }

where Ry is as in Lemma 2.4, and

6_{ ("2)(171)2 n p<n+§mn>2m

> n-2m —
n>2m.

On<2m or 0<p< (4.30)

n2’

Proof. Let n; € N be fixed. Consider m; solutions ¥;,¥,, - ,¥,, of (4.24). At a given time 7, let Q,, (1) denote
the orthogonal projection in Ey onto span {¥;(s), ¥2(s),--- , ¥, (s)}. Let y;(s) = (&}, g“j)T € Ey,j=1,2,--- ,n;, be an
orthonormal basis of

On, (S)Eo = span {¥(s), P2(s), -+ , ¥, (5)}, 4.31)

with respect to the inner product (, )g, and norm [||g, .

Suppose
@(1) = (), v(1))" € A, 4.32)
then [lo(T)llg, < Mo, Vs > 7. By “yj“EO = 1 and Lemma 4.1.1, we have
| NI
~(Pe@wioi),, <=5 - 5[47 ¢ (4.33)
(Mo i(9.3109),,, < 425 @] 4220 (4.34)

By the hypothesis (Hy4), the mean value theorem and the Sobolev embedding theorem:

H™(Q) € DA?") ¢ H™(Q) € LI(Q) < LAQ) c LT (Q) ¢ H™(Q), (4.35)
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1 1 _
7,[—]+?—l,v€[0,1].

So, by Lemma 2.4 and (4.34), for n = 1, Hj'(Q) C L*(Q) C LY(Q)c H™Q) (Hgl(Q)),. There exists C20(Rp) > 0, we
get

1472 (&' @ 50| < C20]lg @i sl < CaiRo) [l - (4.36)

For 1 <n < 2m, H}(Q) c LY Q) c HT™(Q) C (H(’)”(Q))/, q > 0, there exists C11(Ry) > 0, such that

7% & weion] < Collg e 5 < cuknllgsll. (4.37)
L
For n > 2m, by (Hy), there exists C»(Ry) > 0, such that
7% weion] < e el 2 < Cntro 4% (4.38)
Ln+2m
From (4.34)-(4.38), we have
(Piteens(s ), < 2 4% a0 (4.39)
where Co3 = C23(Ro) = 2 max {C21(Ro), C22(Ro)}-
By Lemma 2.4, we obtain
(Ta(e()y(s), y(9))
m 12\? m m m 2 g-1 m m m m
= [1 - (a +pfa% ) ] (Af.fj,AT{j) - 2q,8(a +p[A% 4 ) (AEg,-,Aiu) <A7 u,Aigj) (4.40)

< [1 + (@ +BRo?)" + 2gBRo*(e +ﬁR02)q_l] HA%&-H HA%Q“ :

2\4 2 241
By lemma VI 6.3 of [17], Young’s inequality and choose «, 3 satisfying L+(a+BRy’) +2qf Ro? (apRe’)

— £ <0, we obtain

ny

Pun(s) = 3 ((=P(s) + Ta((s) + T (50 y(5), ¥1(5)) .

=1

-1
L+ (o +BRo?) + 2gpR* (e + BReY) ¢ m
Plls5e
< 5 Z|m+5 HAz gJ“ (4.41)
n
€ 0 _
< —gi’ll + 5 : ,ujd l,
j=1
where p = C23%(Ry)
e 1S el
If Sorm > a ,§1 /lj , then
1 T+t 1 ny
Gn, = lim inf sup sup sup —f Py (8)ds < —pny £ _ - Z /lj‘s" < 0. 4.42)
150 eR dcEy pmeA | Jr dony  m =

So, by lemma 4 of (S. Zhou, 1999), we obtain (4.29). The proof of Theorem 4.2.2 is completed.
5. Exponential Attractor

Definition 5.1.(4mG-G-201D T et X be a complete metric space. A set Ay, C X is said to be an exponential attractor of the
dynamical system (S (¢), X) if

