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Abstract

In the condition that the real valued function f : S → R is a arc connected function in arc connected set S ⊆ Rn, this

paper give the definition of generalized arc connected function. The class function is the promotion of convex function

which satisfies identified local-global extremum property. Conversely, under certain conditions. the function meeting

local-global extremum property must be one of those generalized functions. Also, the optimality sufficient condition of

minx∈S f (x), s.t.g(x) ≤ 0 is obtained under generalized connected assumption.
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1. Introduction

In both theory and application, optimization has been developed very rapidly in recent 40 years. Optimization research

has now become a very hot topic in academic theory and application. Along with depth study, we find many interesting

results in theory, which make the object tense. From application point, functions involved in the problem are more close to

reality, that is, more convenient to use. To make the research work more explicit, we introduce the optimization direction

and area, which illustrates that the problem we study has nature, university and applicability.

The most important promotion of convexity is the inconvexity concept given by Hanson in 1981. After that, using gen-

eralized algebraic operation, Clarke generalized gradient, Minch symmetrical gradient and cone sub-differential concept,

(h, φ)z−(quasi)pseudo convexity, strict (h, φ)z− pseudo convexity, quasi Bs-inconvex, pseudo Bs-inconvexity, (h, φ)s−
convexity,(h, φ)s−(quasi)pseudo convexity, (h, φ)s−(quasi)pseudo inconvexity, generalized uniform convexity, general-

ized uniform (quasi)pseudo convexity and η − (A,N) function etc. 30 kinds of generalized convex functions were intro-

duced, then the optimization research has become very in-depth and rich. Professor Hanson , in his paper, consider certain

objective function from

f (x) = f (a) + � f (a)T (x − a) + · · · · · ·
expanding in a point. For the proof that f (x) takes extreme value in x = a, its factor x−a can’t afford a key role. Therefore

he introduced the following inconvexity concept.

Definition 1.1 Suppose f (x) be a differentiable function, x ∈ Rn is its domain, α is one point in its domain. If existing a

vector function η : X × X → X satisfying

f (x) ≥ f (a) + � f (a)Tη(x, a), for all x ∈ X. (1)

then f (x) is inconvex in point a. If f (x) is inconvex in every point of X, then f (x) is inconvex in X.

From (1), when point a is settled, if the inner product of η(x, a) and gradient of f (x) in a is greater than zero, where η(x, a)

is one of vector in X defined by a and x for x ∈ X, then f (x) can take local minimum in a.

In view of the above analysis, inconvex concept defined by Hanson brings the development and enrichment in optimization

theory. One of the most prominent is the generation of weak convexity, characterization of optimal condition and the dual

problem establishment. Validity characterization of multi-objective optimization problems and the dual problem of multi-

objective optimization are more important. At the same time, the results in variational (multi-objective) problem and

optimal control problem have similar results, which can be seen in all references(Zhian Liang, 2001- Weir T., 1998).

When η(x, a) = x − a, it is the usual convex concept. In this time. the gradient of f (x) in point a is an element in dual

space of X, which can be seen as � f (a) acting on the element x − a of X. In the inconvex set, � f (a) can be considered

as the element in ”dual space” acting on the set {η(x, a)|x ∈ X}. So from this point of view, it seems that we can also do

some work, but it is not in the scope of this paper.

Let us consider the feasible region of optimization problem. Usually when we solve an optimization problem. Usually

when we solve an optimization problem, the feasible region is generally a area with inner point. But in practical problems,
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it often does not have such conditions. For example, the feasible region is the following linear graph without inner point

whose feasible region is connected by many curves(See Figure 1). Then the function defined in this feasible region can

not be considered its derivation or directional derivation, and thus there is no way to consider gradient of this function.

For example, the region is a circle in xy-place and function is a curve in corresponding cylindrical surface, which is seen

in Figure 2.

Considering this problem, Ortega and Rheinboldt(Ortega J.M., 1970) proposed arc connectivity concept of domain in

1970. They promoted the segment defined originally to a continuous arc. After that, Avriel and Zang(Avriel M., 1970)

extended it to generalized convexity. Arc connectivity function and generalized function have good local-global extremum

property. In this research area, also need to discuss the optimality condition and dual problems,also and the effective

condition of multi-objective optimization and dual problems, which can be found in Minasian(Stancu Minasian I.M.) and

references (Hansom M.A, 1980- Weir T., 1998). This paper introduces arc connectivity concept, define new concepts and

give derivation results. Section 2 describes the basic concepts and basic conditions. Some properties of generalized arc

connected function are given in section 3. Section 4 derives a main result.

