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Abstract 

This paper presents an innovative Fuzzy-Stochastic Approach (FSA) to solve Binary Linear Programming (BLP) 
problems under uncertainties. An Interval-coefficient Fuzzy Binary Linear Programming (IFBLP) model is applied here 
to reflect two different types of uncertainty in a BLP problem. In the proposed IFBLP model the interval coefficient is 
used to reflect parameter uncertainty, and the fuzzy goal & fuzzy constraints are used to represent model structure 
uncertainty. The proposed FSA would de-fuzzify the fuzzy constraints in an IFBLP model by considering its fuzzy goal; 
and then derive two linear BLPs with extreme crisp-coefficients from the IFBLP model, which here are called as a best 
optimum BLP and a worst optimum BLP. The results of the two-extreme linear BLPs are used to bound the outcome 
distribution of the IFBLP model. The proposed FSA is applied into a long-term traffic noise control planning to present its 
applicability.  
Keywords: Fuzzy, Stochastic Simulation, Uncertainty, Interval-parameter, BLP  
1. Introduction 

Uncertainty is a major difficulty in solving optimization problems. It may exist in the parameters and/or in the structure in 
an optimization model, which are called as “parameter uncertainty” and “structure uncertainty” respectively. Previous 
studies show that a probability technique, interval theory, and fuzzy sets; are three methodologies for dealing with the 
parameter uncertainty or model structure uncertainty (Herrera et al., 1993; Zimmermann & Pollatschek, 1984; Herrera & 
Verdegay, 1991; Liu & Sahinidis, 1997; Huang et al., 2001; Yu & Li, 2001). In the Binary Linear Programming (BLP) 
area, for example, Yu and Li (2001) proposed a fuzzy method to solve a fuzzy BLP (also called as FBLP) problem, in 
which the model contains fuzzy coefficients in the objective function and constraints. However, their model doesn’t 
consider the model structure uncertainty, which may result in low efficiency to solve uncertainty in the right-hand side of 
constraints. On the other hand, the flexible FBLP approach can efficiently solve such right-hand side uncertainty problems 
(Herrera et al., 1993; Zimmermann & Pollatschek, 1984; Herrera & Verdegay, 1991). This is because the constraints of a 
flexible FBLP model are expressed by fuzzy inequalities and allow some violations, which can reflect the uncertain world. 
However, the parameter uncertainty is not considered in their models. Huang et al. (2001) solved the parameter 
uncertainty problem by interval-coefficient BLP, which uses interval values (represented by a lower bound value and an 
upper bound value) to reflect uncertainties in model coefficients.  
In this paper, an Interval-coefficient Fuzzy BLP (IFBLP) model that combines a flexible FBLP with an 
interval-coefficient BLP, is developed for simulating parameter uncertainty and structure uncertainty in real world 
cases. Because there is no existing method for solving an IFBLP model directly; an IFBLP is pre-converted into two 
auxiliary parametric BLP problems, which can be further dealt with by some conventional approaches (Peng & Mayorga, 
2013). Therefore, the solution of the IFBLP here roughly contains the following two major steps: (a) defuzzifying the 
flexible FBLP into a linear BLP to solve the fuzziness in the IFBLP, and (b) crisping the interval-coefficient BLP into a 
crisp BLP.  
Previously, two algorithms have been developed to defuzzify a flexible FBLP. The first one searches a solution per as the 
concept of maximizing decision with considering both fuzzy constraint sets and a fuzzy goal (Bellman & Zadeh, 1970; 
Zimmermann & Pollatschek, 1984); the second algorithm looks for an answer based on the Representation Theorem of 
Fuzzy Sets without considering a fuzzy goal (Negoita & Ralescu, 1975; Herrera & Verdegay, 1991). However, the 
application of the first algorithm, called min-operator, may result in a nonlinear programming problem (see Zimmermann, 
1987, pp.100-108 and 254; Herrera et al., 1993). Herrera et al. (1993) then developed an approach that used a T-norm 
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operator technique to generate a single optimal alpha solution that can avoid the nonlinear problem.  
There is no method that could directly crisp an interval-coefficient BLP. However, the approach developed by Chinneck 
and Ramadan (2000), originally designed to crisp an interval-coefficient LP, it is modified in this Paper. It is worth 
mentioning that the proposed approach in this Paper is not simply defuzzifying and crisping the IFBLP problems; it uses 
an innovative manner to deal with the problem of the infinite optimal alpha results that are caused by the integration 
process of the defuzzification and crisping. Moreover, a Fuzzy-Stochastic Approach (FSA) is designed to solve the high 
non-linear relationship between the coefficients and the optimal alpha which brought by the linear transferring process.  
In detail, the proposed FSA novelty consists in: (1) utilizing the T-operator technique to defuzzify the fuzzy constraints 
with considering the fuzzy goal; (2) using a stochastic simulation model to find the range of optimal alpha solutions; and 
(3) preforming a crisping process to transfer the interval-coefficient BLP into two extreme auxiliary parametric BLPs. The 
IFBLP is applied into a long-term traffic noise control planning to demonstrate the applicability.  
In Section 2, we present the overall FSA methodology; in particular: we introduce the formulation of IFBLP; the 
processes of the defuzzification and crisping; and describe the fuzzy-stochastic approach for the solution of the IFBLP. In 
Section 3, we demonstrate how to build an IFBLP for a long-term traffic noise control plan; show how to solve this IFBLP 
model; and present the results of the model a related discussion. Section 4 provides conclusions on the proposed 
methodology.  
2. Methodology 

