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Abstract

In this paper, we study a flexible Euler-Bernoulli beam clamped at one end and subjected to a force control in rotation and
velocity rotation. We develop a finite element method, stable and convergent which preserves the property of time decay
of energy in the continuous case. We prove firstly the existence and uniqueness of the weak solution. Then, we discretize
the system in two steps: in the first step, a semi-discrete scheme is obtained for discretization in space and, in the second
step, a fully-discrete scheme is obtained for discretization in time by the Crank-Nicolson scheme. At each step of the
discretization, the a-priori error estimates are obtained.
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1. Introduction

In this work, we study a dissipative numerical property by the finite element method for a flexible Euler-Bernoulli beams
with a force control in rotation and velocity rotation. The dynamic system that models the mechanical phenomenon that
changes over time is described as follows:

wtt (x, t) + wxxxx (x, t) = 0, 0 < x < 1, t > 0, (1)
w (0, t) = wx (0, t) = 0, t > 0, (2)

wxxx (1, t) = 0, t > 0, (3)
wxx (1, t) = −αwxt(1, t) − βwx(1, t), t > 0. (4)

w(x, t) stands for the transverse displacement of the beam at the position x and time t. The subscripts t and x denote
derivatives with respect to time t and position x respectively. Moreover, −wxxxx(x, t) dx is the total lateral force acting on
a slice of the beam of length dx, located at position x and time t and wxx(1, t) is the force in rotation acting on the rigid
body from the beam at the time t. The nonnegative constants α and β are the feedback gains that can be tuned in practice.
For simplicity sake, the flexural rigidity function, the mass density function of the beam and the length of the beam are
assumed to be unity. Moreover, the following notation v = wt (velocity of the beam) will be used in the sequel.

In (Touré, Koua & Diop, 2016), it has been proved that the system (1)-(4) is well posed in the sense of C0-semigroup of
contractions. In order to perform the stability analysis of this system, the authors formulate the problem as an evolution
problem first. Also, from Shkalikov’s method (Shkalikov, 1986), a spectral analysis of the operator and the property of
the Riesz basis were studied to derive the exponential stability of the system.

Furthermore, it should be noted that for all t, in our case, the total mechanical energy ε : R+ → R+ of the system (1)-(4)
is given by

ε(t) =
1
2

∫ 1

0
w2

xx dx +
1
2

∫ 1

0
v2 dx +

β

2
(wx(1, t))2 (5)

which decreases over time. Indeed, the time derivative of the energy functional ε(t) along the classical solutions of (1)-(4)
read as follows:

d
dt
ε(t) = −α [vx(1, t)]2 ≤ 0 (6)

because α ≥ 0. The right hand side of (6) serves as a motivation in the design of the control αwxt(1, t)+ βwx(1, t), ensures
the energy decay of the system in time. Moreover, according to Theorem 3.5 of (Touré, Koua & Diop, 2016) whose proof
is based on an idea of (Guo, 2002), the system (1)-(4) is exponentially stable for any β > 0 and α ≥ 0.
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Figure 1. Energy decay

Our main contribution is to develop a convergent numerical method which faithfully reproduces some properties of this
problem such as stability and energy decay.

The rest of the paper is organized as follows. In section 2, from the weak formulation, we show the existence, uniqueness
and higher regularity of the weak solution. In section 3 and in section 4, we develop by finite element method, a numerical
method for the system (1)-(4) which conserves the dissipativity property.

2. Existence, Uniqueness and Higher Regularity of the Weak Solution

2.1 Formulation as a Dissipative Evolution Equation

Let us introduce the following spaces:

Hm (0, 1) =
{

w : [0, 1]→ R
∣∣∣∣w,w(1) =

∂w
∂t
, ...,w(m) =

∂mw
∂tm ∈ L2(0, 1)

}
where

L2 (0, 1) =
{

w : [0, 1]→ R
∣∣∣ ∫ 1

0
|w|2 dx < ∞

}
.

Then, we also introduce the following functional space:

V = {w ∈ H2(0, 1) | w(0) = wx(0) = 0} (7)

and for energy space, the following hilbert space :

χ = {y = (w, v)T : w ∈ V, v ∈ L2(0, 1)} = V × L2(0, 1), (8)

where the superscript T stands for the transpose. In the space χ, we define the inner-product:

< y, ŷ >=
1
2

∫ 1

0
[wxxŵxx + v̂v] dx +

β

2
wx(1)ŵx(1) (9)

where y = (w, v)T ∈ χ and ŷ = (ŵ, v̂)T ∈ χ. We denote by ∥.∥χ the associated norm. Next, we define an unbounded linear
operator A : D (A) ⊂ χ→χ as follows:

A (w, v) = (v,−wxxxx) (10)

where D (A) , the domain of operator A is as follows

D (A) =
{
(w, v) ∈ χ : w ∈ (H4(0, 1) ∩ V), v ∈ V,wxxx(1) = 0,wxx(1) = −αvx(1) − βwx(1)

}
. (11)
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Now we can write our problem as a first order evolution problem
d
dt

y (t) = Ay (t)

y (0) = y0 ∈ χ,
(12)

where y (t) = (w (., t) , v (., t))T , y (0) = (w0, v0)T for all t > 0.
We recall here the following fundamental well-posedness result obtained in Theorem 2.1 pp. 36 of (Touré, Koua & Diop,
2016).

Theorem 1 The operator A, defined by (10) and (11), generates a C0-semigroup of contractions on χ denoted by {S (t)}t≥0 .

Next results follow directly from Theorem 1:

Theorem 2 (12) has a unique mild solution y(t) = S (t)y0 ∈ C([0,∞) ; χ) for all y0 ∈ χ.

Notice that the contractivity of the semigroup also implies that ∥.∥χ is a good candidate for the Lyapunov functional for
(12). Let the functional ℓ : χ→ R defined as follows

ℓ(y) = ∥y∥2χ =
1
2

∫ 1

0
w2

xx dx +
1
2

∫ 1

0
v2 dx +

β

2
(wx(1, t))2. (13)

Analogously as in (6), for all classical solutions y it follows that:

d
dt
ℓ(y) =

d
dt
∥y∥2χ = −αw2

tx(1) ≤ 0, (14)

hence time evolution of the Lyapunov functional along the classical solutions is non-increasing. Furthermore, from
Theorem 1, the decay of energy along the classical solutions can be extended to mild solutions :

Theorem 3 Assume that y(t) is the mild solution of (12) for all y0 ∈ χ. Then y(t)→ 0 in χ when t → ∞.

Remark 1 The right hand side of (14) is formed by a control variable. Thus,
d
dt
∥y∥2χ = 0 does not imply y = 0 through

(12).

Now write the system of equations (1)-(4) in the weak form.

2.2 Weak Formulation

Let ϕ ∈ V . Multiplying (1) by ϕ, integrating over [0, 1] and taking into account the given boundary conditions (2)-(4), we
have ∫ 1

0
wttϕ dx +

∫ 1

0
wxxϕxx dx +

[
βwx(1, t) + αwtx(1, t)

]
ϕx(1) = 0 (15)

∀ϕ ∈ V, t > 0.