(i) it is a compact set in X;
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(i) it has finite fractal dimension in X, i.e. dimy {.‘ﬂ”p, X } < +o00;
(iii) it is a forward invariant set, i.e. S()Aexp C Aerp, 12 0;

(iv) it attractor exponentially the bounded sets in X, that is, for any bounded set B C X, there exists a positive constant k
such that

disty (S 0B, Aoy) < C (1Bl e, 120, G-
where ||B|[y = sup||<]lx-
(eB

Lemma 5.2.(Interpolation theorem(RobertA-Adams&Johnl.F-Fournier2003)y [ et 1 < p < g < r, so that

1 6 1-6
e, 1-0 (52)

q p r
for some 6 satisfying 0 < 8 < 1. If u € LP(Q) N L"(Q), then u € LI(Q) and

leelly < el fuell} = . (5.3)
Lemma 5.3.(%hijianYang&PengyanDing.,2016) 1 ot y : R* — R* be an absolutely continuous function satisfying
d
d—t)’(l) +2ey(t) < h(n)y() + 2(r), 1> 0, (5.4)

where € > 0,z € L (R"), J: h(t)dt < €(t — s) + mfort > s > 0 and some m > 0. Then

loc
y(t) < e™ (y(O)e_E’+ f |z(r)|e-f<’-f>dr), r>0. (5.5)
0

Lemma 5.4. Under assumptions of Lemma 2.4 and Lemma 2.5, there exist #;, R, > 0, such that
lluall” < R?, 2 1. (5.6)
Proof. Differentiate to (1.1) about 7, we get
g+ (—0) "y + (e + BIV"ulP) (-A)"u,

_1 ,
+2gB(a + BIV"ulP) (V" V"up) (—A)"u + g (e, = 0,

u(x, 0) = up(x), u(x,0) = uy(x), (5.7)
(x,0) = £(x) = (=A"ur (x) = (@ + BIV" o |I”)" (~A)"ug - gluo).
u(x,1) =0 ou =0,i=1,2,--- ,m—1,x€0Q,t € (0, +0c0).

T ovi

Now we use the multiplier u,, for (5.7). We readily obtain

d
7 el + (e + V"l ) 19" ] + 209"

(5.8)
-1
= 2gB(c + BIV"ull)" (V" V" u) [IV" P = 2 (~AY "0, )] = 2. (8 o)t )
By Lemma 2.4 and Lemma 2.5, we get
-1
2gB(a + BIV"ulF ) (7", V") IV"ul* < Cos(Ro. R, (12 0), (5.9)
-1
4gB(a + BIV"UP) ™ (V"1 V"up) I|(—A)"ull < Cos(Ro. R)). (¢ 2 0), (5.10)
2||g" wu|| < Cas(Ro. Ry, (1 2 0), (5.11)
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2 2
2V uy||” = 21" ||ual|”

From (5.8)-(5.12) and Young’s inequality, we have

d m m m
7 [l + (e + BTl ) 19" ] + 22"

2
< Cy7 + Coslluyl|

Cas® 2
< Cor + —— + é&llugll”,
de

where C24, C25, Cz(, > (0 and C27 = C24 + C26.

We choose € < 21;™ and Lemma 2.5, then

dt

C252 m m 2\ om., 12
S Cop o+ = + QA" = &)+ AV ull) V")
S CZS.

By Gronwall’s inequality for (5.14), we obtain

2 2\4 2
el ? + (@ + BIV" ) V"

2 q 2 _ m__
< [l G, O)IP + (e + BV gl ) 1V 20y | €= 1"~ +

Therefore, it exists t,, R, > 0, such that

2 2
lugll” < Ry", t2>1t.

Lemma 5.5. One of the following requirements fulfills:

Case(I): When n > 2m, with 1 < p < 221,

n=2m’

Case(Il): When 2m < n < 6m, g € C*(R) is critical, such that

6m—n
n=2m

2| < C(] + Jul )u €R.

