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Abstract

In this paper we consider the structure of a special class of permutations known as roller coaster permutations, first
introduced by Ahmed & Snevily (2013). A roller coaster permutation is described as, a permutation that maximizes
the total switches from ascending to descending, or visa versa, for the permutation as well as all of its subpermutations,
simultaneously. This paper looks at the structure of these permutations, particularly the alternating structure, what the
entires of these permutations can look like, we then introduce a notion of a condition stronger than alternating that we
shall refer to as recursively alternating.
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1. Introduction

The idea of roller coaster permutations first shows up in a work of Ahmed & Snevily (2013), where they are described as
permutations that maximize the total switches from ascending to descending, or visa versa, for the permutation and all of
its subpermutations simultaneously. More basically, this permutation gets the greatest number of ups and downs for the
permutation and all possible subpermutations simultaneously.

These permutations have strong relations to pattern avoiding permutations as do permutations that are merely alternating
permutations, as seen in Mansour (2004) in the context of avoiding the subpermutation 132. The connection with forbid-
den subsequences and partitions of permutations is seen in Stankova (1994), where certain forbidden subsequences end up
being roller coaster permutations, particularly F(1, 1) is a subset of RC(n). Consequently, these permutations are related
to stack sortable permutations as seen in (Egge & Mansour, 2004), where the connection between forbidden subsequences
and stack sortability is made.

2. Background

Throughout this paper we will use one-line notation for permutations. Let [n] = {1, 2, . . . , n}. A permutation π will
be viewed as a sequence (π1, π2, . . . , πn) where the commas may be omitted for small n. Let S n denote the set of all
permutations of [n].

Definition 1. We will use the following definitions given by Ahmed & Snevily (2013):

i(π) = the number of increasing sequences of contiguous numbers in π,

d(π) = the number of decreasing sequences of contiguous numbers in π,

id(π) = i(π) + d(π) ,

X(π) = {τ : τ is a subsequence of π such that |τ| ≥ 3} ,

t(π) =
∑
τ∈X(π)

id(τ) .

Here we refer to contiguous numbers as consisting of at least two numbers.
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Example 2. Consider the permutation 3412 in S 4 where we have

X(1324) = {1324, 132, 134, 412}
t(1324) = id(1324) + id(132) + id(134) + id(412) = 3 + 2 + 1 + 2 = 8.

Definition 3. Let RC(n) = {π ∈ S n : t(π) = max
σ∈S n

t(σ)}.

The members of RC(n) are then referred to as a Roller Coaster Permutations.

Example 4. For n = 3, 4, 5, 6 we have:

RC(3) = {132, 213, 231, 312}
RC(4) = {2143, 2413, 3142, 3412}
RC(5) = {24153, 25143, 31524, 32514, 34152, 35142, 41523, 42513}
RC(6) = {326154, 351624, 426153, 451623}

For a more extensive listing see (Ahmed & Snevily, 2013).

Definition 5. For π ∈ S n we will let π[i, j] denote the restriction of π to indices i through j where 1 ≤ i < j ≤ n. We will
also use the notation π/{i, j} to denote the restriction of π to all indices other than i and j.

3. Structure of Roller Coaster Permutations

Ahmed & Snevily (2013) conjectured that all roller coaster permutations are either alternating or reverse-alternating
where they defined these as π1 < π2 > π3 < . . . and π1 > π2 < π3 > . . . respectively. Where there is no confusion we will
simply refer to such a permutation as alternating, regardless of whether it is alternating or reverse alternating.

Theorem 1. Let π ∈ RC(n), then π is an alternating permutation.

Proof. Consider the rightmost positions i − 1, i, i + 1 such that π[i, n] is alternating. We may assume these are two
consecutive increases, i.e. πi < π j, the case for two consecutive decreases will follow analogously. Consider π̃ = π·(i, i+1),
ie exchanging positions i and i + 1. Our strategy throughout this proof is to examine the subsequences of σ of π and σ̃ of
π̃ and to look the relationship between id(σ) and id(σ̃). We may do this based on how they contribute to the total sums
t(π) and t(π̃).