It seeks to define a weak solution of (1)-(4). But first, make an appropriate choice of spaces. We follow an idea used in
(Banks & Rosen, 1987). Let the Hilbert space Y = R2 × L2(0, 1) with the following inner product:

< η, ξ >=< η(1), ξ(1) >L2 +η(2)ξ(2) + η(3)ξ(3), (16)

for all η = (η(1), η(2), η(3)), ξ = (ξ(1), ξ(2), ξ(3)) ∈ Y . We also define the following Hilbert space X = R2 × V = {y =
(w(1),wx(1),w); w ∈ V} with the inner product

< y1, y2 >X=< (w1)xx, (w2)xx >L2 . (17)

It can easily be shown that X is densely embedded in Y and suppose that the canonical injection of X into Y is continuous.
Therefore, taking Y as a pivot space we obtain a Gelfand triple :

X ⊂ Y ⊂ X′

where X′ is the dual of X. Consider the following bilinear forms:
a1 : X × X → R (y1, y2) 7→ a1(y1, y2) =< y1, y2 >X +β(w1)x(1)(w2)x(1)
a2 : Y × Y → R (η, ξ) 7→ αη(2)ξ(2).
In the following definition, the bilinear form < ., . >X,X′ is the duality pairing between X and X′, which is a natural
extension of the inner product in Y .
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Definition 4 Let T > 0 be fixed. We say that ŵ = (w(1),wx(1),w) is a weak solution of problem (1)-(4) on [0, 1] if
ŵ ∈ L2(0, T ; X) ∩ H1(0,T ; Y) ∩ H2(0,T ; X′) and satisfies

< ŵtt, ϕ̂ >X,X′ +a1(ŵ, ϕ̂) + a2(ŵt, ϕ̂) = 0 (18)

for almost everywhere on t ∈ (0,T ) and for all ϕ̂ ∈ X, with the following initial conditions

ŵ(0) = ŵ0 = (w0(1), (w0)x(1),w0) ∈ X (19)

ŵt(0) = v̂0 = (v0(1), (v0)x(1), v0) ∈ Y. (20)

Remark 2 The formulation (18) is equivalent to equality (15) if w ∈ H2(0,T, X). Furthermore, in the expression (19), the
first two components of the right hand side are the boundary traces of w0 ∈ V. But for (v0)(1) and (v0)x(1) in (20), they are
given in addition to the function v0 and not as its trace. Here, the term utx(1) also need to be considered. Then, the bilinear
form a2(., .) with the first order boundary term in t requires a slight generalization of the standard theory (as presented for
example in chapter 3 section 8 of (Lions & Magenes, 1968) or again in section 7.2 of (Evans, 1998)).

Recall the following Lemmas provided in Theorems 3.1 pp. 23 and 6.2 pp. 34 of (Lions & Magenes, 1968) where the
definition of the intermediate spaces is given and which will be useful in proving theorem of existence of weak solution.

Notice that, in the following, [X,Y]θ, with 0 ≤ θ ≤ 1 is the intermediate space defined as in chapter 1 pp. 11−13 of (Lions
& Magenes, 1968), for X and Y Hilbert spaces, X ⊂ Y , X dense in Y with continuous injection by means of domains of
positive self-adjoint operators. Remark also that for θ = 0, [X,Y]0 = X and for θ = 1, [X,Y]1 = Y .

Lemma 5 Let X and Y be two Hilbert spaces, such that X is dense and continuously embedded in Y. Assume that
w ∈ L2(0, T ; X) and v ∈ L2(0,T ; Y). Then w ∈ C([0,T ] ; [X,Y] 1

2
), after, possibly, a modification on a set of measure zero.

Since X ⊂ [X,Y]θ ⊂ Y , each space being dense in the following, we have by duality (without any identification between
space and its dual) for θ ∈ ]0, 1[ :

Y ′ ⊂ [X, Y]′θ ⊂ X′,

each space being dense in the following. We have the following duality theorem:

Lemma 6 Let X and Y be two Hilbert spaces, such that X is dense and continuously embedded in Y. For all θ ∈ ]0, 1[,
[X,Y]′θ = [Y ′, X′]1−θ holds.

We will also use the following result:

Theorem 7 Let V be a subspace of H2(0, 1). Then there exists a infinite sequence of functions {ϕi}∞i=1 such that

{ϕi}∞i=1 is an orthogonal basis o f V

and
{ϕi}∞i=1 is an orthonormal basis o f L2(0, 1).

Proof. Let the operator B : V → L2(0, 1) defined as

∀w ∈ V, Bw = wxxxx. (21)

Consider the following boundary value problem :{
Bw(x) = f (x), x ∈ (0, 1)
w(0) = wx(0) = wxx(1) = wxxx(1) = 0. (22)

Assume that f ∈ L2(0, 1). Let ϕ ∈ V . Multiplying by ϕ, integrating twice by parts and taking into account the given
boundary conditions yields: ∫ 1

0
wxxϕxx dx =

∫ 1

0
fϕ dx, ∀ϕ ∈ V. (23)

The fact that f ∈ L2(0, 1) ensures the continuity of the linear form. Set

a3(w, ϕ) =
∫ 1

0
wxxϕxx dx.
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Then a3 is symmetric bilinear form, bounded and coercive on V . The Lax-Milgram theorem allows us to conclude the
existence and uniqueness of the solution w of (21). Then, there exists a unique weak solution w in V such that w = B−1( f )
with B−1 : L2(0, 1)→ L2(0, 1). We remark that B−1 is obviously linear and bounded. Furthermore, there exists a constant
C > 0 such that

∥w∥H2(0,1) ≤ C∥ f ∥L2(0,1)

and since V is compactly embedded in L2(0, 1) then B−1 is compact. It remains to show that it’s symmetric. Let f , g ∈
L2(0, 1) and denote w = B−1( f ) and v = B−1(g). By straightforward calculation and integration by parts, we finally obtain

< B−1 f , g >L2(0,1)=

∫ 1

0
vxxwxx dx = a3(v,w).

Analogously, we get

< f , B−1g >L2(0,1)=

∫ 1

0
wxxvxx dx = a3(w, v).

Thus, a3 is symmetric and we have
< B−1 f , g >L2(0,1)=< f , B−1g >L2(0,1) .

Hence B−1 is symmetric. In view of compactness and symmetry properties of the bounded linear operator B−1, there
exists a countable orthonormal basis {ϕi}∞i=1 of L2(0, 1) constitued of eigenvectors B−1. Furthermore, these eigenvectors
are functions of V according to definition of B−1. Moreover, from the weak formulation, one can see that the basis {ϕi}∞i=1 is
an orthogonal basis of V with respect to the inner product a3(., .). 2

2.3 Existence of the Weak Solution

Theorem 8 There exists a weak solution ŵ of the equivalent weak formulation (18) such that :

ŵ ∈ L∞(0,T ; X), ŵt ∈ L∞(0,T ; Y), (24)

ŵ ∈ C([0,T ] ; [X,Y] 1
2
), (25)

ŵt ∈ C([0,T ] ; [X,Y]′1
2
). (26)

Proof. This proof is based on the Faedo-Galerkin’s method and is an adaption of the proof of Theorem 8.1 pp. 287-290
in (Lions & Magenes, 1968). According to Theorem 7, there exists by extension an infinite sequence of functions

{
ϕ̂i

}∞
i=1

that is an orthogonal basis for X and an orthonormal basis for Y . Consider such a sequence. Introduce the following finite
dimensional spaces spanned by

{
ϕ̂i

}m

i=1
defined as:

∀m ∈ N, V̂m := span{ϕ̂1, ..., ϕ̂m} =
{ m∑

j=1

α jϕ̂ j, α1, α2, ..., αm ∈ R
}
. (27)

Step 1 (Construction of approximate solutions): We seek ŵ = ŵm(t) ∈ V̂m the approximate solution of the problem.
Then ŵ is in the form:

ŵm =

m∑
i=1

gim(t)ϕ̂i,

where gim(t) ∈ R (0 ≤ t ≤ T, i = 1, ...,m) are solutions of the formulation (18) on V̂m. For a fixed m ∈ N, we have:

< (ŵm)tt, ϕ̂ >Y +a1(ŵm, ϕ̂) + a2((ŵm)t, ϕ̂) = 0 ∀ϕ̂ ∈ V̂m. (28)

The approximate differentials equations system (28) is completed with the initial conditions:

