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Abstract

This paper has employed a comparative study between the numerical scheme and stability condition. Numerical calcu-
lations are carried out based on three different numerical schemes, namely the central finite difference, fourier leap-frog,
and fourier spectral RK4 schemes. Stability criteria for different numerical schemes are developed for the KdV equation,
and numerical examples are put to test to illustrate the accuracy and stability between the solution profile and numerical
scheme.
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1. Introduction

The Korteweg-de Vries (KdV) equation
ut + uux + uxxx = 0, (1)

is a nonlinear, dispersive partial differential equation for a function where u (x, t) of two real variables, space x and time
t. It is a mathematical model of waves on shallow water surfaces and particularly notable as the prototypical example
of an exactly solvable model, i.e., a non-linear partial differential equation whose solutions can be exactly and precisely
specified. The solitary solution of the equation was first observed in J. Russell (1837), and the equation itself was later
derived by Korteweg and de Vries in D. Korteweg & G. de Vries (1895). Since then, it has been applied in many fields
to describe a wide range of physical phenomena such as interaction of nonlinear waves M. J. Ablowitz & D.E. Baldwin
(2012), collision-free hydro-magnetic waves in a cold plasma, ion-acoustic waves, interfacial electrohydrodynamics (M.
Q. Tran, 1979).

The KdV equation was not studied much until Zabusky and Kruskal (1965) proposed an explicit numerical scheme and
discovered numerically that its solutions seemed to decompose at large times into a collection of “solitons”, a series of
well separated solitary waves. The scheme is described as follows

u j+1
i = u j−1

i − ∆t
∆x

(
u j

i+1 + u j
i + u j

i−1

)
3

(
u j

i+1 − u j
i−1

)
− ∆t
∆x3

(
u j

i+2 − 2u j
i+1 + 2u j

i−1 − u j
i−2

)
,

with j = 1, 2, . . . . Here central difference approximations were used for both the first space and first time derivatives to
improve the accuracy for given step sizes ∆x and ∆t, respectively.

The study of non-linear waves would not have been so successful had it not done with stable numerical schemes, especially
for time-dependent problems, stability guarantees that the numerical method produces a bounded solution whenever the
solution of the exact differential equation is bounded. Stability, in general, can be difficult to investigate, especially when
the equation under consideration is nonlinear. In this article, we analyze the stability of three numerical schemes on the
KdV equation based on von Neumann method and conclude that Fourier RK4 scheme can meet the stability criterion with
suitable spatial and time steps.
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2. Finite Difference Scheme

In this section we present a finite difference scheme for the linearized KdV equation in order to proceed with the stability
analysis. The equation is described as

ut + uxxx = 0. (2)

We note that the KdV equation (1) is used to be considered as the weakly nonlinear, weakly dispersive behavior of the
long wave case on the free surface. However, equation (2) not only can be solved explicitly using Fourier methods but
also served as a tool for studying the nonlinear equation (1).

We consider a function u (xi, tn) with the x-t plane subdivided into a rectangular grid or mesh with each rectangle having
sides of length h and k, where xi = ih, tn = nk with i = 1, 2, . . . ,m and n = 1, 2, . . . , q, for some integers m and q. The
various mesh points may be labeled by a pair of integers. Let the point Pn

i be denoted by (i, n). The value of u at Pn
i is

approximated by un
i . Expressing the finite-difference approximation in terms of this notation, we have(

∂u
∂x

)
Pn

i

=
un

i+1 − un
i

h
, (3)(

∂2u
∂x2

)
Pn

i

=
un

i+1 − 2un
i + un

i−1

h2 , (4)(
∂3u
∂x3

)
Pn

i

=
un

i+2 − 2un
i+1 + 2un

i−1 − un
i−2

2h3 . (5)

To analyse the numerical scheme for (2), we adopt the central finite difference (FD) scheme with leap-frog time-stepping
formula as follows

un+1
i = un−1

i − ∆t
∆x3

(
un

i+2 − 2un
i+1 + 2un

i−1 − un
i−2

)
. (6)

The characteristic equation for this recurrence relation is

g2 − 2
∆t
∆x3 i (sin 2x − 2 sin x) g − 1 = 0, (7)

which we obtain by inserting in (6) the ansatz un
i = gn, and the condition for stability is that both complex roots must lie

in the closed unit disk, with only simple roots permitted on the unit circle. As a result, we obtain

|g| =
∣∣∣∣∣−4i

∆t
∆x3 sin2 x

2
sin x

∣∣∣∣∣ < 1, (8)

or ∣∣∣∣∣−4
∆t
∆x3 sin2 x

2
sin x

∣∣∣∣∣ < 1. (9)

When x = 2π/3, we have

max
∣∣∣∣∣sin2 x

2
sin x

∣∣∣∣∣ = 3
√

3
8
. (10)

Therefore we have obtained
∆t
∆x3 <

2

3
√

3
≈ 0.3849, (11)

which is the stability criteion for linearized KdV equation (2) and can be used to calculate the numerical solution for (1).