First note that subsequences σ of π/{i, i + 1} are identical to the corresponding subsequences of π̃/{i, i + 1}, thus we have
id(σ) = id(σ̃).

Note that for the cases where only one of the positions i or i + 1 is involved in σ, we will have the same in σ̃, since
these are merely swapped and as such still show up as subpermutations. Alternately said, note that π/{i} = π̃/{i + 1} and
π/{i + 1} = π̃/{i}. We may therefore consider only subpermutations containing these two consecutive positions. For any
such subpermutation, σ, let positions j − 1, j, j + 1, j + 2 be such that σ j = π̃i and σ j+1 = π̃i+1.

Now note that the worst case is to have a subpermutation σ such that σ j−1 > σ j > σ j+1 > σ j+1, as this would decrease
the ascent/descent count by two. Note that σ j−1 cannot be πi−1 since πi−1 < πi by assumption and πi−1 < πi+1. Now note
that for every subsequence σ, not involving πi, there is a correspondence subsequence involving πi. Those without may
decrease the ascent/descent count by at most two in t(π̃) as compared to in t(π), however any subsequence involving πi

will certainly increase the ascent/descent count by two in t(π̃), so at worst these subsequences will not increase the total
count, but this cannot decrease.

Now observe that we have not yet accounted for the subsequence involving only positions i through i + 2, which sees an
increase in the ascent/descent count by one as we compare t(π̃) to t(π), thus the total count must increase, implying that
the total ascent/descent count is greater for π̃ than for π, ie t(π̃) > t(π), which contradicts the assumption that π was in
RC(n).

�

The next property of note, regarding roller coaster permutations, is that the value in the first and final positions of the
permutation must differ by exactly one. This will be used in a later proof involving a deeper self-similar structure of roller
coaster permutations.

Theorem 2. Let π ∈ RC(n), then |πn − π1| = 1, i.e. the starting and ending entry differ by exactly one.
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Proof. Suppose that π does not satisfy this condition. Then there exists an i, 1 < i < n, such that either π1 < πi < πn or
π1 > πi > πn. Without loss of generality we may assume π1 < πi < πn since the reverse is merely an operation on the
reverse of the permuation which is of course also in RC(n).

Pick i the be the position corresponding to the largest value of πi such that the inequality π1 < πi < πn holds. Then
consider the permutation π′ = π · (i, n). We claim that t(π′) > t(π) which would contradict the assumption that π ∈ RC(n).

Note that, for 1 < j , i < n, we have that either π j < πi, πn or π j > πi, πn. Thus, for any subsequence other than
π1, πi, πn, the total number of ascents and descents remains unchanged since the inequalities relative to the positions
remain unchanged otherwise. Note however that the subsequence π′1, π

′
i , π
′
n increases the count of ascents and descents by

one, thereby establishing the claim. �

We would next like to observe how the values in odd positions and the values in even positions occur in roller coaster
permutations.

Theorem 3. Let π ∈ RC(n). If π is an alternating (not reverse-alternating) permutation, then πi > π1, πn for i even and
πi < π1, πn for i odd. As well, if π is a reverse-alternating permutation, then πi < π1, πn for i even and πi > π1, πn for i odd.

Proof. We will show this in the context of an alternating permutation in RC(n) as the proof for reverse-alternating is
analogous.

Begin by finding the leftmost indices j, j + 1 where both π j and π j+1 are greater than the maximum of π1 and πn. Note
that π j > π j+1 by the choice of the leftmost pair. Also note that by alternating we have that π j+2 is also greater than the
maximum of π1 and πn.

Let σ = π(l, r) where the index l is such that πl = max{πi | 1 ≤ i < j, π1, πn ≤ πi < π j}. Then observe that t(σ) > t(π)
via an argument analogous to that used in proving that these permutations are alternating since the index l selected for
make the exchange is chosen precisely to avoid interfering with subsequences not involving the exchanged positions. This
contradicts that π ∈ RC(n).