ŵm(0) = ŵm0, ŵm0 =

m∑
i=1

αimϕ̂i → ŵ0 in X when m→ ∞ (29)

v̂m(0) = v̂m0, v̂m0 =

m∑
i=1

βimϕ̂i → v̂0 in Y when m→ ∞, (30)

with αim = gim(0) and βim = (gim)t(0). According to standard existence theory for ordinary differential equations, we are
insured of the existence of solution ŵm ∈ C2([0,T ] ; X) of (28)-(30) for 0 ≤ t ≤ T.
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Step 2 (A-priori estimates on approximate solutions): Let E : R × X → R be the analogue of the Lyapunov functional
as defined by (13):

E(t, ŵ) =
1
2

[∫ 1

0
ŵ2

t dx +
∫ 1

0
ŵ2

xx dx + βŵ2
(2)(t)

]
(31)

E(t, ŵ) =
1
2
∥ŵt(t)∥2Y +

1
2
∥ŵ(t)∥2X +

β

2
(ŵ(2)(t))2. (32)

E(t, ŵ) = ∥(w, v)∥X . (33)

Assuming that there exists a solution ŵm ∈ C2([0, τ] ; V̂m) to (28) on some interval [0, τ] and taking ϕ̂ = (ŵm)t in (28), a
straightforward calculation yields

d
dt

E(t, ŵm) = −α
[{

(ŵm)(2)
}
t (t)

]2 ≤ 0,

for all t ∈ [0, τ]. Dissipation of the functional E corresponds to the decay in (14) for the classical solution. This implies
uniform boundedness of the solution on [0, τ]:

E(t, ŵm) ≤ E(0, ŵm0), t ≥ 0

which implies that
{ŵm}m∈N is bounded in C([0,T ] ; X), (34)

{(ŵm)t}m∈N is bounded in C([0, T ] ; Y). (35)

It remains to find set in which (ŵm)tt is bounded. Considering the results (34)-(35), it is shown that for all ϕ̂ ∈ X :

|a1(ŵm(t), ϕ̂) + a2((ŵm)t(t), ϕ̂)| ≤ M∥ϕ̂∥X ,∀t ∈ [0,T ] (36)

where M is a positive constant which does not depend on m. Now, let m ∈ N be fixed. Furthermore, let ϕ̂ ∈ X and
ϕ̂ = φ̂1 + φ̂2 such that φ̂1 ∈ V̂m and φ̂2 orthogonal to V̂m in Y . Then, we get < (ŵm)tt, ϕ̂ >Y=< (ŵm)tt, φ̂1 >Y . From (28) and
(36), we have:

< (ŵm)tt, ϕ̂ >Y= −a1(ŵm(t), φ̂1) − a2((ŵm)t(t), φ̂1) ≤ M∥φ̂1∥X ≤ M∥ϕ̂∥X (37)

This implies that
(ŵm)tt is bounded in C([0,T ] ; X′). (38)

Step 3 (Passage to the limit): According to the Eberlein-Šmulian Theorem (see Brezis, 2011, e.g.), we can extract weakly
convergent subsequences {ŵml }l∈N, {(ŵml )t}l∈N and {(ŵml )tt}l∈N with ŵ ∈ L2(0, T ; X) , ŵt ∈ L2(0,T ; Y) and ŵtt ∈ L2(0,T ; X′)
such that:

{ŵml }⇀ ŵ in L2(0,T ; X), (39)

{(ŵml )t}⇀ ŵt in L2(0,T ; Y), (40)

{(ŵml )tt}⇀ ŵtt in L2(0,T ; X′). (41)

Furthermore, (40) yields
{(ŵ(2)ml )t}⇀ ŵ(2)t in L2(0,T ;R). (42)

Let m0 ∈ N. For all functions φ̂ ∈ L2(0,T ; V̂m0 ) of the form

φ̂(t, x) =
m0∑
j=1

µ j(t)ϕ j(x) (43)

where µ j ∈ L2(0,T ;R) and for all ml ≥ m0, the formulation (28) becomes:∫ T

0
< (ŵml )tt, φ̂ >Y +a1(ŵml , φ̂) + a2((ŵml )t, φ̂) dt = 0. (44)

Therefore, passing on to the limit in (44) for m = ml, when l → ∞ and using the convergence results (39)-(41), one
obtains: ∫ T

0
< ŵtt, φ̂ >X,X′ +a1(ŵ, φ̂) + a2(ŵt, φ̂) dt = 0. (45)
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Then, one obtains < ŵtt, φ̂ >X,X′ +a1(ŵ, φ̂)+a2(ŵt, φ̂) = 0 a.e on [0,T ] for all φ̂ ∈ L2(0, T ; X). Since the functions φ̂ of the
form (43) are dense in L2(0, T ; X), ŵ is therefore the solution of the weak formulation. For the additional regularity, from
the construction of the weak solution and due to (34)-(35), ŵ satisfies (24). Furthermore ŵ satisfies (25) using the Lemma
5, after, possibly a modification on a set of measure zero, and the regularity (26) follows from Lemma 5 and Lemma
6. 2

2.4 Uniqueness of the Weak Solution

Theorem 9 The solution ŵ of the weak formulation (18) with the initial conditions (19)-(20) is unique.

Proof. This proof of uniqueness is an adaption of the proof of Theorem 8.1 pp. 290-291 in (Lions & Magenes, 1968).
Before showing uniqueness, we prove that the solution ŵ satisfies the initial conditions (19)-(20). Let ϕ̂ ∈ C2([0,T ]; X)
such that ϕ̂(T ) = 0 and ϕ̂t(T ) = 0. Integrating the equation (18) over [0,T ], we get:∫ T

0
[< ŵtt, ϕ̂ >X,X′ +a1(ŵ, ϕ̂) + a2(ŵt, ϕ̂)]dτ = 0. (46)

By integrating twice by parts over [0, T ] under the duality pairing, we have:∫ T

0
[< ŵ, ϕ̂tt >Y +a1(ŵ, ϕ̂) + a2(ŵt, ϕ̂)]dτ =< ŵt(0), ϕ̂(0) >X,X′ − < ŵ(0), ϕ̂t(0) >Y . (47)

Let m be fixed. We obtain analogously by integrating twice by parts expression(28) :∫ T

0
[< ŵm, ϕ̂tt >Y +a1(ŵm, ϕ̂) + a2((ŵm)t, ϕ̂)]dτ =< v̂m0, ϕ̂(0) >Y − < ŵm0, ϕ̂(0) >Y . (48)

Passing to the limit in (48) along the convergent subsequence, using (29)-(30) and (39)-(41), we obtain:∫ T

0
[< ŵ, ϕ̂tt >Y +a1(ŵ, ϕ̂) + a2((ŵ)t, ϕ̂)]dτ =< v̂0, ϕ̂(0) >Y − < ŵ0, ϕ̂t(0) >Y . (49)

Comparing expressions (47) with (49), we can deduce that ŵ0 = ŵ(0) and ŵt(0) = v̂(0). Thus the initial conditions (19)-
(20) are satisfied.
Now it suffices to show that the only weak solution of (18) is ŵ ≡ 0. To verify this, fix 0 ≤ s ≤ T and introduce an
auxiliary function: ψ̂ : ]0, T [→ R,

ψ̂(t) =


∫ s

t
ŵ(τ)dτ 0 < t < s

0 t ≥ s.

Integrating (18) over [0,T [ and then using one integration by parts with ψ̂(t) = ϕ̂(t) in (18), we obtain:∫ s

0
[< ŵt(τ), ŵ(τ) >Y −a1(ψ̂t(τ), ψ̂(τ)) + a2(ŵ(τ), ŵ(τ))]dτ = 0. (50)

∫ s

0

d
dt

[1
2
∥ŵ(τ)∥2Y −

1
2

a1(ψ̂(τ), ψ̂(τ))
]
dτ = −

∫ s

0
a2(ŵ(τ), ŵ(τ))dτ. (51)

This is equivalent to
[1
2
∥ŵ(τ)∥2X−

1
2

a1(ψ̂(τ), ψ̂(τ))
]s

0
= −

∫ s

0
a2(ŵ(τ), ŵ(τ))dτ. Thus we get

1
2
∥ŵ(s)∥2X+

1
2

a1(ψ̂(0), ψ̂(0)) ≤ 0.