2. Basic Concepts and Basic Conclusions

Definition 2.1 For arbitrary x1, x2 ∈ S , if existing a continuous vector valued function Hx1,x2
: [0, 1] → S satisfying

Hx1,x2
(0) = x1,Hx1,x2

(1) = x2, (2)

then S ⊆ Rn is arc connected, denoted by AC and Hx1,x2
is called arc.

Definition 2.2 Suppose f (x) is a real valued function defined on a arc connected set S ⊆ Rn. For x1, x2 ∈ S , Hx1,x2
is a arc

connecting x1 and x2 in definition 2.1. For arbitrary λ, 0 ≤ λ ≤ 1, if

f (Hx1,x2
(λ)) ≤ (1 − λ) f (x1) + λ f (x2) (3)

holds, then f (x) is called arc connected function in S .

Clearly, arc connectivity concept is the promotion of convexity. Noting that, if

Hx1,x2
(λ) = (1 − λ)x1 + λx2, (4)

arc connected set and arc connected function are equal to convex set and convex function respectively.

Paper (Zhian Liang) gives some examples of arc connected function. For example

f (x) = 100[x2 − (x1)2]2 + (1 − x1)2 (5)

is arc connected function on the arc

Hx1,x2 (λ) = [
λx2

1 + (1 − λ)x1
1

λ[x2
2 − (x2

1)2] + (1 − λ)[x1
2 − (x1

1)2] + [λx2
1 + (1 − λ)x1

1]2 ]. (6)

This function f (x) is called cut valley function.

Arc connected function still has good characters.

Theorem 2.1 (Avriel M., 1980) Suppose f (x) is a arc connected function in a arc connected set S ⊆ Rn and x0 is a local

minimum point of f (x), then x0 is a global minimum point of f (x).

Now let us consider generalized arc connected function.

Definition 2.3 Suppose f (x) is a real valued function in a arc connected set S ⊆ Rn and x0 ∈ S . For arbitrary x ∈ S , if

existing Hx,x0
connected by x and x0 satisfying

f (x) ≤ f (x0) ⇒ f (Hx,x0
(λ)) ≤ f (x0), (7)

for arbitrary λ, 0 ≤ λ ≤ 1, then f (x) is a quasi-arc connected function, denoted by QACF; If f (x) ≤ f (x0) ⇒ f (Hx,x0
(λ)) <

f (x0) holds for 0 ≤ λ ≤ 1, f (x) is a strong quasi-arc connected function, denoted by SQACF; If f (x) < f (x0) ⇒
f (Hx,x0

(λ)) < f (x0) holds for 0 ≤ λ ≤ 1, f (x) is a strict quasi-arc connected function, denoted by STQACF; If f (x) is

QACF, SQACF and STQACF expectively in point of S , f (x) is QACF, SQACF and STQACF expectively in S .

Contrasting (3) and (7), it is easy to see that the arc connected function is quasi-arc connected. At the same time, we have

the following conclusions.

Theorem 2.2 Suppose f (x) is a real valued function in a arc connected set S ⊆ Rn, f (x) is QACF if and only if the level

set

S ( f , α) = {x ∈ S , f (x) ≤ α}
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is arc connected for α ∈ R.

Proof: The necessity is obvious. Now we consider its sufficiency. Suppose S ( f , α) is arc connected for α ∈ R. Let

α = max{ f (x1), f (x2)} for x1, x2 ∈ S , then we can find arc Hx1,x2
connected by x1 and x2 in S ( f , α) satisfying (2). For

f (x1) ≤ f (x2) and Hx1,x2
is a vector valued function in S ( f , α), fHx1 ,x2

≤ f (x2) for λ, where 0 ≤ λ ≤ 1. And since x1 and x2

are arbitrary, then f (x) is QACF.

Now, the following is an example of quasi-arc connected function.

Example 2.1 (Zhian Liang) Let x ∈ R2, f : R2 → R is

f (x) =

{
(x1x2)2, x1x2 ≤ 5

25, x1x2 > 5

f (x) is QACF of the below arc

Hx1,x2
(λ) =

{
(1 − 2λ)x1, 0 ≤ λ ≤ 1

2

(2λ − 1)x2,
1
2
≤ λ ≤ 1

forx1, x2 ∈ R2.