2.1 Formulation of IFBLP 

Starting from a general IFBLP model that has fuzzy constraints and interval coefficients (Peng & Mayorga, 2013):   
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where jx are the binary variables; the symbols “ ~ ” represents fuzzy inequality, it means that the decision-maker permit 
some violations of the constraints; )(],[  Iaa ijij

 represent the j-th set of interval numbers in  at the i-th 
constraint, 

ija  and 

ija represent the upper and lower bound coefficients, respectively; )(],[  Ibb ii
 represent 

the set of interval numbers in  on the i-th constraint, 

ib and 

ib  are the upper and lower bounds, respectively. 
)(],[  Icc jj

 represent the j-th set of interval numbers in   for the objective function, 

jc and 

jc  are the 
upper and lower bound coefficients, respectively. 
The IFBLP model above is used to reflect two different types of uncertainty in a BLP problem: the interval coefficients 
reflect parameter uncertainty and the fuzzy constraints represent model structure uncertainty. To solve Model (1), two 
major steps are involved: 1) defuzzifying the fuzziness in the IFBLP that will result in a linear BLP, and 2) crisping the 
interval-coefficients that will generate a crisp BLP. 
2.2 Defuzzification Process  

Considering about a crisp coefficient BLP model with fuzzy constraints as follows: 
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The above model is also called as the flexible FBLP model. Previously, two algorithms have been developed to defuzzify 
the flexible FBLP model. The first one searches a solution per as the concept of maximizing decision that using the 
min-operator technique to connect fuzzy constraint sets and a fuzzy goal (Bellman & Zadeh, 1970; Zimmermann & 
Pollatschek, 1984); the second algorithm looks for an answer based on the Representation Theorem of Fuzzy Sets, which 
applying the  -cut technique without considering a fuzzy goal (Negoita & Ralescu, 1975; Herrera & Verdegay, 1991). 
However, the application of the first algorithm may result in a nonlinear programming problem (see Zimmermann, 1987, 
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pp.100-108 and 254; Herrera et al., 1993). The algorithms are introduced and discussed as follows. 
2.2.1  -cut Technique Approach 
We first introduce this  -cut technique. Defining the membership functions of its ith constraint as follows: 
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If ]1,0( , let any  -cut of the constraint set becomes a classical set:   1,0,)()(  xxxX X  . where, 
 Mixx iX  ),(inf)(  , then Model (2) is converted into the following auxiliary parametric BLP problem: 
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where 
ib is the tolerance of the right-hand side, and 0 ib ;   represents an intermediate variable. The major 

advantage of the  -cut technique is that it ensures the fuzzy sets })({  xX
in convexity and boundedness. The 

problem is that   is an interval value here that requires iterative process to be generated. 