Since the bilinear form a1(., .) is coercive, ŵ(s) ≡ 0 and ψ̂(0) = 0. Also, since s ∈ ]0; T [ was arbitrary then ŵ ≡
0. 2

2.5 Higher Regularity Results

Before stating the theorem of the stronger continuity of the weak solution, recall the lemma 8.1 of chapter 3 pp. 297 of
(Lions & Magenes, 1968) which will be used in the proof of this theorem.

Lemma 10 Let X and Y two Banach spaces, X ⊂ Y with continuous injection, the space X being reflexive. We set:

Cw([0,T ] ; Y) = {w ∈ L∞(0,T ; Y) : t 7→< f ,w(t) > is continuous on [0,T ] ,∀ f ∈ Y ′}

which denotes the space of weakly continuous functions with values in Y. Thus we get

L∞(0,T ; X)
∩

Cw([0,T ] ; Y) = Cw([0,T ] ; X).
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Proof. For the proof, the reader is referred to chapter 3 pp. 297−298 in (Lions & Magenes, 1968). 2

Theorem 11 The weak solution ŵ of (18)-(20) satisfies

ŵ ∈ C([0,T ] ; X), (52)

ŵt ∈ C([0,T ] ; Y), (53)

after possibly a modification on a set of measure zero.

Proof. This proof is an adaption of standard strategies in section 8.4 of (Lions & Magenes, 1968) pp. 297-301 and in
section 2.4 of (Temam, 1988). Using Lemma 10, it results from (26)-(27) that ŵ ∈ Cw([0, T ] ; X). Furthermore, (24) and
(26) imply ŵt ∈ Cw([0,T ] ; Y).

Now, we use a common technique in functional analysis, specifically in distribution theory, to move from a problem of
generalized functions to a restriction of regular functions easier to handle. Let a scalar cutoff function ξ ∈ C∞(R) be fixed
such that ξ(x) = 1 if x ∈ J ⊂⊂ [0, T ] and ξ(x) = 0 else. The function ξŵ is then compactly supported. Let ηε be a standard
mollifier in time. For example, the function ηε may be given by ηε(t) = ε−1η

(
t
ε

)
where

η(t) =
{

C exp[−1/(1 − |t|2)], |t| < 1
0, |t| ≥ 1

belongs to C∞c (R) for any C. We choose C such that
∫
R ηdx = 1. Introduce the notation ŵε = ηε ∗ ξŵ ∈ C∞c (R, X). In

addition, ŵε converges to ŵ in X and (ŵε)t converges to ŵt a.e in H for all element on J. Hence, Ê(t, ŵε) converges to
Ê(t, û) a.e on J. Since ŵε is smooth, a straightforward calculation on J gives:

d
dt

E(t, ŵε) = −α
[(

(ŵε)t
)
(2) (t)

]2
.

Passing to the limit, one obtains when ε→ 0 :

d
dt

E(t, ŵ) = −α
[(

ŵt
)
(2) (t)

]2
(54)

in the sense of distributions on J. Since J was arbitrary, (54) holds on all compact subintervals of [0, T ]. Then, let
t ∈ [0,∞[ be fixed, and let limn−→∞ tn = t. Let the sequence νn be defined by

νn =
1
2
∥ŵ(t) − ŵ(tn)∥2X +

1
2
∥ŵt(t) − ŵt(tn)∥2Y +

β

2
(
ŵ(2)(t) − ŵ(2)(tn)

)2 . (55)

Thus, we have:
νn = Ê(t, ŵ) + Ê(tn, ŵ)− < ŵ(t), ŵ(tn) >X − < ŵt(t), ŵt(tn) >Y −βŵ(2)(t)ŵ(2)(tn). (56)

Since ŵ, ŵt are weakly continuous and Ê is continuous in t, we have, passing to the limit in (56) :

νn −→ 0, when n −→ ∞.

Therefore, this implies that
∥ŵ(t) − ŵ(tn)∥2X −→ 0 when n −→ ∞ (57)

and
∥ŵt(t) − ŵt(tn)∥2Y −→ 0 when n −→ ∞. (58)

Thus we get ŵ ∈ C([0,T ] ; X) and ŵt ∈ C([0,T ] ; Y). 2

In the next sections, the goal is to develop a numerical method for (1)-(4) in such a way that the decay of the Lyapunov
function is preserved. The first step of this method is the discretization of the system in space to obtain the semi-discrete
scheme, and then in time, in order to get the fully-discrete scheme.

3. Semi-discrete Scheme

3.1 Piecewise Cubic Hermite Polynomials

Our numerical work consist to construct an appropriate piecewise space of C1-functions on Z = [0, 1]. Assume that Z is
subdivided into P intervals of the form Zi = [xi, xi+1] , i = 0, ..., P − 1 ie Z = ∪P

i=0Zi. In particular, if the subdivision is
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uniform, let us denote the step length by h = 1/P and Zi = [ih, (i + 1)h].
Let us find cubic polynomial functions N i

j, i = 0, 1, ..., P − 1 and j = 1, 2, 3, 4 that satisfy the following conditions :
N i

1(xi) = 1, N i
1x(xi) = N i

1(xi+1) = N i
1x(xi+1) = 0,

N i
2x(xi) = 1, N i

2(xi) = N i
2(xi+1) = N i

2x(xi+1) = 0,
N i

3(xi+1) = 1, N i
3(xi) = N i

3x(xi) = N i
3x(xi+1) = 0,

N i
4x(xi+1) = 1, N i

4(xi) = N i
4x(xi) = N i

4(xi+1) = 0, ∀x ∈ Zi.

(59)

Let us use the following affine transformation:

θi =
x − xi

xi+1 − xi
, ∀x ∈ [xi, xi+1] ,

allowing us to manipulate all operations on [0, 1]. The intermediate variables θi are called local coordinates. Then under
these coordinates, the unknown functions Ñ j(θ) must satisfy the following boundary conditions:

Ñ1(0) = 1, Ñ1θ(0) = Ñ1(1) = Ñ1θ(1) = 0
Ñ2θ(0) = 1, Ñ2(0) = Ñ2(1) = Ñ2θ(1) = 0
Ñ3(1) = 1, Ñ3(0) = Ñ3θ(0) = Ñ3θ(1) = 0
Ñ4θ(1) = 1, Ñ4(0) = Ñ4θ(0) = Ñ4(1) = 0.

(60)

Let us find explicit expressions of the functions Ñ j(θ). For all θ ∈ [0, 1] , for all j = 1, 2, 3, 4, the functions Ñ j(θ) are
polynomials of degree 3, therefore of the form Ñ j(θ) = aθ3 + bθ2 + cθ + d. We remark that 1 is a double root of N1. Then
Ñ1(θ) = (θ − 1)2(aθ + b). Using the two remaining conditions, we find a = 2 and b = 1. Hence we get

Ñ1(θ) = (θ − 1)2(2θ + 1).

Analogously, we find

Ñ2(θ) = θ(θ − 1)2, Ñ3(θ) = θ2(3 − 2θ), Ñ4(θ) = θ2(θ − 1), ∀θ ∈ [0, 1] .

Figure 2. Hermitian Polynomial functions

By extension by 0 on Z − Zi, for all i = 0, ..., P − 1, we define the Hermitian functions on Z :

N i
j(x) = N j(θi)

∣∣∣∣∣
θi=

x − xi

h

, j = 1, 3

N i
j(x) = hN j(θi)

∣∣∣∣∣
θi=

x − xi

h

, j = 2, 4

N i
j = 0

∣∣∣∣∣
Z−Zi

, i = 0, ..., P − 1, j = 1, 2, 3, 4.