3. Fourier Leap-frog Scheme

In this section, we first model the KdV equation (1) by a Fourier spectral method on [−L, L]. In practice, it can be
transformed to

ut +
2π
L

uux +

(
2π
L

)3

uxxx = 0, x ∈ [−L, L] , (12)

where L is a given number representing the boundary point of the spatial domain. In practice, we need to transform u, ux

into Fourier space and discretize the equation. For any integer N > 0, we consider the collation points x j = j∆x = 2π j/N,
j = 0, 1, . . . ,N − 1, and note that if u (x, t) is the solution of the KdV equation, then we transform it into the discrete
Fourier space as

û (k, t) = F (u) =
1
N

N−1∑
j=0

u
(
x j, t

)
e−ikx j , − N

2
≤ k ≤ N

2
− 1. (13)
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From this, using the inversion formula, we get

u
(
x j, t

)
= F−1 (û) =

N/2−1∑
k=−N/2

û (k, t) e−ikx j , 0 ≤ j ≤ N − 1, (14)

where we denote the discrete Fourier transform and the inverse Fourier transform by F and F−1 respectively. Therefore,
we have

∂nu
∂xn = F−1 {(ik)n F (u)} , n = 1, 2, . . . , (15)

in particular, we have

ux = F−1 {ikF (u)} , (16)
uxxx = F−1

{
−ik3F (u)

}
. (17)

Then (12) can be transformed into a semi-discrete form as follows:

ut = −
2π
L

uF−1 {ikF (u)} −
(

2π
L

)3

F−1
{
−ik3F (u)

}
. (18)

Taking into the consideration of the collation points, (12) can be further discretized into

du
(
x j, t

)
dt

= −2π
L

u
(
x j, t

)
F−1 {ikF (u)} −

(
2π
L

)3

F−1
{
−ik3F (u)

}
, (19)

for 0 ≤ j ≤ N − 1. Now we denote U = [u (x0, t) , u (x1, t) , . . . , u (xN−1, t)]T , then (19) can be written in the vector form as

Ut= F (U) , (20)

where F defines the right-hand side of (19).

For the stability analysis, it requires further information on the condition imposed on the time step ∆t. Therefore, similar
to (12), we could start with the following linearized equation

ut +
2π
L

ux +

(
2π
L

)3

uxxx = 0, x ∈ [−L, L] , (21)

for some suitable boundaries L, and approximate the solution by using Fourier Leap-Frog (FLF) transforms

u (x, t + ∆t) − u (x, t − ∆t) = 2∆tF
−2π

L
ux −

(
2π
L

)3

uxxx

 , (22)

where F is called the fourier transform operator. By using the discrete version of (13) and (14), the scheme is shown as
follows  u (x, t + ∆t) − u (x, t − ∆t) + 2

(
2π
L

)
∆tF−1 {ikF (u)}

+2
(

2π
L

)3
∆tF−1

{
−ik3F (u)

}  = 0. (23)

For simplicity, let v = k (2π/L), then (23) can be written as

u (x, t + ∆t) − u (x, t − ∆t) + 2v∆tF−1 {iF (u)} + 2v3∆tF−1 {−iF (u)} = 0. (24)

To proceed, we look for a solution to (24) of the form

u (x, t) = κt/∆teikx, (25)

and subsitute it into (23) to get

κ(t+∆t)/∆teikx − κ(t−∆t)/∆teikx + 2iv∆tκt/∆teikx − 2iv3∆tκt/∆teikx = 0, (26)

i.e.,
κ2 − κ−1 + 2iv∆t − 2iv3∆t = 0, (27)
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or
κ2 − κ−1 − 2i f (v,∆t) κ − 1 = 0, (28)

where
f (v,∆t) = v3∆t − v∆t. (29)

The scheme is conditionally stable if and only if f (v,∆t) is real and less than one in magnitude. Since the wave number v
takes the values

v = 0,±1,±2, . . . ,±N/2, (30)

and the interval is discretized with N equidistant mesh points, that is

∆x = 2π/N, (31)

we want to find the largest value of ∆t such that
| f (v,∆t)| < 1, (32)

is true for all v. Here the most severe restriction on ∆t is imposed for the v, which are largest in magnitude, i.e., for
v = ±vmax with vmax = N/2 = π/∆x. Thus, we obtain

f (vmax,∆t) = ∆t
(
π

∆x

)3
− ∆t

(
π

∆x

)
. (33)

therefore | f (v, α,∆t)| < 1 implies to

∆t
(
π

∆x

)3
< 1, (34)

and the stability condition becomes
∆t
∆x3 <

1
π3 ≈ 0.0322515. (35)