Then, the following Lipschitz continuity holds:

!
Izl + 192 < € (il + 1IV"20l%) ™ + € f e M z(n)|Pdr,
0

4 [letal P + (@ + BIV"l?) 19" ] + 20" = &) [l P + (e + AUV ul?) 19"

Cag

z/llm _ 8‘

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

where k > 0,z = u — v. u,v are the solutions of problem (1.1)-(1.3) corresponding to initial data (ug, u;) and (v, v;) in

HIMQ) x LX(Q).

Proof. Obviously, we have

Zu + (=A)"z + M) (=A)"z + M) (V" (u + v), V"2) (=A)"(u + v) + f(u) — f(v) = 0,

2(0) = up — vo, 2/(0) = uy — vy,

where

M(t) =

N =

[(a + 8197 ul?)’ + (@ + BIV™IR)] = o,

_ 1! -
M@ = 5 fo gB[a +B(AIV"ull + (1 = DIV™P)]’ "> 0.
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By multiplying (5.19) by z; and Lemma 2.4, Lemma 2.5, we get
d m m m m
7 [P + MOV + M@ @+ ), V72 | + 209"

= |apla -+ BIVuR)™ (V7,970 + a(ar+ HIVPY T (9, 9| 197

+2M() (V" (u; + v,), V") (V™ (u + v), V"z) (5.22)

1 —
+ fo 4(q - DB (a + BAUN"ul? + A1 - DIV"F)
X (A(V"u, V") + (1 = ) (V"™, V") dAV" (u + v), V"2)* — 2 (g(u) — g(v), 21)
< Cog (IV" gl + IV 192l = 2 (8u) = g(), 2)

Case(I): When 1 < p < Zf%ﬁ, there exists ad : 1 >> § > 0 such that H(’)"‘5(Q) < LP*1(Q). By the interpolation and
Lemma 2.5, we get

—2(g(w) —gv), z)
<2C, f (1™ + W) 2] 2] dx
Q

-1 —1
< 2Cy (lllly + VI ) il

P
_ v _ Y 5.23
<2y (" 1l 4 I8 I el (5-23)
n+2m n+2m
< Caollzll g+ 19"z
< C1llzlP vz 2 IV 2
< &lIV"zIP + &2V + CallzlP,
where 0 = (F"nl(ﬁ—;‘:')zm)’ C30, C31,C32 >0and 2 > &3 > 0.
Inserting (5.23) into (5.22), we have
d 2 2 v 2 2
—|llzllF + MO|V"z||” + MV (u +v), V") | + (2 — &)||V"z
= il + M@V + M@ @+ ), V"2 + 2 = )92 (524
< &%Vl + Cao (IV"ufll + 19" w4l V"2l + C3allzl®.
We take the scalar product in L? of equation (5.19) with z. Then
d [(zf, 2+ LIV [+ MOIVTZIP + M+ 1), 7722
dt 2 (5.25)
= llzl* = (g(w) — g(v),2).
In (5.25), by Lemma 2.5 we have
— (g(w) = g(v),2) < Cy (Il 3 + VI Il
< C Il
o (5.26)
< Caallzllp-s
< &IVl + Csllzll,
with C33, C34, C35 > 0.
Inserting (5.25) into (5.26), we get
4 [(z,, D+ LIV 4 el + MOIV™ZIP + MO0 (4 1), V722
dt 2 (5.27)

2 2 2
< lzell” + &1zl + Csellll”,

with C3¢ = C35 + 1.
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Setting

P(1) = Izl + M@)IIV"2l* + M(5)(V"(u + v), V"2)* + &3 ((z,,z> + %IIV’”zllz),

O() =(2 = 2&3)|IV"z > + &3lzl® — 2&32(1V"z||
+ esMOIV"ZI? + es MOV (u + v), V7).

Obviously, there exist a, > a; > 0, k > 0 and &3 > 0 suitably small, such that

ar Izl + I1""2lF + M)V +v), V"2 | < P(@),
P(t) < ax [l + 1IV"2l + M@V +v), V"2)]

o) = kP(1).