(61)
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By concatenating the Hermitian functions obtained above, we can obtain the basic functions on the different supports as
follows:

with the support Z0, ϕ0
1(x) = N0

1 (x), ϕ0
2(x) = N0

2 (x);

with the support Zi−1, ϕi
1(x) = N i−1

3 (x), ϕi
2(x) = N i−1

4 (x);

with the support Zi, ϕi
1(x) = N i

1(x), ϕi
2(x) = N i

2(x)

and with the support ZP, ϕP
1 (x) = NP−1

3 (x), ϕP
2 (x) = NP−1

4 (x).

The set B = {ϕk
l , k = 0, ..., P, l = 1, 2} forms a basis that generates a subspace of V of dimension 2P + 2 denoted by Ṽh.

With the separation of variables, the approximate solution wh ∈ Ṽh which we seek can be written as follows:

wh(x, t) =
N∑

j=0

[w j
h(t)ϕ j

1(x) + w̃ j
h(t)ϕ j

2(x)].

Thus, since w0
h = w̃0

h = 0, the N-dimensional space is as follows:

Vh = S pan{ϕ1
1, ϕ

1
2, ..., ϕ

P
1 , ϕ

P
2 }.

3.2 Semi-discrete Scheme: Space Discretization

Since rounding errors are cumulative because of the high partial derivative terms (the spatial derivatives being of order
4) in the equation of the beam (1), we propose a finite element scheme semi-discretized in space. In fact, a variational
approach allows us to reduce the degree of the derivatives by the integration by parts.
Let ϕ j, j = 1, ...,N be fixed basis for Vh. The semi-discrete solution wh ∈ C2([0,∞[ ,Vh) is defined as the solution of the
finite element method:∫ 1

0
(wh)ttϕ j dx +

∫ 1

0
(wh)xx(ϕ j)xx dx + β(wh)x(1)(ϕ j)x(1) + α(wh)tx(1)(ϕ j)x(1) = 0 (62)

for all j = 1, ...,N and t > 0, which solves the initial conditions

wh(., 0) = wh,0 ∈ Vh (63)

(wh)t(., 0) = vh,0 ∈ Vh. (64)

Equation (62) is a second order ODE-system in time. By separation of variables, its solution can be written in the following
form:

(wh)(x, t) =
N∑

i=1

Wi(t)ϕi(x) (65)

where W is a vector representation of the function wh defined as follows:

W(t) = [W1(t) W2(t) ... WP(t) W1x(t) ... WPx(t)]T .

Equation (62) is equivalent to the following equation:

MWtt + S Wt + KW = 0. (66)

M is the mass matrix and K is the rigidity matrix. The corresponding matrices M, S and K are given by:

Mi j =

∫ 1

0
ϕiϕ j dx, S i j = α(ϕi)x(1)(ϕ j)x(1) ∀ i, j = 1, ...,N,

Ki j =

∫ 1

0
(ϕi)xx(ϕ j)xx dx + β(ϕi)x(1)(ϕ j)x(1) ∀ i, j = 1, ...,N.

The matrix K is symmetric, defined and positive because β > 0 and therefore K is invertible. Since the matrix M is also
symmetric, defined and positive , this implies the existence and the uniqueness of the solution of problem (62)-(64). Note
that M and K are tridiagonal matrices by blocks while S is diagonal. The calculation of elements of S is trivial because
all the elements of S are zero except one nonzero element S N,N = α with N = 2P.
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Values of elements of matrices M and K

For i = 1, ...,N

M2i−3,2i−3 =

∫ xi

xi−1

(ϕ2i−3
1 )2 dx =

13
35

h,

M2i−2,2i−2 =

∫ xi

xi−1

(ϕ2i−2
2 )2 dx =

1
105

h3,

M2i−1,2i−1 =

∫ xi+1

xi

(ϕ2i−1
1 )2 dx =

13
35

h,

M2i,2i =

∫ xi+1

xi

(ϕ2i
2 )2 dx =

1
105

h3,

M2i−1,2i−3 =

∫ xi+1

xi

(ϕ2i−1
1 )(ϕ2i−3

1 ) dx =
9
70

h,

M2i−3,2i−2 =

∫ xi

xi−1

(ϕ2i−3
1 )(ϕ2i−2

2 ) dx =
11
210

h2,

M2i−1,2i =

∫ xi+1

xi

(ϕ2i−1
1 )(ϕ2i

2 ) dx = − 11
210

h2,

M2i−3,2i =

∫ xi+1

xi

(ϕ2i−3
1 )(ϕ2i

2 ) dx = − 13
420

h2,

M2i−1,2i−2 =

∫ xi+1

xi

(ϕ2i−1
1 )(ϕ2i−2

2 ) dx =
13
420

h2,

M2i−1,2i−2 =

∫ xi+1

xi

(ϕ2i−1
1 )(ϕ2i−2

2 ) dx =
13
420

h2,

M2i,2i−2 =

∫ xi+1

xi

(ϕ2i
2 )(ϕ2i−2

2 ) dx =
1

140
h3.

K2i−3,2i−3 =

∫ xi

xi−1

((ϕ2i−3
1 )′′)2 dx =

12
h3 ,

K2i−2,2i−2 =

∫ xi

xi−1

((ϕ2i−2
2 )′′)2 dx =

4
h
,

K2i−1,2i−1 =

∫ xi+1

xi

((ϕ2i−1
1 )′′)2 dx =

12
h3 ,

K2i,2i =

∫ xi+1

xi

((ϕ2i
2 )′′)2 dx =

4
h
,

K2i−1,2i−3 =

∫ xi+1

xi

(ϕ2i−1
1 )′′(ϕ2i−3

1 )′′ dx = −12
h3 ,

K2i−3,2i−2 =

∫ xi

xi−1

(ϕ2i−3
1 )′′(ϕ2i−2

2 )′′ dx =
6
h2 ,

K2i−1,2i =

∫ xi+1

xi

(ϕ2i−1
1 )′′(ϕ2i

2 )′′ dx = − 6
h2 ,

K2i−3,2i =

∫ xi+1

xi

(ϕ2i−3
1 )′′(ϕ2i

2 )′′ dx =
6
h2 ,

K2i−1,2i−2 =

∫ xi+1

xi

(ϕ2i−1
1 )′′(ϕ2i−2

2 )′′ dx = − 6
h2 ,

K2i,2i−2 =

∫ xi+1

xi

(ϕ2i
2 )′′(ϕ2i−2

2 )′′ dx =
2
h
.
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3.3 Dissipativity of the Semi-discrete Scheme

In order to show that the scheme given by (62)-(64) is dissipative, first a time dependent energy functional E for a trajectory
w ∈ C2([0,∞[ ,V) is defined as analogous of the Lyapunov functional (13).

Theorem 12 Let wh ∈ C([0,∞[ ; Vh) solution of (62)-(64). Then we get:

∀ t > 0,
d
dt

E(t,wh) = −α [(wh)tx(1)]2 ≤ 0. (67)

Proof. Derive for all t > 0, E(t,wh). We have:

∀ t > 0,
d
dt

E(t,wh) =
∫ 1

0
(wh)xxt(wh)xx dx +

∫ 1

0
(wh)tt(wh)t dx + β(wh)tx(1)(wh)x(1). (68)

Using (62) with the test function ϕh = (wh)t, we obtain:

∀ t > 0,
∫ 1

0
(wh)tt(wh)t dx +

∫ 1

0
(wh)xx((wh)xxt dx + β(wh)x(1)((wh)tx(1) + α(wh)tx(1)(wh)tx(1) = 0. (69)

Then, we get the result (67). 2

Remark 3 Note that the property of dissipativity theorem of the norm was written independently of the basis ϕ j, j = 1, ...,N
and can be applied to any choice of the subspace Vh ⊂ V .