2.2.2 Min-operator Approach 
Now we discuss the Min-operator approach. For a fuzzy goal in a model, giving an aspiration value of “ 'f ” for the 
objective function that desire to achieve, then Model (2) can be written as: 
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where no distinction is made between fuzzy objective and fuzzy constraints. Per as Bellman and Zadeh (1970)’s concept 
of maximizing decision: if the result of Model (5) will be *x , the membership function (satisfaction degree) of the optimal 
decision is  
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where )(xG and )(xC are the membership functions of the goal and the constraints; )(xD is called as “the 

satisfaction degree of a decision”.  

In order to find the optimal value of *x , let )](),([min)( xxx CG
i

D   , the following model is obtained: 
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where 
iE is the i-th row of E ,   nmT
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id is the tolerance of the right-hand side, and 0 id .  

The major advantage of the min-operator technique in Model (7) is that considers the goal as fuzzy. It notes that Model (1) 
originally has not a fuzzy goal, but be considered the goal as fuzzy when we applying the min-operator technique. 
However, Zimmermann pointed out that Model (7) may become a nonlinear programming problem due to nonlinear 
membership functions or min-operator. (see Zimmermann, 1987, pp.100-108 and 254; Herrera et al., 1993). Therefore, 
we need an algorithm to deal with this nonlinear problem. 
2.2.3 The link of Two Methods 
Herrera et al. (1993) presented an algorithm that linking above Min-operator approach and  -cut technique for the 
flexible FBLP. It applies the T-norm operator technique in the process of “satisfy constraints and attain goal”, which can 
avoid the nonlinear problem.  

In order to solve Model (2) in the fuzzy solution domain )(S , where 

)(S =  )(),(min)( Xyyfxfx  , the following propositions are presented. The proofs relating to 

these propositions were given by Herrera et al. (1993) 

Proposition 1 Let )}(,sup)({  Sxx  , and define )(P is a fuzzy solution of Model (2) for each fixed 
]1,0( . If ]1,0('   is a specific fixed value, and )( 'x is the optimal 0-1 solution of the corresponding problem
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Proposition 3 Let )(T  to be an Archimedean t-norms operator. Using the Hamacher formulation as:  
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where   is an arbitrary parameter. If   =1, then 
BABAH  ),( . Therefore, the following relation holds: 
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Proposition 4 Let * is the value obtained from the Hamacher formulation (Zimmermann, 1978), and suppose )(x  is 

the optimal value of Model (2). If  )( kkx   denotes the set of points of the solution )(x , the optimal value of   for 

Model (2) is 
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Based on above propositions, an iteration process for optimal value of * is generated, which is described in Algorithm 1 
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(Herrera et al., 1993). The procedure of Algorithm 1 is shown as follows: 
Algorithm 1  Let 1 , ' , and   to be three intermediate values for  .  
Step 0: let  = 1 = * =0. 
Step 1: Solve )(P . Let )(x be an optimal value of )(P . 

Step 2: Let  Mixx i  )),((min))((  . 