By (5.24)+£3x(5.27) and (5.28)-(5.32), we get
d
~P(t) + kP
77O +kP(@)

d
< —P@)+ 0Ot

7 ®) + Q)
< Cao (V™ ulll + V"™V, D IV 2> + (C32 + £3C36) Izl
< Cx7 (IV"ul|| + IV v D IV"2ll” + Cx7llzll?,

where C37 = max{ng, C32 + 83C36}.

By Lemma 5.3, there exists C > 0, we get

3
Izl + 1972l < C (Il + 19"zl ™ + € f ()| dr.

0

Case(IT): When p = 2% e have

n-2m’

1d 1 _
(gw) —gv),z) = ¥ fg fo (g (Au + Au — v))Z2dAdx + H(r),

with

1

1
H@) = -3 L f(; & (A + Au = v)(Auy + (1 = Dvp)z2dAdx.

By the growth condition of g”’, we have

6m—n
1=2m

— 6m—n
Awn=<c f (1 15+ 157 ) (g + VDl dx.
Q

Therefore the Holder inequality and Hj'(Q) < L (Q) imply that

6m=n 6m—n

Y 7 n-2m n-2m
A < 1+l + 175 ) (el

n=2m

w o+ ||| 2

n=2m n=2m

2
)zl

n=2m

< Cos (V" + V"V ID V"2l + s3Izl + Coollzl*.
By Lemma 2.2, we get

— (8(w) = g(v),2) < &lIV"2* + Collall®.
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(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)
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So, from (5.22) and (5.27), we obtain

P(t) = llzlP + M@IV™2IP + M@)(V" (@ +v), V"2)?

t s 1 ) (5.40)

+ f f g (A + A(u - v)Z2dAdx + &3 ((z,,z> + 51Vl )

QJo
O(t) = 2IIV"zl* - 2&32l|zP* + e3llzll* + &3 M(2)||V"zII 541)
+ &3 M) (V" (u + v), V"2)* — &3%(IV"z|P, ’
d - _
2P0+ 00 < (Cro + 2C29) (19" will + V"D IV"2]* + (2Ca9 + £3C30) llzlI*. (5.42)
Obviously, there exist b, > by > 0, k > 0 and €3 > 0 suitably small, such that

by [l + V"2l + M)V +v), V"2)*| < P(), (5.43)
P(t) < by [zl + 1972 + M) +v), V"2)%] (5.44)
Q(t) > kP(1), (5.45)

where €3 > 0 is suitably small.
Therefore, Omit Case(I), we easily obtain (5.18).

Lemma 5.6.1%8) Let X be a Banach space and M be a bounded closed set in X. Assume that the mapping V : M — M
possesses the properties:

(1) V is Lipschitz on M, i.e. there exists an L > 0 such that
[[Vvi = Vw|| < Lilvi = wal|,Yvi,v2 € M, (5.46)
(ii) there exist compact seminorms 7 (x), n2(x) on X such that
[IVvi = Vwoll < pllvi = voll + K (n1(vi = v2) + ma(Vvy = V2)) (5.47)

for any vi, v, € M, where 0 < 7 < 1 and K > 0 are constants.

Then for any £ > 0 and ¢ € (0, 1 —n) there exists a forward invariant compact set A s C M of finite fractal dimension such
that

dist (VM. As) < g5k =1,2,- -, (5.48)
where g =n+6 < 1, and
1! 2K(1 + 12"
dimAy s < [m = n} |In mo(% +k|, (5.49)

where mg(R) is the maximal number of pairs (x;, y;) in X X X possessing the properties
il + 1yl < B2, ni(xi = xp) + ma(i = ) > Li # J. (5.50)
That is, the discrete dynamical system (Vk M ) possesses an exponential attractor Ay .

Theorem 5.7. Let assumption of Lemma 2.4, 2.5 and 5.5 be valid, with 1 < p < Zi—gﬁ Then the dynamical system
(S (1), Ep) has an exponential attractor Apy,,.