3.4 A-priori Error Estimates

In this subsection, the a-priori error estimates for the semi-discrete solution approximation (62) are obtained. We will
use a common method used in (Choo, Chung & Kannan, 2002) to obtain error estimates. Of course, we will adapt the
method used in this article to our problem. The projection of weak solution w to Vh on H2(0, 1) denoted by w is defined
as follows:

∀ x ∈ (0, 1),∀ t > 0, w(x, t) =
N∑

j=1

w(t, x j)ϕ
j
1(x) +

N∑
j=1

wx(t, x j)ϕ
j
2(x).

We set G = {w ∈ H4(0, 1), w(0) = wx(0) = 0}. Assume for later that:

w ∈ C([0,T ] ; G), (70)

wt ∈ L2([0,T ] ; G), (71)

wtt ∈ L2([0,T ] ; V). (72)

Then, from the lemma 2.1 of (Choo, Chung & Kannan, 2002), we have the following estimations almost every in t:

∥w − w∥H2(0,1) ≤ Ch2∥w∥H4(0,1), (73)

∥wt − wt∥H2(0,1) ≤ Ch2∥wt∥H4(0,1), (74)

∥wtt − wtt∥L2(0,1) ≤ Ch2∥wtt∥H2(0,1). (75)

Now, we give an important result for the convergence of the semi-discrete scheme:

Theorem 13 Let Vh the space of cubic Hermite polynomials. Assume the expressions (70)-(72). The following error
estimate holds for wh ∈ C2([0,T ] ,Vh) solving (62) is given by:

∀t ∈ [0,T ],
[
E(t,wh − w)

]1/2 ≤ C
(
E(0,wh(0) − w(0))1/2 + h2(∥w∥2C([0,T ],H4(0,1)) + ∥wt∥2L2([0,T ],H4(0,1)) + ∥wtt∥2L2([0,T ],H2(0,1))

))
. (76)

Furthermore, if wh0 and vh0 are respectively Hermite interpolations of w0 and of v0, then there exists a positive constant
C such that: [

E(t,wh − w)
]1/2 ≤ Ch2(∥w∥C([0,T ],H4(0,1)) + ∥wt∥L2([0,T ],H4(0,1)) + ∥wtt∥L2([0,T ],H2(0,1))

)
. (77)
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Proof. The error of semi-discrete solution wh is defined as eh = wh − w. We remark that eh is an element of Vh. Then,
substituting wh = eh + w in (62), we get:∫ 1

0
(eh)ttϕ dx +

∫ 1

0
(eh)xxϕxx dx + β(eh)x(1)ϕx(1) + α(eh)tx(1)ϕx(1)

= −
∫ 1

0
(w)ttϕ dx −

∫ 1

0
(w)xxϕxx dx − β(w)x(1)ϕx(1) − α(w)tx(1)ϕx(1)

for all ϕ ∈ Vh. Furthermore, w is the projection of weak solution w on discret espace Vh.
Therefore using again (62), we have the following equation:∫ 1

0
(eh)ttϕ dx +

∫ 1

0
(eh)xxϕxx dx + β(eh)x(1)ϕx(1) + α(eh)tx(1)ϕx(1) =

∫ 1

0
(w − w)tt dx +

∫ 1

0
(w − w)xxϕxx dx (78)

for all ϕ ∈ Vh. Taking now ϕ = (eh)t ∈ Vh. Thereby, (78) becomes :∫ 1

0
(eh)tt(eh)t dx +

∫ 1

0
(eh)xx(eh)txx dx + β(eh)x(1)(eh)tx(1) + α(eh)tx(1)(eh)tx(1)

=

∫ 1

0
(w − w)tt(eh)t dx +

∫ 1

0
(w − w)xx(eh)txx dx, ∀t ∈ [0, T ] .

For all t ∈ [0,T ] ,

1
2

d
dt

[ ∫ 1

0
(eh)2

tt dx +
∫ 1

0
(eh)2

xx dx + β((eh)x(1))2
]
=

∫ 1

0
(w − w)tt(eh)t dx +

∫ 1

0
(w − w)xx(eh)txx dx − α(eh)tx(1)(eh)tx(1). (79)

Thus we get:

1
2

d
dt

E(t, eh) =
∫ 1

0
(w − w)tt(eh)t dx +

∫ 1

0
(w − w)xx(eh)txx dx − α(eh)tx(1)(eh)tx(1), ∀t ∈ [0,T ] .

This implies that:
1
2

d
dt

E(t, eh) ≤
∫ 1

0
(w − w)tt(eh)t dx +

∫ 1

0
(w − w)xx(eh)txx dx, ∀t ∈ [0,T ] . (80)

Or again :
d
dt

E(t, eh) ≤ 2
∫ 1

0
(w − w)tt(eh)t dx + 2

∫ 1

0
(w − w)xx(eh)txx dx, ∀t ∈ [0,T ] . (81)

By integrating (81) in the time direction ie on t ∈ [0,T ] , one obtains:

E(t, eh) ≤ E(0, eh(0)) + 2
∫ t

0

∫ 1

0
(w − w)tt(eh)t dx dτ + 2

∫ t

0

∫ 1

0
(w − w)xx(eh)txx dx dτ. (82)

By one integration by parts
∫ t

0
(w − w)xx(eh)txx dτ, (82) becomes finally:

∀t ∈ [0,T ] , E(t, eh) ≤ E(0, eh(0)) + 2
∫ t

0

∫ 1

0
(wtt(τ, x) − wtt(τ, x))(eh)t(τ, x) dx dτ

−2
∫ t

0

∫ 1

0
(wtxx(τ, x) − wtxx(τ, x))(eh)xx(τ, x) dx dτ

+2
∫ 1

0
(wxx(t, x) − wxx(t, x))(eh)xx(t, x) dx

+2
∫ 1

0
(wxx(0, x) − wxx(0, x))(eh)xx(0, x) dx. (83)

Using Cauchy Schwarz’s inequality to (83) yields

E(t, eh) ≤ E(0, eh(0)) +C1

[
∥wtt − wtt∥2L2([0,T ],L2(0,1)) +

∫ t

0
∥(eh)t(τ, .)∥2L2(0,1) dτ

]
+C2

[∥wxx(t, .) − wxx(t, .)∥2L2(0,1) + ∥(eh)xx(t, .)∥2L2(0,1)
]

+C3
[∥wxx(0, .) − wxx(0, .)∥2L2(0,1) + ∥(eh)xx(0, .)∥2L2(0,1)

]
+C4

[
∥wt − wt∥2L2([0,T ],H2(0,1)) +

∫ t

0
∥(eh)xx(τ, .)∥2L2(0,1) dτ

]
,
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where C1, C2, C3 and C4 are positive constants.
Using estimations (73)-(75) and Gronwall’s inequality, we obtain (76). Finally, using the triangle inequality, we get the re-
sult (77). 2

Remark 4 The order of convergence for the discretized scheme in space is 2.

4. Fully-discrete Scheme

In this section, in order to obtain a fully discretized scheme, we discretize in time of semi-discretized system (62) in such
a way that the dissipation of energy is preserved. To achieve this goal, the system (62) is written as a system of ordinary
differential equations of first order. Then, the Crank-Nicolson scheme obtained is used to demonstrate dissipativity of the
numerical scheme. Finally, the a-priori estimates are obtained.

4.1 Crank-Nicolson Scheme

Let L be positive integer. Here, the interval [0,T ] is discretized into L equidistant subintervals. Let k = T/L denotes the
size of time discretization and tn = nk where n = 0, 1, ..., L represent the nodes of the discretization. In order to rewrite the
semi-discretized scheme (62) as a differential equation of the first order, introduce the element vh = (wh)t. Furthermore,
let V = Wt = [V1 V2 ... VN]T be its vector representation in the basis

{
ϕ j

}N

j=1
of Hermitian cubic polynomial space.

Note that the solution wh of semi-discretized scheme (62) becomes for the full discrete scheme a vector of the form
yh = [wh vh]T . Furthermore, similar to (13), the natural norm of yh = yh(t) is defined as follows:

∥yh∥2 =
1
2

∫ 1

0
[(wh)2

xx + v2
h] dx +

β

2
(
(wh)x(1)

)2
.

