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Abstract

The nonlinear K(n, 1) equation with weak damping is investigated via the approximate symmetry perturbation method and

approximate direct method. The approximate symmetry and similarity reduction equations of different orders are derived

and the corresponding series reduction solutions are obtained. As a result, the formal coincidence for both methods is

displayed.
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1. Introduction

In this paper, we intend to investigate the approximate similarity reductions and the infinite series reduction solutions for

the nonlinear K(n, 1) equation with weak damping (Biswas, 2009, p9-10)

ut + a(un)x + uxxx = −εu (1)

via the approximate symmetry perturbation (Zhao, Zhang and Lou, 2009, p1-4)(Jiao, Yao, Lou, 2008, p1-11 and the

approximate direct methods (Clarkson and Kruskal, 1989, p2201-2212), where ε is a small parameter and u is a function

of x and t. Hereafter, we put stress on the general case while n > 2, irrespective of the simple case of n = 2. In terms of

the perturbation analysis (Cole, 1968)(Van Dyke, 1975)(Nayfeh, 2000) any solution to a perturbed PDE can be expressed

as a series containing small parameter ε

u =
∞∑

k=0

εkuk, (2)

with uk functions of x and t. Substituting Eq. (2) into Eq. (1) and vanishing the coefficients of all different powers of ε,
we obtain the following system

uk,t + na
∑

i1+i2+···+in=k

ui1 ui2 . . . ui(n−1)
uin,x + uk,xxx = −uk−1, (k = 0, 1, 2, . . .) (3)

where 0 ≤ im ≤ k (m = 1, . . . , n) and u−1=0.

In Sec. 2 and 3, we apply the approximate symmetry perturbation method and approximate direct method to Eq. (1)

respectively. Sec. 4 shows the formal coincidence for both methods on the results obtained by both methods under certain

transformations. The last section is the concluding remarks

2. Approximate Symmetry Perturbation Method to Equation (1)

In order to study Lie symmetry reduction of Eq. (3), we construct the Lie point symmetry in the vector form

V = X
∂

∂x
+ T
∂

∂t
+

∞∑
k=0

Uk
∂

∂uk
, (4)

where X, T , and Uk are functions of x, t, and uk, (k = 0, 1, . . .), equivalently, Eq. (3) is invariant under the transformation

{x, t, uk, k = 0, 1, . . .} → {x + εX, t + εT, uk + εUk, k = 0, 1, . . .},
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with infinitesimal parameter ε.

Since Eq. (1) is not explicitly dependent upon space-time x, t, the symmetry in the vector form (4) can be written as a

function form

σk = Uk − XUk,x − TUk,t, (k = 0, 1, . . .), (5)

Under notation (5), the symmetry equations for Eqs. (3) read

σk,t + na
∑

i1+i2+···+in=k

[σi1 ui2 . . . ui(n−2)
ui(n−1)

uin,x + ui1σi2 . . . ui(n−2)
ui(n−1)

uin,x

+ · · · + ui1 ui2 . . . ui(n−2)
ui(n−1)
σin,x] + σk,xxx = −σk−1, (k = 0, 1, 2, . . .) (6)

which are the linearized equations for Eqs. (3), with 0 ≤ im ≤ k (m = 1, . . . , n) and σ−1 = 0.

It seems difficult to figure out X, T and Uk, (k = 0, 1, . . .) directly because there are infinite number of equations and

arguments concerning or in X, T and Uk, (k = 0, 1, . . .). To make brief of it, we begin the discussion with finite number of

equations.

Confining the range of k to (k = 0 − 2) in Eqs. (3), (5) and (6), we see that X, T , U0, U1 and U2 are functions of x, t, u0,

u1 and u2. In this case, the determining equations can be derived by substituting Eq. (5) into Eq. (6), eliminating u0,t, u1,t

and u2,t in terms of Eq. (3). Some of the determining equations read

Tx = Tu0
= Tu1

= Tu2
= 0, Xt = Xu0

= Xu1
= Xu2

= 0,

U0,u1
= U0,u2

= U0,u0u0
= 0,U1,u0

= U1,u2
= U1,u1u1

= 0, (7)

U2,u0
= U2,u1

= U2,u2u2
= 0.