Proof. 1t is proved by omitting [28]. By Theorem 3.3, we known S (¢) has a bounded absorbing By in Ej. So By is closed
in Ep. From Lemma 2.4, 2.5 and Lemma 5.4, By is bounded in H{'(€2) X Hy'(Q2), and for any &, = (uo, u1) € Bo, &,(1) =
S(OE, = (u(®), us(t)) € By, and

19"l + V"l + ) < C. 1 0. (>-51)
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Define the operator
V=S8(T): By — Byo. (5.52)

Obviously, VBy € By and V is Lipschitz onBy. For any &,, &, € By, we infer from Lemma 5.5 that

T
V&, = VEIE, < Ce™ T 1€,(0) - £,0)Z, +C f e ur) - v(o)|Pdr
0

(5.53)
2e 2 _ 2
<y lléu = &llg, + Corgg;llu(ﬂ vl
that is
IVEu = V&g, < nrllén — &llg, + Cni(§u = &), (5.54)
where n?. = Ce™*" ny(&,) = [ax llu(7)||. Because of H'(Q) < L*(), such that n;(&,) is a compact semi-norm.
<7<
By Lemma 5.6, the discrete dynamical system (Vk , Bo) has an exponential attractor A, where V¥ = § (kT).
Let
Acp= U _SOA. (5.55)
0<t<T

By the standard method (Z. J. Yang, 2010), one easily knows that Ay, is an exponential attractor of dynamical system
(S (), Bp). So there exists a y > 0 such that

distg, {S (1)By, Aexp} < Ce™"",1 2 0. (5.56)

Similar to (Zhijian Yang & Pengyan Ding, 2016), we easily obtain conclusion of definition 5.1. So, we obtain Ay, is an
exponential attractor of (S (¢), Eo).

Acknowledgements

The authors express their sincere thanks to the aonymous reviewer for his/her careful reading of the paper, giving valuable
comments and suggestions. These contributions greatly improved the paper.

References

Ball, J. M. (1997). Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math.
Oxford Ser., 28(112), 473-486.

Chueshov, I., & Lasiecka, I. (2008). Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping.
Mem. Amer. Math. Soc, 195. https://doi.org/10.1090/memo/0912

Fatori, L. H., Jorge Silva, M. A., & Ma, T. F. (2015). Long-time behavior of a class of thermoelastic plates with nonlinear
strain. J. Differential Equations, 259, 4831-4862. https://doi.org/10.1016/.jde.2015.06.026

Ghisi, M., & Gobbino, M. (2009). Spectral gap global solutions for degenerate Kirchhoff equations. Nonlinear Analysis,
71,4115-4124. https://doi.org/10.1016/j.12.2009.02.090

Guoguang Lin, Yunlong Gao, & Yuting Sun. (2017). On Local Existence and Blow-Up of Solutions for Nonlinear Wave
Equations of Higher-Order Kirchhoff Type with Strong Dissipation. International Journal of Modern Nonlinear
Theory and Application, 6, 11-25. https://doi.org/10.4236/ijmnta.2017.61002

HARAUX, A, & ZUAZUA, E. (1988). Decay estimates for some semilinear damped hyperbolic problems. Arch. Rational
Mech. Anal., 100(2), 191-206. https://doi.org/10.1016/j.jde.2011.08.022

Igor Chueshov. (2012). Longtime dynamics of Kirchhoff wave models with strong nonlinear damping. J. Differential
Equations, 252, 1229-1262. https://doi.org/10.1016/].jde.2011.08.022

Ke, Li. (2017). A Gronwall-type lemma with parameter and its application to Kirchhoff type nonlinear wave equation.
Journal of Mathematical Analysis and Applications, 447, 683-704. https://doi.org/10.1016/j.jmaa.2016.10.017

Kirchhoff, G., & Vorlesungen iiber, Mechanik. (1883). Teubner, Leipzig.

KOPACKOVA, M. (1989). Remarks on bounded solutions of a semilinear dissipative hyperbolic equation. Conment.
Math. Univ. Carolin., 30(4), 713-719.