4. Fourier RK4 Scheme

We have implemented the Fourier spectral method with fourth-order Runge–Kutta (RK4) time differencing to solve the
fifth-order KdV equation. The RK4 method is known to have a truncation error of O

(
∆t4

)
and one of the most widely

used methods for solving differential equations. Its algorithm is described below:

yk+1 = yk +
∆t
6

(fk1 + 2fk2 + 2fk3 + fk4) , (36)

where

fk1 = f (tk, yk) , (37)
fk2 = f (tk + ∆t/2, yk + ∆tfk1/2) , (38)
fk3 = f (tk + ∆t/2, yk + ∆tfk2/2) , (39)
fk4 = f (tk + ∆t, yk + ∆tfk3) . (40)

For the study of the stability, we use the standard Fourier analysis to find the condition imposed on the time step ∆t. For
simplicity, we consider the linearized KdV equation as follows:

ut + αux + uxxx = 0. (41)

We could approximate this equation by using RK4 scheme in (36) with the ansatz

u (x, t) = κt/∆teivx,

which will not only extend the domain of the equation to the whole real line but also enable us to examine max |κ| to
decide on stability of the numerical scheme. As a restult, we have

fk1 = −ivκt/∆teivx
(
−v2 + α

)
, (42)

fk2 = −
1
2

vκt/∆teivx
(
v5∆t − 2αv3∆t + α2v∆t − 2iv2 + 2iα

)
(43)
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fk3 =
1
4

vκt/∆teivx

 −iv8∆t2 + 3iαv6∆t2 − 3iα2v4∆t2

+iα3v2∆t2 − 2v5∆t + 4αv3∆t
−2α2v∆t + 4iv2 − 4iα

 (44)

fk4 =
1
4

vκt/∆teivx


v11∆t3 − 4αv9∆t3 + 6α2v7∆t3 − 2iv8∆t2

−4α3v5∆t3 + 6αiv6∆t2 + α4v3∆t3

−6iα2v4∆t2 + 2iα3v2∆t2 − 4v5∆t
+8αv3∆t − 4α2v∆t + 4iv2 − 4iα

 (45)

Therefore (36) gives

− 1
24



v12∆t4 − 4αv10∆t4 + 6α2v8∆t4

+12iαv7∆t3 − 4α3v6∆t4 − 4iv9∆t3

+α4v4∆t4 − 24iαv∆t
−12iα2v5∆t3 − 12v6∆t2 + 24αv4∆t2

−12α2v2∆t2 + 4iα3v3∆t3 + 24iv3∆t
+24 − κ


κt/∆teivx = 0. (46)

We want to find the restriction on ∆t such that
max |κ| < 1, (47)

is true with vmax = N/2 = π/∆x. Detailed calculation for (47) gives the condition∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −


(1/6)απ10/∆x10 − (1/24) π12/∆x12

− (1/4)α2π8/∆x8 + (1/6)α3π6/∆x6

− (1/24)α4π4/∆x4

∆t4

+

{
(i/6)π9/∆x9 − (i/2)απ7/∆x7

− (i/6)α3π3/∆x3 + (i/2)α2π5/∆x5

}
∆t3

+
{
(1/2)π6/∆x6 − απ4/∆x4 + (1/2)α2π2/∆x2

}
∆t2

+
{
iαπ/∆x − iπ3/∆x3

}
∆t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< 1. (48)

The analysis of the present article should be more broadly in line with the KdV equation (1). Briefly, different numbers
of α in (48) will result in different stability regions, hence we assume that α = 1 in (48) to get

CRI =



1
576∆x24



π24∆t8 − 8π22∆x2∆t8

+28π20∆x4∆t8

−56π18∆x6∆t8 + 70π16∆x8∆t8

−56π14∆x10∆t8 + 28π12∆x12∆t8

−8π10∆x14∆t8 + π8∆x16∆t8

−8π18∆x6∆t6 + 48π16∆x8∆t6

−120π14∆x10∆t6 + 160π12∆x12∆t6

−120π10∆x14∆t6 + 48π8∆x16∆t6

−8π6∆x18∆t6 + 576∆x24





1/2

< 1, (49)

which is the stability criterion for ∆x and ∆t.