Let now yn = [wn vn] be the approximate solution of yh in time t = tn. Let again Wn = W(x, tn) and Vn = V(x, tn) the
vector representations in basis

{
ϕ j

}N

j=1
respectively of wn and vn.

For the time discretization of (62), the Crank-Nicolson scheme

wn+1 − wn

k
=

vn+1 + vn

2
(84)

is used. Then we get:∫ 1

0

vn+1 − vn

k
ϕh dx +

∫ 1

0

wn+1
xx + wn

xx

2
(ϕh)xx dx + β

wn+1
x (1) + wn

x(1)
2

(ϕh)x(1) + α
vn+1

x (1) + vn
x(1)

2
(ϕh)x(1) = 0 (85)

for all ϕh ∈ Vh.
Furthermore, the vector equation (66) becomes:

MVn+1 − MVn

k
+

S Vn+1 + S Vn

2
+

KWn+1 + KWn

2
= 0 (86)

which is equivalent to: ( M
k
+

S
2

)
Vn+1 +

K
2

Wn+1 = −K
2

Wn +

( M
k
− S

2

)
Vn. (87)

(84) and (87) give us the following system of equation: PYn+1 = QYn where P and Q are block matrices defined as
follows:

P =


I
k

− I
2

K
2

−M
k
+

S
2


Q =


I
k

I
2

−K
2

M
k
− S

2


and the vector Yn = [Wn Vn] .

4.2 Dissipativity of Numerical Scheme

Now, we show that the fully discrete scheme (84) and (86) dissipates the norm (energy) in time.
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Theorem 14 For all n = 0, 1, ..., L, L and k the positive integers, we get

∥yn+1∥2 − ∥yn∥2 = −α

(
wn+1

x (1) − wn
x(1)

)2

k
≤ 0. (88)

Proof. We have

∥yn+1∥2 − ∥yn∥2 = 1
2

∫ 1

0
(wn+1

xx )2 dx − 1
2

∫ 1

0
(wn

xx)2 dx +
1
2

∫ 1

0
(vn+1)2 dx

−1
2

∫ 1

0
(vn)2 dx +

β

2
(wn+1

x (1))2 − β
2

(wn
x(1))2.

Multiplying (84) by vn+1 − vn and integrating over [0, 1], we obtain:∫ 1

0

wn+1 − wn

k
(vn+1 − vn) dx =

∫ 1

0

(vn+1)2 − (vn)2

2
dx. (89)

Taking ϕh = wn+1 ∈ Vh in (85) yields:

1
2

∫ 1

0
(wn+1

xx )2 dx = −1
2

∫ 1

0
wn+1

xx wn
xx dx −

∫ 1

0

vn+1 − vn

k
wn+1 dx

−βwn+1
x (1) + wn

x(1)
2

wn+1
x (1) − αvn+1

x (1) + vn
x(1)

2
wn+1

x (1). (90)

Taking now ϕh = wn ∈ Vh in (85). Hence we get:

1
2

∫ 1

0
(wn

xx)2 dx = −1
2

∫ 1

0
wn+1

xx wn
xx dx −

∫ 1

0

vn+1 − vn

k
wn dx

−βwn+1
x (1) + wn

x(1)
2

wn
x(1) − αvn+1

x (1) + vn
x(1)

2
wn

x(1). (91)

Thus, using (89)-(91) and again (84), we obtain the result (88). 2

Remark 5 The norm dissipates in time : ∥yn+1∥2 ≤ ∥yn∥2. This decay of the norm when k −→ 0 corresponds to the decay
of the norm (14) in the continuous case and with the norm (67) in the semi-discrete case. However, if the beam is not
controlled ie when α = β = 0 then ∥yn+1∥ = ∥yn∥, therefore the norm ∥yn∥ is constant for all n = 0, 1, ..., L where L is a
positive integer. Also, notice that the Crank Nicolson scheme (84), the expression(86) and the norm dissipation property
from Theorem 14 of the norm were written independently of the basis

{
ϕ j

}
. Therefore, this property of dissipativity can

be applied to any choice of the subspace Vh ⊂ V.

4.3 A-priori Error Estimates

Assume that w ∈ H4(0,T ; V).
Let w ∈ Vh be defined as the projection of the weak solution w on Vh such that a1(w(t), ϕh) = a1(w(t), ϕh) for all ϕh ∈ Vh,
for all t ∈ [0,T ]. If w ∈ H4([0,T ] ; V) then w ∈ H4([0,T ] ; V) since w is bounded in V . Moreover, let we := w − w denote
the error of the projection. Assume also that:

w ∈ H2([0,T ] ; G), wt ∈ L2([0,T ] ; G), wtt ∈ H2([0,T ] ; V). (92)

Then due to ( Strang & Fix, 1973), we have the following estimations:

∥w − w∥H2(0,1) ≤ Ch2∥w∥H4(0,1), (93)

∥wt − wt∥H2(0,1) ≤ Ch2∥wt∥H4(0,1), (94)

∥wtt − wtt∥H2(0,1) ≤ Ch2∥wtt∥H4(0,1). (95)

Let y(tn) = [w(tn) wt(tn)]T denotes the weak solution of (18) at time t = tn. This approximation is defined by yn =

[wn vn]T , the n-th iteration of the fully-discrete scheme of Crank Nicolson. Thus, the approximation error is defined by
yn

e =
[
en

1 en
2

]T
with en

1 = wn − w(tn), en
2 = vn − wt(tn) for all n = 0, 1, ..., L.
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Therefore, the second order error estimate both in space and time of the fully discrete scheme is obtained in the following
Theorem.

Theorem 15 Assume w ∈ H2([0,T ] ; G)∩H4([0,T ] ; V). Also, take n = 1, ..., L. Then the estimate is translated as follows:

∥yn − y(tn)∥ ≤ M
[
∥y0

e∥ + h2∥w∥H2([0,T ];H4(0,1)) + k2
(
∥wtt∥L2([0,T ];H4(0,1)) + ∥wtt∥H2([0,T ];H2(0,1))

) ]
(96)

where M is a positive constant.

Proof. Take arbitrary n = 0, 1, ..., L with L > 0. Using Taylor’s theorem, by straightforward calculation, we obtain for all
x ∈ [0, 1]:

w(tn+1, x) − w(tn, x)
k

= wt(tn+1/2, x) + δn wtt(tn+1/2, x) +
1
k

∫ tn+1

tn+1/2

(tn+1 − t)2

2
wttt(x, t) dt +

1
k

∫ tn+1/2

tn

(tn − t)2

2
wttt(x, t) dt,

with δn =
tn+1+tn

2 .

Similary, we have

wt(tn+1, x) + wt(tn, x)
2

= wt(tn+1/2, x) + δn wtt(tn+1/2, x) +
1
2

∫ tn+1

tn+1/2

(tn+1 − t)wttt(x, t) dt − 1
2

∫ tn+1/2

tn
(tn − t) wttt(x, t) dt.

Therefore, we get
w(tn+1, x) − w(tn, x)

k
=

wt(tn+1, x) + wt(tn, x)
2

+ kQn
1(x), (97)

where

Qn
1(x) =

1
2

∫ tn+1

tn+1/2

wttt(x, t)
k2 (tn+1 − t)2 dt +

1
2

∫ tn+1/2

tn

wttt(x, t)
k2 (tn − t)2 dt

−1
2

∫ tn+1

tn+1/2

wttt(x, t)
k

(tn+1 − t) dt +
1
2

∫ tn+1/2

tn

wttt(x, t)
k

(tn − t) dt.

We have from (84):

en+1
1 − en

1

k
=

wn+1 − w(tn+1, x) − wn + w(tn, x)
k

=
vn+1 + vn

2
− w(tn+1, x) − w(tn, x)

k
.