The general solution to Eqs. (7) is

X = X(x), T = T (t), U0 = a1(x, t)u0 + a0(x, t),

U1 = a3(x, t)u1 + a2(x, t), U2 = a5(x, t)u2 + a4(x, t). (8)

Using relations (8), the remaining determining equations are immediately simplified to

a1 = − 2

n − 1
Xx =

1

n − 1
(Xx − Tt) , a3 + (n − 2)a1 = Xx,

a5 + (n − 1)a1 − a3 = Xx, a0 = 0, a2 = 0, a4 = 0, Xxx = 0.

It is straightforward to find that

X =
c
3

x + x0, T = ct + t0, U0 = − 2

3(n − 1)
cu0,

U1 =

(
1 − 2

3(n − 1)

)
cu1, U2 =

(
2 − 2

3(n − 1)

)
cu2.

Likewise, restricting the range of k to {k | k = 0, 1, 2, 3} in Eqs. (3) (5) and (6), where X, T , U0, U1, U2 and U3 are

functions of x, t, u0, u1, u2 and u3, repeating the calculation process as before, then we have

X =
c
3

x + x0, T = ct + t0,

U0 = − 2

3(n − 1)
cu0, U1 =

(
1 − 2

3(n − 1)

)
cu1,

U2 =

(
2 − 2

3(n − 1)

)
cu2, U3 =

(
3 − 2

3(n − 1)

)
cu3.

With more similar computation considered, we find that X, T and Uk (k = 0, 1, . . .) are formally coherent, i.e.,

X =
c
3

x + x0, T = ct + t0, Uk =

(
k − 2

3(n − 1)

)
cuk, (k = 0, 1, . . .) (9)

where c, x0 and t0 are arbitrary constants.

Subsequently, solving the characteristic equations

dx
X
=

dt
T
,

du0

U0

=
dt
T
, . . . ,

duk

Uk
=

dt
T
, . . . . (10)
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leads to the similarity solutions to Eq. (3). Two subcases are distinguished as follows.

Case 1: When c � 0, without loss of generality, making the transformation x0 −→ 1
3
cx0 and t0 −→ ct0, we rewrite Eq. (9)

as

X =
1

3
c (x + x0) , T = c (t + t0) , U0 = − 2

3(n − 1)
cu0,

U1 =

(
1 − 2

3(n − 1)

)
cu1, . . . , Uk =

(
k − 2

3(n − 1)

)
cuk, (k = 0, 1, . . .) (11)

in this case, solving Eq. (10) leads to the following invariants

I(x, t) = ξ = (x + x0)(t + t0)−
1
3 , (12)

I0(x, t) = V0 = (t + t0)
2

3(n−1) u0, (13)

and

Ik(x, t) = Vk = (t + t0)
2

3(n−1)
−kuk, (k = 1, 2, . . .) (14)

viewing Vk (k = 0, 1, . . .) as functions of ξ, we get the similarity solutions

uk = Vk(ξ)(t + t0)k− 2
3(n−1) , (k = 0, 1, . . .) (15)

to Eqs. (3) with similarity variable

ξ = (x + x0)(t + t0)−
1
3 . (16)

From Eq. (2), the series reduction solution to Eq. (1) is given by

u =
∞∑

k=0

εk(t + t0)k− 2
3(n−1) Vk(ξ), (k = 0, 1, . . .) (17)

substituting Eqs. (12) into Eqs. (3), we get the following related similarity reduction equations

O(ε0) : V0,ξξξ + naVn−1
0 V0,ξ − 2

3(n − 1)
V0 − 1

3
ξV0,ξ = 0,

O(ε1) : V1,ξξξ + naVn−1
0 V1,ξ + n(n − 1)aVn−2

0 V1V0,ξ

+

(
1 − 2

3(n − 1)

)
V1 − 1

3
ξV1,ξ = −V0,

O(ε2) : V2,ξξξ + naVn−1
0 V2,ξ + n(n − 1)aVn−2

0 V1V1,ξ + n(n − 1)aVn−2
0 V2V0,ξ

+
n(n − 1)(n − 2)

2
aVn−3

0 V2
1 V0,ξ +

(
2 − 2

3(n − 1)