166



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 4; 2017

Kosuke, Ono. (1997). On Global Existence, Asymptotic Stability and Blowing Up of Solutions for Some Degenerate
Non-linear Wave Equations of Kirchhoff Type with a Strong Dissipation. Mathematical Methods in the Applied
Sciences, 20, 151-177.
https://doi.org/10.1002/(SICI)1099-1476(19970125)20:2;151:: AID-MMA851;3.0.CO;2-0

Li, Y. (2011). The Asymptotic Behavior of Solutions for a Nonlinear Higher Order Kirchhoff Type Equation. Journal of
Southwest China Normal University, 36, 24-27.

Lin, G. G. (2011). Nonlinear evolution equation. Yunnan University Press.
Nguyen, H. D. (2014). A Digital Binomial Theorem. Mathematics, 1-5.

Robert, A. A., & Fournier, J. J. F. (2003). Sobolev spaces. Department of Mathematics The University of British Columbia
Vancouver, Canada.

Teman, R. (1998). Infinite Dimensional Dynamics Systems in Mechanics and Physics. Springer, New York.

Wu, J. Z., & Lin, G. G. (2009). The global attractor of the Bossinesq equation with damping term and its dimension
estimation. Journal of Yunnan University, 31, 335-340.

Xiaoming, Fan, & Shengfan, Zhou. (2004). Kernel sections for non-autonomous strongly damped wave equations of
non-degenerate Kirchhoft-type. Applied Mathematics and Computation, 158, 253-266.
https://doi.org/10.1016/j.amc.2003.08.147

Xueli, Song, & Yanren, Hou. (2015). Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear
damping. Journal of Mathematical Analysis and Applications, 422, 337-351.
https://doi.org/10.1016/j.aml1.2014.02.014

Yang, Z. J. (2010). Finite-dimensional attractors for the Kirchhoff models. J. Math. Phys, 51.

Yang, Z.J., Ding, P. Y., & Liu, Z. M. (2014). Global attractor for the Kirchhoff type equations with strong nonlinear damp-
ing and supercritical nonlinearity. Applied Mathematics Letters, 33, 12-17. https://doi.org/10.1016/j.am1.2014.02.014

Yang, Z. J., Ding, P. Y., & Li, L. (2016). Longtime dynamics of the Kirchhoff equations with fractional damping and
supercritical nonlinearity. Journal of Mathematical Analysis Application, 442, 485-510.
https://doi.org/10.1016/j.jmaa.2016.04.079

Yaojun, Ye. (2013). Global existence and energy decay estimate of solutions for a higher-order Kirchhoff type equation
with damping and source term. Nonlinear Analysis, Real World Applications, 14, 2059-2067.
https://doi.org/10.1016/j.nonrwa.2013.03.001

Yunlong Gao, Yuting Sun, & Guoguang Lin. (2016). The Global Attractor and Their Hausdorff and Fractal Dimensions
Estimation for the Higher-Order Nonlinear Kirchhoff-Type Equation with Strong Linear Damping. International
Journal of Modern Nonlinear Theory and Application, 5, 185-202. https://doi.org/10.4236/ijmnta.2016.54018

Zhijian Yang, & Zhiming Liu. (2015). Exponential attractor for the Kirchhoff equations with strong nonlinear damping
and supercritical nonlinearity. Applied Mathematics Letters, 46, 350-359.
https://doi.org/10.1016/j.jmaa.2015.10.013

Zhang Yan, Pu Zhilin, & Chen Botao. (2008) Boundedness of the Solution to the Nonlinear Kirchhoft Equation. Journal
of Southwest China Normal University, 6, 5-8.

Zhijian Yang, & Pengyan Ding. (2016). Longtime dynamics of the Kirchhoff equation with strong damping and critical
nonlinearity on RY. Journal of Mathematical Analysis and Applications, 434, 1826-1851.
https://doi.org/10.1016/j.jmaa.2015.10.013

Zhou, S. (1999). Global attractor for strongly damped nonlinear wave equations, 6, 451-470.

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

167