�

To simplify the idea, this is basically stating that all the odd positioned entires have values that are all greater than the
start and ending value of the permutation or all less than, and the reverse for the even positioned entries. Based on this
result we quickly get major insights into the structure of these permutations. Breaking these into the cases where n is
odd/even and the permutation is alternating versus reverse-alternating will add additional structural insight which follows
easily from the results to this point.

Corollary 4. For π ∈ RC(n) with n odd and π an alternating permutation we have that:

• {π1, πn} = { n−1
2 ,

n+1
2 }

• {π j | 3 ≤ j ≤ n − 2, j odd} = {1, . . . , n−3
2 }

• {π j | 2 ≤ j ≤ n − 1, j even} = { n+3
2 , . . . , n}

For π ∈ RC(n) with n odd and π a reverse-alternating permutation we have that:

• {π1, πn} = { n+1
2 ,

n+3
2 }

• {π j | 2 ≤ j ≤ n − 1, j odd} = { n+5
2 , . . . , n}

• {π j | 3 ≤ j ≤ n − 2, j even} = {1, . . . , n−1
2 }

For π ∈ RC(n) with n even and π an alternating permutation we have that:

• {π1, πn} = { n2 ,
n
2 + 1}

• {π j | 3 ≤ j ≤ n − 2, j odd} = {1, . . . , n
2 − 1}

• {π j | 2 ≤ j ≤ n − 1, j even} = { n2 + 2, . . . , n}
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For π ∈ RC(n) with n even and π a reverse-alternating permutation we have that:

• {π1, πn} = { n2 ,
n+2

2 }

• {π j | 2 ≤ j ≤ n − 1, j odd} = { n2 + 2, . . . , n}

• {π j | 3 ≤ j ≤ n − 2, j even} = {1, . . . , n
2 − 1}

Proof. Merely observe that the previous result together with the fact that the start and end of the permutation differ by
one gives that all values greater than the start and end are either in even or odd positions depending on whether this is
alternating or reverse-alternating. �

Note here, that for n odd, a permutation and its reverse will be both alternating or both reverse-alternating. When n is
even this is no longer the case, which starts to lend some insight into how different the order of RC(n) is in the odd versus
even cases.

While we have seen that roller coaster permutations are in fact alternating, we will prove a stronger condition that we shall
refer to as recursively alternating. We will continue to use the notation π[i, j] to refer to the restriction of the permutation
π to positions i through j.

Definition 5. First define πodd as the restriction to the odd indexed positions of π[2, n − 1] and πeven as the restriction to
the even indexed positions of π[2, n − 1].

A permutation π is then said to be recursively alternating if:

• π is alternating or reverse alternating.

• πodd and πeven are alternating or reverse alternating.

• Recursively iterating this process yields alternating or reverse alternating, ie for πodd,odd and πodd,even, etc.

We may note that this definition is equivalent to the restriction of π[2, n − 1] to indices that are congruent modulo 2k for
some k, is alternating.

Theorem 6. If π ∈ RC(n) then π is recursively alternating.

Proof. Assume π ∈ RC(n) and is therefore alternating or reverse-alternating. Consider πodd and assume πodd is not
alternating or reverse-alternating as the πeven case is analogous. Apply the same argument used to show that roller coaster
permutations were alternating noting that this modification to πodd does not effect the direction of inequalities relative
to other positions of π since all values in odd positions are either all greater than or all less than the values of all even
positions. We may then iterate this argument as required.

�

4. A Quick Example

We end with a final visual example of a roller coaster permutation, in order that that the discovered properties may be seen
explicitly. The permutation {4,3,7,1,8,2,6,5}, pictured below, is an example of a roller coaster permutation from RC(8).
This graph is arrived at is by assigning the x coordinate to the indices and the y coordinate to the entries.

From this visual depiction, the alternating behavior is evident. Note also that we see the same alternating behavior when
considering only positions 2, 4, and 6 and we see similar when considering only positions 3, 5, and 7. This is to be
expected based on the noted recursively alternating behavior. Furthermore, we can readily see in this example how all of
the odd indices, when excluding the start and end, all correspond to the entries with values greater than 5. Similarly the
even indices have the values less than 4 as proven earlier.
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