)
V2 − 1

3
ξV2,ξ = −V1,

. . . ,

O(εk) : Vk,ξξξ + na
∑

i1+i2+···+in=k

Vi1 Vi2 . . .Vi(n−1)
Vin,ξ

+

(
k − 2

3(n − 1)

)
Vk − 1

3
ξVk,ξ = −Vk−1,

with 0 ≤ im ≤ k, (m = 1, . . . , n) and V−1 = 0. The kth (k > 0) similarity reduction equation is in fact a third order linear

ordinary differential equation (ODE) of Vk when the previous V0,V1, . . . ,Vk−1 are known, since it can be rewritten as

Vk,ξξξ + na[V0
n−1Vk,ξ + (n − 1)V0

n−2VkV0,ξ]

+

(
k − 2

3(n − 1)

)
Vk − 1

3
ξVk,ξ = Gk(ξ), (k = 0, 1, . . .) (18)

where Gk is an only function of {V0,V1, . . . Vk−1}
Gk(ξ) = −Vk−1 − na

∑
i1+i2+···+in=k

Vi1 Vi2 . . .Vi(n−1)
Vin,ξ, (k = 0, 1, . . .) (19)

with im � k (m = 1, . . . , n).

Case 2: When c = 0, we have

X = x0, T = t0, Uk =

(
k − 2

3(n − 2)

)
cuk = 0, (k = 1, 2, . . .) (20)
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the similarity solutions are

uk = Vk(ξ), ξ = t0x − x0t, (k = 1, 2, . . . , n) (21)

thus the series reduction solution to Eq. (1) is

u =
∞∑

k=0

εkVk(ξ), (22)

where Vk(ξ) (k = 0, 1, 2 . . .) yields

O(ε0) : (t0)3V0,ξξξ + nat0Vn−1
0 V0,ξ − x0V0,ξ = 0,

O(ε1) : (t0)3V1,ξξξ + nat0Vn−1
0 V1,ξ + n(n − 1)at0Vn−2

0 V1V0,ξ − x0V1,ξ = −V0,

. . . ,

O(εk) : (t0)3Vk,ξξξ + nat0
∑

i1+i2+···+in=k

Vi1 Vi2 . . .Vi(n−1)
Vin,ξ − x0Vk,ξ = −Vk−1,

with 0 ≤ im ≤ k, (m = 1, . . . , n) and V−1 = 0. The kth (k > 0) similarity reduction equation can be rewritten as an ODE

(t0)3Vk,ξξξ + nat0[V0
n−1Vk,ξ + (n − 1)V0

n−2VkV0,ξ] − x0Vk,ξ = Gk(ξ), (k = 0, 1, . . .) (23)

of Vk(ξ), where Gk is a function of {V0,V1, . . . ,Vk−1} defined as

Gk(ξ) = −Vk−1 − nat0
∑

i1+i2+···+in=k

Vi1 Vi2 . . .Vi(n−1)
Vin,ξ, (k = 0, 1, . . .) (24)

with im � k (m = 1, . . . , n).

3. Approximate Direct Method to Equation (1)

In this section, we develop the direct method to investigate Eq. (3) for its similarity solutions of the form

uk = fk(x, t, Pk(z(x, t))), (k = 0, 1, . . .) (25)

which satisfy a system of ODEs resulting from inserting Eq. (16) into Eq. (3).

On substituting Eq. (16) into Eq. (3), since only one term uk,xxx in Eq. (3) generates the terms Pk,zzz and Pk,zPk,zz during

the substitution, it is easily seen that the coefficients of Pk,zzz and Pk,zPk,zz are fk,Pk (zx)3 and 3 fk,Pk Pk (zx)3, respectively. We

reserve uppercase Greek letters for undetermined functions of z hereafter. The ratios of the coefficients are functions of z,

namely,

fk,Pk (zx)3 = 3 fk,Pk Pk (zx)3Γk(z), (k = 0, 1, . . .) (26)

with the solution

fk = αk(x, t) + βk(x, t)e
1

3Γ(z)
Pk , (k = 0, 1, . . .)

where αk(x, t) and βk(x, t) are arbitrary functions. Hence, rewriting e
1

3Γ(z)
Pk as Pk, it is sufficient to seek the similarity

reduction of Eq. (3) in the special form

uk = αk(x, t) + βk(x, t)Pk(z(x, t)), (k = 0, 1, . . .) (27)

instead of the general form Eq. (16).