The figure of f (x) is seen in Figure 3.

From definition, STQACF⇒ SQACF ⇒ QACF, but it does not hold in turn, which is referred in (Zhian Liang).

Define a function in a feasible arc connected domain. For example, objective function f (x) in problem (ACP) may has

good analysis property, or corner points appear. The following function f (x) is an example(See figure 4).

Using analysis property to character that f (x) takes extremum in a point in S , we should consider the directional derivative

of function in this point, and then give the arc derivation concept.

Definition 2.4 Suppose Hx1,x2
is a arc connecting x1 and x2 in definition 2.1. If thee is a vector �−Hx1,x2

(λ0) ∈ Rn and a

vector function α : [0, 1] → Rn satisfying lim
t→0
α(t) = 0, and

Hx1,x2
(λ) = Hx1,x2

(λ0) + (λ − λ0)�−Hx1,x2
(λ0) + (λ0 − λ)α£(λ0 − λ) (8)

holds for 0 ≤ λ ≤ 1, then vector �−Hx1,x2
(λ0) is called directional derivative of Hx1,x2

in the point λ = λ0, which is given

by

�−Hx1,x2
(λ0) = lim

λ→λ0

{[Hx1,x2
(λ) − Hx1,x2

(λ0)]/(λ − λ0)} (9)

Now, we define arc derivation concept of arc connected function.

Definition 2.5 Suppose f (x) is a continuous real valued function in a arc connected set S ⊆ Rn and x0 ∈ S . For x ∈ S ,

Hx,x0
is a arc connecting x and x0 in definition 2.1. If x approaches to x0 along Hx,x0

and the following limit exists:

fHx,x0
(x0) = (�−Hx1,x2

(1))T � f (x0) = lim
λ→1

f (Hx,x0
(λ)) − f (x0)

λ − 1
, (10)

then f (x) is arc derivative for Hx,x0
in point x0, which is denoted by fHx,x0

(x0).

For a continuous ACF in S , f (x) can be expressed

f (Hx1,x2
(λ)) = f (x2) + (λ − 1) fHx1 ,x2

+ (1 − λ)α(1 − λ) (11)

for 0 ≤ λ ≤ 1, where α : [0, 1] → R satisfying lim
t→0
α(t) = 0.

From arc derivation definition, we obtain a first-order necessary condition of f (x) taking extremum.

Theorem 2.3 Suppose f (x) is a real valued function in a arc connected set S ⊆ Rn and x0 ∈ S . For x ∈ S , Hx,x0
is a arc

connecting x and x0 and f (x) is arc derivative along Hx,x0
in point x0. If f (x) takes maximum in this point, fHx,x0

(x0) ≥ 0;

If f (x) takes minimum in this point, fHx,x0
(x0) ≤ 0.

Now we define pseudo arc connectivity from arc derivation concept.

Definition 2.6 Suppose f (x) is a real valued function in a arc connected set S ⊆ Rn and x0 ∈ S . For x ∈ S , Hx,x0
is a arc

connecting x and x0, if

f (x) ≤ f (x0) ⇒ fHx,x0
(x0) ≥ 0 (12)

holds, then f (x) is pseudo arc connected function, denoted by PACF. Under the same conditions, if f (x) ≤ f (x0) ⇒
fHx,x0

(x0) > 0 holds, then f (x) is strong pseudo arc connected function, denoted by SPACF; If f (x) < f (x0) ⇒ fHx,x0
(x0) >
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0 holds, then f (x) is strict pseudo arc connected function, denoted by STPACF; If f (x) is PACF, SPACF and STPACF in

arbitrary point of S , f (x) is PACF, SPACF and STPACF in S .

From the definitions, the following holds:

I. STPACF⇒ SPACF ⇒ PACF;

II. ACF⇒ STQACF ⇒ SQACF ⇒ QACF ⇒ PACF.

3. Local- Global Extremum Property of Generalized Arc Connected Function

In the previous section , arc connected function has a good local-global extremum property. In this section, we discuss

the necessary and sufficient condition for local-global extremum property of generalized arc connected function. First of

all, that generalized arc connected function has determinate local-global extremum property is showed. Next, whether

the function of determinate local-global extremum property belongs to those functions is discussed, which is regarded as

the sufficient condition of local-global extremum property , and also regarded as the necessary condition of local-global

extremum property. The part about QACF can be referred in (Zhian Liang, 2001) and (Zhian Liang).