If 1 =0, then )(x is an optimal value of )(P ，   ,1 ， 
Else )(x is an optimal value of )(P ，   , . 
Step 3: Let )),(((sup'  xT G . 
If *'   , then '*   . 
Step 4: If 1  then  1 ,   ; go to Step 1. 
Step 5: Stop. 
2.3 Crisping Process  

After defuzzifying the fuzziness, Model (1) is then transferred into an interval-coefficient BLP model with the optimum of 
* .  
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where 
ib =   ii bb ; )( *U stand for the set of * , each * in )( *U corresponds to a flexible FBLP model. It is 

evident that )( *U in Method (9) is boundedness that could be treated as an interval values. If we define the upper value 
and the lower value of a )( *U , this interval value is identified. We give some definitions, theorems and mathematical 
proofs in the following sections. 
2.3.1 Value Range of 

*  

Based on Proposition 4, the optimal value of * in a crisp BLP such as Model (4) is obtained by 
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where  )( kkx  indicates the set of values of the solution )(x . 
The following Theorems, their proofs, and Algorithms have been developed by the authors for finding the value range of 

* . 
Theorem 1 Suppose )(x is the solution value of a crisp BLP such as Model (4), ))((  x has a negative linear 
correlation relationship with the corresponding variable coefficient in the constraints.  

Proof From Equation (3), we obtain 
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)()( 01 xx ii   , then ))(())(( 01  xx  . Therefore, ))((  x has a negative linear correlation relationship 

with the variable coefficients in the constraints. 

Theorem 2 Suppose )(x is the solution of a crisp BLP such as Model (4), ))((  xG has a positive linear correlation 

relationship with the corresponding variable coefficient in the constraints. 

Proof There are two scenarios: Min crisp BLP and Max crisp BLP.  

i). For the Min crisp BLP such as Model (4):  

We define   1,0,)()( 000  xxxX X   and   1,0,)()( 111  xxxX X  , where, 

 Mixx iX  ),(inf)( 00   and  Mixx iX  ),(inf)( 11  . Due to 01
ijij aa  , according to Theorem 1, we 

have ))(())(( 01  xx  , then ( })),((min{ 11 Mixi     })),((min{ 00 Mixi  ). Therefore, 

))(())(( 01  xx  is satisfied )()( 10  XX  .  

As )}(min{)( 00  Xxxcxc   and )()()( 100  XXx  ,  

it follows that )}(min{)( 10  Xxxcxc  ; on the other hand, )}(min{)( 11  Xxxcxc   and 

)()( 11  Xx  , but )()( 01  Xx  . Thus, we have )()( 01  xcxc  . 

Use the following membership function equation:  
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We have ))(())(( 10  xx GG  , then ))((  xG
has a positive linear correlation relationship with the 

corresponding variable coefficient in the constraints. 

ii). For the Max crisp BLP, use an objective coefficient substitution: Let cc ' , and then convert the Max problem to a 
Min problem. The proof is then identical to the above proof. 
According to Theorem 1, Theorem 2, and Equation (10), we obtain the following consequences, and their proofs are 
obvious. 
(1) The value of *  has a nonlinear relationship with the corresponding variable coefficient in the constraints. 
(2) The interval coefficients will result in a continue *  solution set. 
Definition 1 For Model (9), if a value of * is the maximum (or minimum) in )( *U , it is then denoted as * (or * ).  
Therefore, Model (9) can be transferred into the following model: 
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We know ],[ 

ijij aa and ],[ 

jj cc are interval values with uniform distribution, but don’t know the distribution type about 
the set of * that values are between * and * .  Here, we use ],[ **    to indicate the value set of * . 
2.3.2 Solution for an Interval-coefficient BLP 
Solving a LP requires that specific values be fixed (crisped) for the coefficients in the model. An interval-coefficient 
contains infinite crisping coefficients, and a different coefficient will result in a different solution value for the model. 
Chinneck and Rammadan (2000) developed an algorithm for solving interval-coefficient LP. They declared that the best 
optimal result and the worst optimal result about the variables in the model can be generated by fixing the interval 
coefficients on their bounds. Their generalizations of the basic idea are used for the interval-coefficient BLP in this paper. 

We call a specific constraint that fixing its coefficients at the lower bounds or the upper bounds as an extreme constraint. 