Remark: Three freedoms in the determination of αk(x, t), βk(x, t) and z(x, t) should be notified:

(i) If αk(x, t) = α
′
k(x, t) + βk(x, t)Ω(z), then one can take Ω(z) = 0;

(ii) If βk(x, t) = β
′
k(x, t)Ω(z), then one can take Ω(z) = constant;

(iii) If z(x, t) is determined by Ω(z) = z0(x, t), where Ω(z) is any invertible function, then one can take Ω(z) = z.

Substituting Eq. (17) into Eq. (3), we find that the coefficients for P0,zzz, Pn−1
0

P0,z, P0,zz and Pn−2
0

P0,z are β0(zx)3, naβn
0
zx,

3β0,x(zx)2 + 3β0zxzxx and n(n − 1)aα0β
n−1
0

zx, respectively. Since Pk is only a function of z, it requires that

naβn
0zx = β0(zx)3Φ0(z), (28)

3β0,x(zx)2 + 3β0zxzxx = β0(zx)3Ψ0(z), (29)

n(n − 1)aα0β
n−1
0 zx = β0(zx)3Ω0(z). (30)

From Eq. (18) and remark (ii), we get

β0 = z
2

n−1
x . (31)
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From Eq. (20) and remark (i), we can see α0 = 0.

From Eqs. (19), (21) and remark (iii), we have

6

n − 1
zxzxx + 3zxzxx = z3

xΨ0(z),

then

z = θ(t)x + σ(t), (32)

where θ(t) and σ(t) are some functions to be settled.

Then Eq. (3) is degenerated into

θ4P0,zzz + naθ4Pn−1
0 P0,z + θ(xθt + σt)P0,z +

2

n − 1
θtP0 = 0. (33)

From the coefficients of P0,zzz, P0,z and P0 and the relations

xθt + σt = θ
3Γ1(z),

2

n − 1
θt = θ

4Γ2(z),

we have

Γ1(z) = Az + B, Γ2(z) =
2

n − 1
A,

dθ
dt
= Aθ4,

dσ
dt
= θ3(Aσ + B), (34)

where A and B are arbitrary constants.

Assume that k ≥ 1, inserting Eq. (17) into Eq. (3), we know that the coefficients of Pk−1, Pn−2
0

P0,z and Pk,zzz are −βk−1,

n(n − 1)aβn−1
0

zxαk and βkz3
x respectively, which leads to

−βk−1 = βkz3
xΦk(z), n(n − 1)aβn−1

0 zxαk = βkz3
xΨk(z), (k ≥ 1)

then using remark (i) and (ii), we have

αk = 0, βk = (zx)
2

n−1
−3k (k = 0, 1, 2, . . .).

We distinguish the following two subcases.

Case 1: When A � 0, Eq. (23) has solution

θ = −(3A(t − t0))−
1
3 , σ = −B

A
+ s0(t − t0)−

1
3 , (35)

where t0 and s0 are arbitrary constants.

In terms of Eqs. (17), (21), (22), (23) and (24), we get the following solution to Eq. (3)

uk = (−1)k(3A(t − t0))k− 2
3(n−1) Pk(z), (k = 0, 1, 2, . . .) (36)

where the similarity variable z = −(3A(t − t0))−
1
3 x + s0(t − t0)−

1
3 − B

A .

From Eqs. (25) and (2), we obtain the series reduction solution

u =
∞∑

k=0

(−1)kεk(3A(t − t0))k− 2
3(n−1) Pk(z), (k = 0, 1, 2, . . .) (37)

to Eq. (1). Inserting Eq. (25) into Eq. (3), we get the similarity reduction equations

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1 Pi2 . . . Pi(n−1)
Pin,z + (Az + B)Pk,z

+

(
2

n − 1
− 3k

)
APk = −Pk−1, (k = 0, 1, 2, . . .) (38)

with P−1 = 0.