Theorem 3.1 (Zhian Liang, 2001) Suppose f (x) is QACF in a arc connected set S ⊆ Rn. If x0 ∈ S is a strict local

minimum point of f (x), then x0 is a strict global minimum point of f (x) in S .

For SQACF, we have the following theorems.

Theorem 3.2 Suppose f (x) is SQACF in a arc connected set S ⊆ Rn. If x0 ∈ S is a local minimum point of f (x), then x0

is the only global minimum point of f (x) in S .

Proof: We use disproof method. Suppose f (x) is SQACF and x0 ∈ S is a local minimum point of f (x). If there is x ∈ S
satisfying f (x) < f (x0), then it exists arc Hx,x0

connecting x and x0 satisfying

f (Hx,x0
(λ)) < f (x0) for 0 ≤ λ < 1 (13)

For arbitrary neighborhood of x0, we can always find λ0. When λ0 ≤ λ ≤ 1, Hx,x0
is in this neighborhood, which is a

contradiction that x0 ∈ S is a local minimum point of f (x). Theorem is proven.

For STQACF, we have the following theorems.

Theorem 3.3 Suppose f (x) is STQACF in a arc connected set S ⊆ Rn. If x0 ∈ S is a local minimum point of f (x), then

x0 is a global minimum point of f (x) in S .

For PACF defined by us, we have the following properties:

Theorem 3.4 Suppose f (x) is a real valued function in a arc connected set S ⊆ Rn and x0 ∈ S satisfies that � f (x0) = 0.

If f (x) is STQPACF, x0 is a global minimum point of f (x) in S ; If f (x) is SPACF, x0 is the only global minimum point of

f (x) in S .

Proof: Suppose f (x) is STPACF and x0 ∈ S satisfing that � f (x0) = 0. For arbitrary x ∈ S and the corresponding arc

Hx,x0
,

fHx,x0
(x0) = (�−Hx,x0

(1))� f (x0) = 0 (14)

holds. From the definition of STPACF, f (x) ≥ f (x0) holds, i.e. x0 is a global minimum point of f (x) in S . If f (x) is

SPACF and from its definition , f (x) > f (x0)) holds for x ∈ S , x � x0, i.e. x0 is the only global minimum point of f (x) in

S . Theorem is proven.

Before discussing the sufficiency of local-global property, we first define that

S ◦( f , α) = {x ∈ S : f (x) < α} (15)

is a strict level set of f (x) in point α ∈ R. Now a relevant lemma is shown.

Lemma 3.1 Suppose f (x) is QACF in a arc connected set S ⊆ Rn, then S ◦( f , α) is arc connected for any α ∈ R.

(By this lemma, we can get the following results).

Theorem 3.5 Suppose f (x) is QACF in a arc connected set S ⊆ Rn and each local minimum point of f (x) is also global

minimum point, then f (x) is STQACF.

Proof: Suppose f (x1) < f (x2) for any x1, x2 ∈ S . Let α = f (x2), then x1 ∈ S ◦( f , α). Since f (x) is QACF and from lemma

3.1, S ◦( f , α) is arc connected. From the definition of arc connected set, arc Hx1,x2
exists in S ◦( f , α) satisfying

Hx1,x2
(0) = x1,Hx1,x2

(1) = x2,

and f (Hx1,x2
(λ) < f (x2) holds for 0 ≤ λ < 1, i.e. f (x) is STQACF. Theorem is proven.
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Through S ◦( f , α) , we can also describe QACF as follows.

Theorem 3.6 Suppose f (x) is a real valued function in a arc connected set S ⊆ Rn. If S ◦( f , α) is arc connected for α ∈ R
and each local minimum point of f (x) is also global minimum point, then f (x) is STQACF.

Theorem 3.7 Suppose f (x) is QACF in a arc connected set S ⊆ Rn. If the only local minimum of f (x) is also global

minimum, then f (x) is SQACF.

Proof: Suppose f (x) satisfies the condition in theorem 3.7. From theorem 3.5, f (x) is STQACF, i.e. f (x1) < f (x2) ⇒
f (Hx1,x2

(λ)) < f (x2) for x1, x2 ∈ S and 0 ≤ λ < 1. So we only consider f (x1) = f (x2) for proving that f (x) is SQACF.