If a model contains p interval coefficients in the constraints, this model clearly has 12 p  different extreme constraint 

combinations. let kS stand for the set of solutions to the k-th extreme constraint and let 
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Definition 2 If there has one extreme constraint combination that its solution set is the same as S (or S ), then it is 
called the maximum (or minimum) value range constraint combination. 

Theorem 3 For Model (12), suppose there are the interval constraints 
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Theorem 4 Suppose there is the objective function 
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Proof Since 0jx , proof is evident. 
Therefore, it is not necessary to look for the distribution type of the value set of * , we only need to know the values of 

* and * . 
2.3.3 Monte Carlo Simulation 
The values of * and * can be found by a statistical simulation technology—Monte Carlo Simulation. Monte Carlo 
Simulation involves repeated generation of pseudovalues for the modeling inputs, drawn from known probability 
distributions within the ranges of possible values.  
Algorithm 2 the Monte Carlo Simulation includes the following steps: 
Step 1: generation of the pseudovalues for ],[ 

ijij aa and ],[ 

jj cc , which both following the uniform distribution. 
Step 2: implementation of Model (4) and Algorithm 1 with the pseudovalues to find a solution * . 
Step 3: repeat steps 1 and 2;  
Step 4: compare the values of * in the solution set to find * (lower boundary) and * (upper boundary). 
2.3.4 The best and the worst optimum models 
Algorithm 3 In the interval coefficient BLP of Model (12),   01,0 jx . We could obtain the best optimum by 
solving the following BLP: 
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Furthermore, we can generate the worst optimum in Model (12) by solving the following BLP: 
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3. Application 

Traffic noise control planning requires the decision maker to make binary decisions, it is usually considered as a BLP 
problem. Because high non-linear and uncertainties exist in real world cases, simply apply the BLP for a traffic noise 
control planning may mislead the decision maker. Here, we apply the developed IFBLP and its solution process for a 
long-term traffic noise control planning, to reflect uncertainty and nonlinearity in the real case and demonstrate the 
applicability of the proposed methodology. 
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Figure 1. The studying road sketch 

3.1. Site information 

The traffic noise control site is a road of 12.4 km length and separated into five sections (the details are shown in Figure 1 
and Table 1). There are residential zone, public zone, factory, hospital, church, school and commercial zone along this 
road, and traffic noise is a major complain from residents. Per as these properties and geographic information, total 26 
studying zones are identified (the details are shown in Figure 1 and Table 2). We develop an IFBLP model with a 15-year 
planning on these 26 studying zones, and then use the proposed algorithm to solve this model and provide noise control 
suggestions for the decision maker.  
Table 1. Five sections information 

Section 
No. 

Vehicle volume 
(vehicles/day) 

Speed 
(km/hr) 

Beginning 
place 

Ending 
place 

Length/width 
(km/m) 

1 19,900 – 12,500 80 HWY #1 Sask. Dr. 5.7/40 
2 23,600 – 33800 70 Sask. Dr. Sherw. Dr. 3.2/35 
3 19,100 – 19,800 60 Sherw. Dr. 9th Ave. N. 1.0/25 
4 22,200 – 26,100 70 9th Ave. N. Rochd. Dr. 1.4/35 
5 6,200 - 100 Rochd. Dr. HWY #11 1.1/40 

Source: 2003 Traffic Flow Map, City of Regina 
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Table 2. 26 study zones identification 

No (1) (2) (3) (4) (5) (6)  No (1) (2) (3) (4) (5) (6) 
0 Undev. U -- -- -- --  14 Resid. N 0.4 50 E 2 
1 Resid. N 0.8 50 E 1  15 Resid. N 0.35 30 O 2 
2 Resid. N 0.5 80 O 1  16 Resid. N 0.85 30 O 2 
3 Recre. A 2.1 -- O 1  17 Church N 0.2 20 O 2 
4 Resid. N 0.5 80 O 1  18 Park A 0.2 -- O 2 
5 Recre. A 0.4 -- O 1  19 Resid. N 0.45 30 O 2 
6 Resid. N 0.5 60 O 1  20 Resid. N 0.9 20 O 3 
7 Resid. N 0.3 40 E 1  21 Resid. N 0.4 20 O 3 
8 Park A 0.6 -- O 2  22 Resid. N 0.9 50 O 4 
9 Hospi. Q 0.2 150 O 2  23 Comm. A 0.35 150 O 4 
10 Resid. N 0.8 15 O 2  24 Resid. N 0.9 50 O 4 
11 School N 0.2 40 O 2  25 Comm. A 0.2 150 O 5 
12 Park A 0.5 -- O 2  26 Factory S 0.5 150 O 5 
13 Resid. N 0.6 20 O 2         