Case 2: When A = 0, Eq. (23) has the solution

θ = t0, σ = Bt3
0t + s0, (39)
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where t0 and s0 are arbitrary constants. By Eqs. (17), (21), (22), (23) and (29), we obtain the similarity solution

uk = t
2

n−1
−3k

0
Pk(z), (k = 0, 1, 2, . . .) (40)

with the similarity variable z = t0x + Bt3
0
t + s0. Based on this, the series reduction solution to Eq. (1) is

u =
∞∑

k=0

εkt
2

n−1
−3k

0
Pk(z), (41)

and the similarity reduction equation is boiled down to

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1 Pi2 . . . Pi(n−1)
Pin,z + BPk,z = −Pk−1, (k = 0, 1, 2, . . .) (42)

with P−1 = 0.

4. Analysis on Formal Coincidence for Both Methods

In the following, we discuss the formal coincidence for both methods on the basis of the results obtained by both methods.

Case 1: We now compare Eqs. (25) and (26) with the results concerning similarity reduction equations and similarity

solutions in Case 1 of Sec. 2. By the transformations A → − 1
3
, B → 0, t0 → −t0 and s0 → x0, we can get the similarity

variable z = (x + x0)(t + t0)−
1
3 , then Eqs. (25) and (26) are respectively changed into

uk = (t + t0)k− 2
3(n−1) Pk(z), (k = 0, 1, 2, . . .) (43)

and

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1 Pi2 . . . Pi(n−1)
Pin,z −

1

3
zPk,z

+

(
k − 2

3(n − 1)

)
Pk = −Pk−1, (k = 0, 1, 2, . . .), (44)

with P−1 = 0.

On the other hand, for Case 1 in Sec. 2, making the transformation Vk(ξ) → Pk(ξ), Eqs. (12) and (15) are respectively

converted into

uk = (t + t0)k− 2
3(n−1) Pk(ξ), (k = 0, 1, 2, . . .) (45)

and

Pk,ξξξ + na
∑

i1+i2+···+in=k

Pi1 Pi2 . . . Pi(n−1)
Pin,ξ −

1

3
ξPk,ξ

+

(
k − 2

3(n − 1)

)
Pk = −Pk−1, (k = 0, 1, 2, . . .)

(46)

where P−1 = 0, which are formally the same as Eqs. (27) and (28).

Case 2: Suppose that t0 � 0, by the transformations B → − x0

t3
0

, t0 → t0 and s0 → 0, Eqs. (30) and (31) are respectively

transformed into

uk = t
2

n−1
−3k

0
Pk(z), (k = 0, 1, 2, . . .) (47)

and

u =
∞∑

k=0

εkt
2

n−1
−3k

0
Pk(z), (48)

with similarity variable z = t0x − x0t, then Eq. (32) becomes

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1 Pi2 . . . Pi(n−1)
Pin,z −

x0

t3
0

Pk,z = −Pk−1, (k = 0, 1, 2, . . .) (49)
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with P−1 = 0.

Meanwhile, for Case 2 in Sec. 2, Vk(ξ) → t
2

n−1
−3k

0
Pk(ξ) maps Eqs. (23) and (25) into

uk = t
2

n−1
−3k

0
Pk(ξ), (k = 0, 1, 2, . . .) (50)

and

Pk,ξξξ + na
∑

i1+i2+···+in=k

Pi1 Pi2 . . . Pi(n−1)
Pin,ξ −

x0

t3
0

Pk,ξ = −Pk−1, (k = 0, 1, 2, . . .) (51)

with P−1 = 0, which are formally equivalent to Eqs. (49) and (34) respectively.

From the above analysis of the results from both methods, we can see that approximate direct method produces more

general approximate similarity reduction than the approximate symmetry perturbation method does.

5. Conclusion

To sum up, applying the approximate symmetry perturbation method and the approximate direct method to the nonlinear

K(n, 1) equation with weak damping, we have summarized the similarity reduction equations of different orders in uniform

forms and obtained the infinite series similarity reduction solutions in general formulas for Eq. (1). As a result, we have

demonstrated the formal coincidence for both methods by relating both results. It is interesting to take both methods into

account while dealing with other perturbed PDEs. Moreover, the extension of approximate Lie symmetry perturbation

method to approximate nonclassical symmetry ones is likely to improve the method.
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