Suppose f (x1) = f (x2) = α and x1 � x2. Obviously, x1 and x2 are not the global minimum point of f (x) and S ◦( f , α) is

nonempty. Take x ∈ S ◦( f , α) and since f (x) is STQACF, then existing arc Hx,x1
and Hx,x2

satisfying

f (Hx,x1
(λ)) < f (x1), f (Hx,x2

(λ)) < f (x2). (16)

for 0 ≤ λ < 1. Let

Hx1 x2
(λ) =

{
Hx,x1

(1 − 2λ), 0 ≤ λ ≤ 1
2

Hx,x2
(2λ − 1), 1

2
≤ λ ≤ 1

, (17)

then

f (Hx1,x2
(λ)) < f (x2). (18)

for 0 < λ < 1. i.e. f (x) is SQACF. Theorem is proven.

Similarly, we can prove the following generalized conclusions.

Theorem 3.8 Suppose f (x) is a real valued function in a arc connected set S ⊆ Rn. If S ◦( f , α) is arc connected for α ∈ R
and the only local minimum point of f (x) is also global minimum point, then f (x) is SQACF.

Now, we discuss what conditions PACF satisfies.

Theorem 3.9 Suppose f (x) is arc derivative QACF in a arc connected set S ⊆ Rn. If the only stable point of f (x) is also

the global minimum point, then f (x) is SPACF.

Proof: Suppose f (x) is arc derivative QACF in a arc connected set S ⊆ Rn. For x1, x2 ∈ S ,

1) f (x1) < f (x2). � f (x2) � 0 is known. From the continuity of f (x), it exists 0 < λ0 < 1 making

f (x1) < f [x2 − (1 − λ)� f (x2)] < f (x2) (19)

for all λ0 ≤ λ ≤ 1. Let

x = x2 − (1 − λ0)� f (x2). (20)

Since f (x1) < f (x), there is a arc Hx1,x(λ) making

f (Hx1,x(λ)) ≤ f (x) (21)

for 0 ≤ λ < 1. Now we define

Hx1,x2
(λ) =

{
Hx1,x( λ

λ0
), 0 ≤ λ ≤ λ0

x2 − (1 − λ)� f (x2), λ0 ≤ λ ≤ 1
(22)

then

�−Hx1,x2
(1) = � f (x2), (23)

f(Hx1,x2
(x2) = (�−Hx1,x2

(1))T � f (x2) = ‖� f (x2)‖2 > 0. (24)

1) f (x1) = f (x2). From hypothesis, � f (x1) � 0 and � f (x2) � 0. Similarly with 1), we can find 0 < λ1 < 1, 0 < λ2 <
1, λ1 < λ2 making

f (x1 − λ� f (x1)) < f (x1) for 0 < λ ≤ λ1, (25)

f (x2 − (1 − λ)� f (x2)) < f (x2) for λ2 ≤ λ < 1. (26)

Let

x1 = x1 − λ1� f (x1), x2 = x2 − (1 − λ)� f (x2). (27)

From theorem 3.7, f (x) is SQACF. So it exists arc Hx1,x2
making

f (Hx1,x2
(λ)) < max{ f (x1), f (x2)} < f (x2) = f (x1) (28)
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for 0 < λ < 1. Let

Hx1,x2
(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1 − λ� f (x1), 0 ≤ λ ≤ λ1,

Hx1,x2
( λ−λ1

λ2−λ1
), λ1 ≤ λ ≤ λ2,

x2 − (1 − λ)� f (x2), λ2 ≤ λ ≤ 1,

(29)

then

�−Hx1,x2
(1) = � f (x2), (30)

fHx1 ,x2
(x2) = (�−Hx1,x2

(1))T � f (x2) = ‖� f (x2)‖2 > 0. (31)

Summing up 1) and 2) and from the definition of SPACF, f (x) is SPACF. Theorem is proven.

Theorem 3.10 Suppose f (x) is a continuous real valued function in a arc connected set S ⊆ Rn and S ◦( f , α) is arc

connected . If the only stable point of f (x) is also the global minimum point, then f (x) is SPACF, and also is PACF.

Directly from theorem 3.9, the following conclusion is gotten.

Theorem 3.11 Suppose f (x) is arc derivative QACF in a arc connected set S ⊆ Rn. If every stable point of f (x) is also

the global minimum point, then f (x) is STPACF, and also is PACF.