5. Numerical Test

One of the most interesting features of the KdV equation is the existence of infinitely many conservation laws. A con-
servation law in differential equation form can be written as Tt + Xx = 0, in which the “density” T and the “flux” X are
polynomials in the solution u and its x-derivatives (P. G. Drazin & R. S. Johnson, 1989). If both T and Xx are integrable
over the domain (−∞, +∞) , then the assumption that X −→ 0 as x −→ ∞ implies that the conservation law can be
integrated over all x to yield

d
dt

(∫ +∞

−∞
Tdx

)
= 0, (50)

or ∫ +∞

−∞
Tdx = C, (51)

where C is a constant. The integral of T over the entire spatial domain is therefore invariant with time and usually called
an invariant of motion or a constant of motion (Verheest and Hereman 1994; Goktas and Hereman 1999). The KdV
equation (1) itself is already in conservation form, i.e.,

∂tu + ∂x

(
1
2

u2 + uxx

)
= 0, (52)

15



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 4; 2017

so that we immediately see that the quantity ∫ +∞

−∞
udx (53)

is conserved. This corresponds to conservation of mass. It can be seen that

u (ut + uux + uxxx) =
(

u2

2

)
t
+

(
u3

3
+ uuxx −

u2
x

2

)
x
= 0. (54)

This shows that the conserved density given by the funtional T = u2/2 is again a polynomial conserved density and the
quantity ∫ +∞

−∞

u2

2
dx

corresponds to the conservation of momentum. Similarly, if one multiplies the KdV equation by u2 and ux respectively to
get

u2 (ut + uux + uxxx) + ux (ut + uux + uxxx) = 0, (55)

one obtains (
u3

3
+ u2

x

)
t
+

[
−u4

4
− u2uxx + 2uu2

x − 2uxuxxx + u2
xx

]
x
= 0. (56)

Therefore the quantity ∫ +∞

−∞

(
u3

3
+ u2

x

)
dx, (57)

must be conserved. This corresponds to conservation of energy. It turns out that there is an infinite number of conserved
quantities and amongst the first three conserved quantities represent the most important physical quantities. In this section,
we resort to the numerical conservation law to check the accuracy and stability for our numerical schemes. Based on the
phenoemenon that rounding errors on the computer may prevent any further improvement in the calculations, we choose
the first conservation law in (1) for our numerical scheme test as it costs smallest floating-point operations.

Consider the initial condition
u (x, 0) = 3a2 sec h2

((
a (x − x0) − a3t

)
/2

)
, (58)

for any real a and x0, which is an exac solution of the KdV equation (1). Our first case is focused on the study of
performance of FD scheme on the KdV equation. We set a = 25, x0 = −2 and compute the solutions with the central finite
difference scheme in (6) with 256 mesh points in the domain [−π, π], ∆t =1e-7 and plot the solutions from time t = 0 to
t =6e-3. Solution profile is plotted in time period t ∈[0, 6e-3] and illustrated in Fig. 2. The solution profile clearly shows
that, despite the fact that ripples emanating from the wave, the solution waves still manage to propagate at some constant
speeds. From Fig. 3, it illustrates the comparison of exact solitary wave with numerical solution profile at the final time
of calculation, and one can see that the waves were struggling to maintain their shapes as time progressed and finally
paid the price with vast expenses of accuracy with regard to its height and speed after surviving for 60,000 integrations
of numerical calculations. This clearly indicates the FD scheme can only remain relatively stable with a certain degrees
of accuracy. In addition, the error of the conservation law in (53) measured by the difference of the values away from its
initial value is illustrated in Fig. 4, supporting the fact that the FD scheme remains relatively stable with variations around
the center datum line to a certain degree in which the accuracy will be compromised. Nevertheless, it is fair to point out
that the stability requirement in (11) refers to be as ∆t/∆x3 ≈ 0.00676 with given values of ∆x = 2π/256 and ∆t=1e-7
and allows the numerical calculations.

On the second case where the KdV equation is numericall solved with FLF numerical scheme, we carried out a similar
study of adopting the same numerical settings as in (58) by setting a = 25, x0 = −2, use 256 grid points in the domain
[−π, π], ∆t =1e-7 and plot the solution from time t = 0 to t =6e-3. As a result, solution profile from t=0 to t=6e-3 is
plotted in Fig. 5. The results clearly shows that no visible ripples are emanating from the wave, and the wave propagates at
an approximately constant speed to the right. Indeed, Fig. 6 shows the comparison of exact solitary wave with numerical
solution profile at the final time of calculation, together with the difference between these two waves. It can be seen that
the formation of numerical solutions has been substantially maintained and survived after 60,000 integrations with little
expense of accuracy with regard to its height and speed. It is observed that only fewer than 1 in 2,000 of the magnitude of
wave amplitude has been lost which shows the FLF scheme is reliable and accuracy has been progressed compared to the
FD scheme. Furthermore, the accuracy check of the scheme measured by the conservation law (53) is illustrated in Fig. 7
and shows that the error is accurate to O

(
10−12

)
in a remarkable performance. This not only demonstrates the numerical

results here should be regarded as genuine, not numerical artifacts, but also that the numerical wave solutions are solitons
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traveling to the right. In addition, the stability requirement in (35) gives the value ∆t/∆x3 ≈ 0.00676 < 0.0322 to further
support the results and performance of numerical calculations.