Source: Air photo of Regina city, City of Regina, April 2004. 
Note: (1) – Property of the studying zone,  
(2) – NAC: Quiet (Q); Normal (N); Annoyance (A);Severe-Annoyance (S); Undeveloped (U) 
(3) – The length of the studying zone along the road (km) 
(4) – The average distance form receptor in a zone to edge of the road (m) 
(5) – Berm: existing (E); none (O) 
(6) – Index of section 
3.2. Traffic Noise Control Techniques  

3.2.1 Three Traffic Noise Control Methods 
Source control, propagation control, and receiver control are three basic traffic noise control methods. The source control 
is the first choice due to its proactive and it can reduce noise source for the other two methods (Herman, 1997). 
Meanwhile, the propagation control and the receiver control are considered as continual efforts for further mitigating if 
the traffic noise level still higher than the guideline at the reception sections. 
Surface quality improvement of road is an effective way for the source control (shown in Table 3). Open-graded asphalt 
(OGA) is a desired road surface material (shown in Table 4) with a large range noise reduction up to 6.5 dB produced by 
identical vehicles that comparing with a rough surface such as Portland cement concrete (Hanson & James, 2004). Noise 
barrier is the most popular noise propagation control method with noise level reduction of 5 to 10 dBA if the barrier height 
is 3.5 m. However, Noise barrier is not suit for high-rise buildings, which need insulated windows to keep noise out. To 
install insulated window is called the noise receiver control. 
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Table 3. Noise correction factor for pavement (dBA) 

Pavement Type Noise Correction Factor 
16 ~ 20 mm Bitumen Seal +4 ~ +5 
Concrete +4 
5 ~ 14 mm Bitumen Seal +2 ~ +4 
5 mm Bitumen Seal +1 ~ +2 
Dense Graded Asphalt 0 
Stone Mastic Asphalt - 2 
Boral Low Noise Asphalt - 2 
Open Graded Asphalt - 4 

Table 4. Noise reduction deterioration of OGA  
 

Source: Sandberg, 1992 
3.2.2 Noise Abatement Criteria (NAC) 
Based on the noise criterion of the 23CFR772 criteria of NAC (Barry & Reagan, 1978), traffic noise is categorized into 
five noise tolerances classes. They are Quiet, Normal, Annoyance, Severe annoyance, and Un-limitation. Additionally, 
considering the “Regulations for Community noise” (Dieter, 1995), an interval noise abatement criteria is obtained for the 
developed IFBLP model (shown in Table 5). 
Table 5. Interval value of NAC (dBA) 

Zone Day  Night 
Quiet (49, 55) (39, 48) 
Normal  (54, 59) (44, 53) 
Annoyance (58, 67) (49, 58) 
Severe Annoyance (66, 72) (54, 63) 
Unlimited -- -- 

3.2.3 Traffic Noise Prediction  
The traffic noise levels on the 26 studying zones are forecasted by a noise prediction model for the future 15 years (Peng 
& Mayorga, 2007). These predicted noise levels are given in interval values. Figure 2 illustrates the forecasted noise 
levels for zone #11, and shows these noise levels will increase temporally in the future 15 years. Figure 3 demonstrates the 
forecasted noise levels on the 10th future year for the 26 studying zones. Figure 3 demonstrates that the predicted noise 
levels on the 10th future year will vary on different zones spatially. 
Table 6. Road surface repaving cost and maintenance costs (1000 Dollar) 