Using (97), one obtains:

en+1
1 − en

1

k
=

en+1
2 + en

2

2
− kQn

1(x). (98)

Multiplying (98) by (en+1
2 − en

2) and integrating over [0, 1], we get:∫ 1

0

en+1
1 − en

1

k
(en+1

2 − en
2) dx =

1
2

∫ 1

0
(en+1

2 )2 dx − 1
2

∫ 1

0
(en+1

1 )2 dx − k
∫ 1

0
(en+1

2 − en
2)Qn

1(x) dx. (99)

Furthermore, in order to rewrite the weak formulation (15), we have from Taylor’s Theorem the following expressions :

wt(tn+1, x) − wt(tn, x)
k

= wtt(tn+1/2, x) + δn wttt(tn+1/2, x) +
1
2

∫ tn+1

tn+1/2

(tn+1 − t)2

k
wtttt(x, t) dt +

1
2

∫ tn+1/2

tn

(tn − t)2

k
wtttt(x, t) dt,

wxx(tn+1, x) + wxx(tn, x)
2

= wxx(tn+1/2, x) + δn wtxx(tn+1/2, x) +
1
2

∫ tn+1

tn+1/2

(tn+1 − t) wttxx(x, t) dt − 1
2

∫ tn+1/2

tn
(tn − t)wttxx(x, t) dt,

wtx(tn+1, x) + wtx(tn, x)
2

= wtx(tn+1/2, x) + δn wttx(tn+1/2, x) +
1
2

∫ tn+1

tn+1/2

(tn+1 − t) wtttx(x, t) dt − 1
2

∫ tn+1/2

tn
(tn − t) wtttx(x, t) dt,

and

wx(tn+1, x) + wx(tn, x)
2

= wx(tn+1/2, x) + δn wtx(tn+1/2, x) +
1
2

∫ tn+1

tn+1/2

(tn+1 − t)wttx(x, t) dt − 1
2

∫ tn+1/2

tn
(tn − t)wttx(x, t) dt.
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Taking tn+1/2 = t and applying the previous expressions to the weak formulation (15), we obtain after simplifications:∫ 1

0

(
wt(tn+1, x) − wt(tn, x)

k

)
ϕ dx +

∫ 1

0

(
wxx(tn+1, x) + wxx(tn, x)

2

)
ϕxx dx

+α

(
wtx(tn+1, 1) + wtx(tn, 1)

2

)
ϕx(1) + β

(
wx(tn+1, 1) + wx(tn, 1)

2

)
ϕx(1) = kQn

2(ϕ). (100)

where the functional Qn
2 : V → R is defined as follows:

Qn
2(ϕ) = ∫ 1

0

(1
2

∫ tn+1

tn+1/2

wtttt(t, x)
k2 (tn+1 − t)2 dt +

1
2

∫ tn+1/2

tn

wtttt(t, x)
k2 (tn − t)2 dt

)
ϕ dx

+

∫ 1

0

(1
2

∫ tn+1

tn+1/2

wttxx(t, x)
k

(tn+1 − t) dt − 1
2

∫ tn+1/2

tn

wttxx(t, x)
k

(tn − t) dt
)
ϕxx dx

+β
( 1

2

∫ tn+1

tn+1/2

wttx(t, 1)
k

(tn+1 − t) dt − 1
2

∫ tn+1/2

tn

wttx(t, 1)
k

(tn − t) dt
)
ϕx(1)

+α
(1
2

∫ tn+1

tn+1/2

wtttx(t, 1)
k

(tn+1 − t) dt − 1
2

∫ tn+1/2

tn

wtttx(t, 1)
k

(tn − t) dt
)
ϕx(1). (101)

Furthermore, using (100) and (85), one obtains:∫ 1

0

en+1
2 − en

2

k
ϕh dx +

∫ 1

0

en+1
1xx + en

1xx

2
(ϕh)xx + α

en+1
2x (1) + en

2x(1)
2

(ϕh)x(1)

+β
en+1

1x (1) + en
1x(1)

2
(ϕh)x(1) dx = −kQn

2(ϕh) + Qn
3(ϕh) (102)

where

Qn
3(ϕh) =

∫ 1

0

we
t (tn+1, x) − we

t (tn, x)
k

ϕh dx + α
we

tx(tn+1, 1) − we
tx(tn, 1)

2
(ϕh)x(1).

Using (98) and taking also ϕh = k
en+1

2 + en
2

2
∈ Vh in (102), we obtain:

∥yn+1
e ∥2 − ∥yn

e∥2 = −k2
∫ 1

0

en+1
1xx + en

1xx

2
(Qn

1)xx dx − βk2 en+1
1x (1) + en

1x(1)
2

(Qn
1)x(1) − k2

2
Qn

2

(
en+1

2 + en
2

)
+

k
2

Qn
3

(
en+1

2 + en
2

)
.

We have the following estimate:

∥Qn
1∥H2 ≤ Mk

∫ tn+1

tn
∥wttt(t)∥2H2 dt.

In order to obtain the estimate of Qn
2, we need to rewrite the second term of Qn

2(en
2). Integrating twice by parts over [0, 1]

and assuming that en
2(0) = en

2x(0) = 0, we have:∫ 1

0

(1
2

∫ tn+1

tn+1/2

wttxx(t, x)
k

(tn+1 − t) dt − 1
2

∫ tn+1/2

tn

wttxx(t, x)
k

(tn − t) dt
)
en

2xx dx

=

∫ tn+1

tn+1/2

1
2k

(tn+1 − t)
(
wttxx(t, 1)en

2x(1) − wttxxx(t, 1)en
2(1) +

∫ 1

0
wttxxxx(t, x)en

2 dx
)

dt

−
∫ tn+1/2

tn

1
2k

(tn − t)
(
wttxx(t, 1)en

2x(1) − wttxxx(t, 1)en
2(1) +

∫ 1

0
wttxxxx(t, x)en

2 dx
)

dt.

Then, ∣∣∣Qn
2
(
en+1

2 + en
2
)∣∣∣ ≤ M

(
k
∫ tn+1

tn
∥wtttt(t)∥2H2 + ∥wttt(t)∥2H2 + ∥wtt(t)∥2H4 dt +

∥∥∥en+1
2 + en

2

∥∥∥2
L2 +

∣∣∣en+1
2x (1) + en

2x(1)
∣∣∣2).

Moreover, we have∣∣∣Qn
3
(
en+1

2 + en
2
)∣∣∣ ≤ M

(1
k

∫ tn+1

tn
∥we

tt(t)∥2L2 dt + ∥we
t ∥2C([tn,tn+1],H2) +

∥∥∥en+1
2 + en

2

∥∥∥2
L2 +

∣∣∣en+1
2x (1) + en

2x(1)
∣∣∣2).

46



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 4; 2017

We deduce that∥∥∥yn+1
e

∥∥∥2 −
∥∥∥yn

e

∥∥∥2 ≤ M
(
k
(∥yn+1

e ∥2 + ∥yn
e∥2 + ∥we

t ∥2C([tn,tn+1],H2)
)
+

∫ tn+1

tn
∥we

tt(t)∥2L2 dt + k4
∫ tn+1

tn
∥wtt(t)∥2H4 + ∥wttt(t)∥2H2 + ∥wtttt(t)∥2H2 dt

)
.

Let now m = 1, ..., L. Summing on n = 0, ...,m , taking k ≤ 1
2M

, we obtain finally using Gronwall’s inequality and the
estimates (93)-(95), we get:

∥ym+1
e ∥2 ≤ M

[
∥y0

e∥2 + h4
(
∥wt∥2C([0,T ];H4) + ∥wtt∥2L2([0,T ];H4)

)
+ k4

(
∥wtt(t)∥2L2([0,T ];H4) + ∥wttt(t)∥2L2([0,T ];H2) + ∥wtttt(t)∥2L2([0,T ];H2)

) ]
.

(103)

Using the triangle inequality, we obtain (96). 2

Remark 6 The order of convergence both in time and space for the fully discrete scheme is 2.
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