On the third case, we discuss the problem when the KdV equation is solved numerically by spectral methods, the pattern
is usually the same: spectral differentiation in space, RK4 differences in time. Here we consider the same initial condition
as described in (58) and compute the solutions with the numerical scheme in (23) with 256 mesh points in domain [−π, π],
time step ∆t =1e-7 and plot the solutions from time t = 0 to t =6e-3. Solution profile is plotted at time t ∈[0, 6e-3] in Fig.
8. The results illustrate the phenomenon that the wave propagates at a constant speed coherently. Moreover, neither ripples
nor dispersive wave components are emanating from the calculations which brings satisfactory results. On the other hand,
Fig. 9 shows the results of the exact and numerical solitary wave solutions and differences in between these two waves. It
is seen that the numerical error is maintained to be accurate to 10−3 in the magnitude of 2000 of wave amplitude. Hence
under the FRK4 scheme, the numerical solutions have been undergoing for 60,000 integrations and obtained without any
significant expense of accuracy with regard to its height and speed. Furthermore, the velocities of the solutions and their
shapes are almost unchanged compared to the exact solution. Moreover, accuracy test for the numerical scheme in Fig.
10 shows that the errors have been remarkably kept as small as O

(
10−12

)
. This not only shows that the FRK4 scheme is

significantly stable but also the accuracy of the scheme is guranteed to produce numerical calculations. Consequently, the
criterion equation in (49) gives CRI = 0.99 < 1 and supports the fact that the computation through FRK4 becomes the
choice of numerical methods.

6. Concluding Remarks

Fig. 1 illustrates the stability regions from (11), (35) and (49) for different schemes on the KdV equation with ∆t against
∆x. Three numerical schemes including the finite difference, fourier leap-frog and fourier RK4 procedures are presented
for the equation. By using the analysis on the linearized equation, we deduce that the marginal curves of stability region are
all nonlinear curves. It is known that the fourier spectral method consisting of space space differentiation and integrating
procedure in time can be swiftly convergent and spectrally accurate in spatial domain. In particular, the region of stability
of the fourth order Runge-Kutta method is so complicated that it can not be expressed in terms of a closed form of
algebraic equation but can be characterized through the symbolic computation. The result also shows that the stability
region for FLF scheme is stricter that that of the FRK4 scheme.

Stability criteria of numerical schemes on the KdV equation are developed, namely the central finite difference, fourier
leap-frog, and fourier spectral RK4 schemes. Each of the schemes gives us an estimated region for allowed values of ∆x
and ∆t. The errors measured by the spread of the values of conservation law from its initial value are recorded, which
gives an accuracy test for the numerical schemes. This paper also carried out a comparative study of solitary wave solution
for different schemes and numerical settings to test the accuracy and stability condition. It is seen that fourier spectral
RK4 scheme strikes the right balance between the finite difference and fourier leap-frog schemes for numerical methods.

Figure 1. Stability regions for the KdV equation with different schemes
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Figure 2. Solution profiles of the KdV equation using finite difference scheme

Figure 3. Solution profile for FD scheme depicted at time t = 0.006, showing differences between exact and numerical
solutions
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Figure 4. Numerical evaluation of conservation law (53) for KdV by using FD scheme with initial condition as single
solitary wave solution
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Figure 5. Solution profiles of the KdV equation using Fourier Leap Frog scheme
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Figure 6. Solution profilefor FLF scheme depicted at time t = 0.006, showing differences between exact and numerical
solutions
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Figure 7. Numerical evaluation of conservation law (53) for KdV by using FLF scheme with initial condition as single
solitary wave solution
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Figure 8. Solution profiles of the KdV equation using Fourier RK4 scheme

Figure 9. Solution profile for FRK4 scheme depicted at time t = 0.006 for FRK4 scheme, showing differences between
exact and numerical solutions
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Figure 10. Numerical evaluation of conservation law (53) for KdV by using FRK4 scheme with initial condition as single
solitary wave solution.
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