 Time period 1 Time period 2 Time period 3 
 Repaving      Maintenance Repaving  Maintenance Repaving Maintenance  
1 1368 – 2508 1026 – 1254 1482 – 2622  1083 – 1311 1596 – 2736 1140 – 1368 
2 768 – 1408 576 – 704 832 – 1482 608 – 736 896 – 1536 640 – 768 
3 192 – 352 144 – 176 208 – 368 152 – 184 224 – 384 160 – 192 
4 336 – 616 252– 308  364 – 644 266 – 322 392 – 672 280 – 336 
5 264 – 484 198 – 242  286 – 506 209 - 253 308 – 528 220 – 264 

Age of Surface Noise Reduction (in Leq) 
0 year 5 – 7 dB(A) 
2 years 4 – 5 dB(A) 
4 years 1 – 2 dB(A) 
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Figure 2 The predicted noise level at the zone #11 

 

Figure 3. The predicted noise level for the future 10th year 

3.3 IFBLP Model Building 

Based on the information described above, an IFBLP is constructed as follows: 
Min f = ],[],[
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where, (15a) = the road surface construction and maintenance costs; (15b) =  the noise barrier build and maintenance 
costs; (15c) = the insulated windows installation and maintenance costs; (15d) = the benefits from a new road surface; 
(15e) = the constrains of noise abatement criteria; (15f) = the binary constraints; (15g) = only one barrier constructing on 
the k zone in the future 15 years; (15h) = only one insulated window installation on the k zone in the future 15 years; (15i) 
= no noise barrier in a commercial area or the zones already have noise barriers. 

i = index of the year in a planning term (i = 1,2,…,L); j = index of the period in a planning term (j = 1,2,…M); t = index of 
the year in a period j (t = 0,1,…4);u = index of the road section (u = 1, 2, …, U); k = index of the studying zone (k = 
1,2,…,N); p = index of five classes of noise abatement criterions;   = binary number index (  = 1 represents day time; 
  = 0 represents in night time); c = binary number index (c = 1 represents a commercial area or the zones of existing 
barrier; c = 0 represents the other areas). 

juSC  = the surface repaving cost in period j; 
juSM  = the surface maintenance cost in the period j; 

cikBC  = the noise 

barrier constructing cost at the kth zone in the ith year; 
cikBM  = the noise barrier maintenance cost at the kth zone in the ith 
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year; 
iBMD= the maintenance cost for the existing barriers at the ith year. 

ikWPA  = per insulated window installing 

cost at kth zone in ith year; 
ikWN  = the number of window at the kth zone in the ith year; 

ikWMA = per insulated window 

maintenance cost at the kth zone in the ith year; 
iWMD = the maintenance cost for existing insulated windows in the ith 

year; 
juSBF   = the coefficient of benefit from renewing surface per 5 years; 

ikpuNP


= the predicted noise level (day or 

night) at the kth zone on the uth road section and belongs to the pth NAC class in the ith year; 
kBRL  = the reduced noise 

level (dBA) by barrier at kth zone dBA; 
kWRL  = the reduced noise level (dBA) by insulated window at the kth zone; 

pNAC


= the noise abatement criterions. 

tSRL = the reduced noise level (dBA) that benefited from OGA surface at tth 

year in a period. 