Theorem 3.12 Suppose f (x) is a continuous real valued function in a arc connected set S ⊆ Rn and S ◦( f , α) is arc

connected . If every stable point of f (x) is also the global minimum point, then f (x) is STPACF, and also is PACF.

4. Optimization condition of Generalized Arc Connected Function and Dual Theory

In this section, we consider the following optimal problem:

(ACP)
min f (x),
s.t.x ∈ X

where X = {x ∈ S : g j(x) ≤ 0, j = 1, 2, · · · ,m} , f (x) and g j(x), j = 1, 2, · · · ,m is a real valued function in a arc connected

set S ⊆ Rn, and f (x) and g j(x), j = 1, 2, · · · ,m is arc connected about Hx1,x2
for x1, x2 ∈ S and arc Hx1,x2

is connected by

x1 and x2.

First, the sufficiency is shown.

Theorem 4.1 Suppose X = {x ∈ S : g j(x) ≤ 0, j = 1, 2, · · · ,m} is a feasible domain in problem (ACP) and f (x) and

g j(x), j = 1, 2, · · · ,m is arc connected in the arc connected set S ⊆ Rn. If x∗ is the optimal solution of (ACP) and fHx,x∗ (x∗)
and (gI)Hx,x∗ (x∗) are convex function for x, then it exists r∗0 ∈ R, r∗ ∈ Rm satisfying

r∗0 fHx,x∗ (x∗) + r∗T (gI)Hx,x∗ (x∗) ≤ 0, (32)

r∗T g(x∗) = 0, (33)

(r∗0, r
∗) ≥ 0 (34)

for x ∈ S , where I := I(x∗) := {i|gi(x∗) = 0}, J := J(x∗) := { j|g j(x∗) < 0}.
Proof: First we prove equation system

fHx,x∗ (x∗) > 0, (35)

(gI)Hx,x∗ (x∗) > 0 (36)

has no solutions in S .

We use disproof method. Suppose x ∈ S is a solution of equation system (35) and (36). Since fHx,x∗ (x∗) and (gI)Hx,x∗ (x∗)
exist, then for 0 ≤ λ ≤ 1,

f (Hx,x∗ (λ)) = f (x∗) + (λ − 1) fHx,x∗ (x∗) + (1 − λ)α(1 − λ), (37)

gi(Hx,x∗ (λ)) = gi(x∗) + (λ − 1)(gi)Hx,x∗ (x∗) + (1 − λ)αi(1 − λ), (38)

where

α : [0, 1] → R, lim
t→0
α(t) = 0, (39)

αi : [0, 1] → R, lim
t→0
α(t) = 0, i ∈ I (40)

From (35),(36),(37) and (38), we can obtain that

fHx,x∗ (x∗) − α(1 − λ) > 0;

(gi)Hx,x∗ (x∗) − αi(1 − λ) > 0, i ∈ I
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for enough λ, denoted by λ0 < λ < 1. Then from (35) and (36), for λ0 < λ < 1,

f (Hx,x∗ (λ)) − f (x∗) < 0, (41)

(gi)Hx,x∗ (λ) − gi(x∗) < 0, i ∈ I. (42)

Since gi, j ∈ J is arc derivative in x∗, so it is continuous. Simultaneously£ arc Hx,x∗ (λ) is a continuous function about λ.
So

lim
λ→1

g j(Hx,x∗ (λ)) = g j(x∗) < 0.

This implies that it exists λ∗j , j ∈ J making

gi(Hx,x∗ (λ)) < 0 (43)

when λ∗j ≤ λ ≤ 1. Let λ∗ = max{λ0, λ
∗
j}, from (41), (42) and (43), we obtain that Hx,x∗ (λ) ∈ X for λ∗ < λ < 1 and

f (Hx,x∗ (λ))− f (x∗) < 0, which conflicts with that x∗ is the optimal solution of (ACP) . Therefore equation system (35) and

(36) has no solutions.

Because fHx,x∗ (x∗) and (gI)Hx,x∗ (x∗) are convex functions about x, there are incomplete zero r∗0 ∈ R and r∗i ∈ Rm satisfying

r∗0 fHx,x∗ (x∗) + r∗TI (gI)Hx,x∗ (x∗) ≤ 0

for x ∈ S . Let r∗J = 0, the theorem is proven.
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