3.3 IFBLP Model Solving 

Step 1   Convert the developed IFBLP model of (15) into an interval-coefficient BLP model using Algorithm 1. 
Min f = (15a) + (15b) + (15c) + (15d)                                      (16a) 

s.t. 
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(15f), (15g), (15h), (15i).                                            (16c) 

Step 2 Calculate the bound values of * in terms of the Monte Carlo Simulation (Algorithms 2), we could obtain the 
values of *  and * . 
Step 3 Implement Algorithm 3, we can have the following two crisp BLP models. 
1) The best optimum BLP model 
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     (15f), (15g), (15h), (15i).                                            (17f) 
2) The worst optimum BLP model 

Min f = 
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(15f), (15g), (15h), (15i).                                        (18f) 
3.4 Results  

The related inputs are in Tables (1) to (6). The aspiration goal was designed as f = $12,000,000 with the tolerance of 
$2,000,000 ( f = $14,000,000). The value range of *  was generated by Monte Carlo Simulation method. After solving 
the model in Matlab, the results were generated and shown in Table 7. It notes that the value range of * is bounded by 
the lower boundary of 0.313 and the upper boundary of 0.9. The best optimal cost is $12, 150,000 and the worst optimal 
cost is $13,900,000. It is found that two optimal costs are in the interval of [ f  , f ], where [$12,150,000, $13,900,000] 
  [$12,000,000, $14,000,000]. It is important to mention that some other optimal costs exist between two extreme 
optimums. These optimal costs are discrete because they are generated by the binary variables in the IFBLP model, and 
they can be used as trade off by decision maker.  
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Table 7. Results of IFBLP model 

f  (106 $) 
  Xrc = 1  Yi(k) = 1  Zi(k) = 1 

12.15 
 

0.313   Y15(9)  Y15(11) Y15(13) Y15(15) Z1(2)    Z1(4)   Z1(6)  Z1(10)  Z1(13)  
Z1(15) Z1(16)  Z1(19)  Z1(20)  Z1(21)  Z1(22)  
Z1(23) Z1(24)   Z15(17)   

13.90 0.9 X32  
X34 
X35 

Y15(6)  Y15(9) Y15(10) Y15(11) 
Y15(13) Y15(15) Y15(16) Y15(17) 
Y15(19) Y15(20) Y15(21) Y15(22) Y15(24) 

Z1(1)    Z1(7)   Z1(11)  Z1(13)  Z1(14)  
Z1(15)  Z1(16)  Z1(19)  Z1(20)  Z1(22)  
Z1(23)  Z1(24)  Z5(2)   Z5(4)   Z5(6)   
Z5(10)  Z6(21)  Z15(17) 

Note: X=1 means Road Surface Updating, Y=1 means Barrier Building, Z=1 means Insulted Window Installing,  
Period index r = 1, 2, 3.; Section index c = 1,…5., Year index i = 1,…15.; Zone index k = 1,…26. 
Additionally, it is found that the optimal cost results of the developed IFBLP model are highly related to the aspiration 
goal and its tolerances. For instance, if the aspiration goal is set at a low value and its tolerance is small, the solution 
domain will be reduced, and then a feasible solution may not be obtained. therefore, the aspiration goal and tolerance need 
to be pre-design thought this is time consuming. 
4. Conclusions 

In this paper, an IFBLP model is developed to represent binary linear problems under uncertainties. The fuzzy constraints 
and interval coefficients are designed in the developed IFBLP model, in which the interval coefficients reflect parameter 
uncertainty and the fuzzy goal & fuzzy constraints represent model structure uncertainty. The solution of the FSA for the 
IFBLP was generated, having the following novelies: (1) utilized the T-operator technique to defuzzify the fuzzy 
constraints with considering the fuzzy goal; (2) used a stochastic simulation model to find the range of optimal alpha 
solutions; and (3) preformed a crisping process to transfer the interval-coefficient BLP into two extreme auxiliary 
parametric BLPs. In other words, the developed algorithm ensures a linear transformation in the defuzzification process; 
ensures to find a single * solution for a flexible FBLP; and ensures to identify the boundaries of * in an 
interval-coefficient BLP. Through the best optimum BLP model and the worst optimum BLP model, a closed set of 
optimal costs could be generated for the IFBLP model. This proposed IFBLP model was applied into a long-term traffic 
noise control planning. After implemented the developed FSA solution, the results yielded are used to demonstrate its 
applicability.  
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