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Abstract

Functional mapping of quantitative trait loci (QTL) has embedded the biological mechanisms and processes of dynamic
traits in the statistical method of QTL mapping. Although the statistical model for functional mapping has been well
developed in inbred lines, it has not been proposed in a full-sib family, in which the number of alleles may vary over loci
and the linkage phases are usually unknown between loci. Since forest trees have several unique biological characteristics
and most of them are outbred species, we should not directly apply the functional mapping model for inbred species to
them. The objective of this study is to develop a functional mapping statistical model for a full-sib family in forest trees.
We suppose that the QTL genotype of one parent is heterozygous but the other is homozygous, and consider all pairwise
combinations of marker segregation types and all possible linkage phases between mark loci in a diploid full-sib family
into our model. A maximum likelihood approach based on a logistic-mixture model, implemented with EM algorithm,
was developed to provide the estimation of QTL positions and the parameters responsible for growth trajectories. The
results of a large number of simulations showed that our model was robust for identifying the QTL position and estimating
the parameters of QTL effects and residual (co)variance.(Van der Geer, 2000, p. 51-59)
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1. Introduction

Most important traits of biology, biomedicine and agriculture are dynamic complex traits, such as body height and weight,
milk production, tumor size, HIV load, circadian clock and drug response that all change with time or other independent
variables. The genetic control of dynamic complex traits should be accordingly expressed as a function of some indepen-
dent and continuous variable (Wu and Lin 2006). They are under the control of an interacting network of minor genes
and of environmental factors (Lynch and Walsh 1998). Therefore, the genetic study of these dynamic complex traits has
been one of the most difficult tasks in biology. Since Lander and Botstein (1989) developed the interval mapping method
to map quantitative trait loci (QTL) within a particular chromosomal interval bracketed by two flanking markers, many
improved or new statistical methods for QTL mapping have been proposed (Haley and Knott 1992; Zeng 1994; Jansen
and Stam 1994; Satagopan et al. 1996; Kao et al. 1999; Sillanpaa and Arjas 1999; Xu and Yi 2000). Although these
traditional statistical approaches to QTL mapping are useful, they neglect the developmental features of traits because
they are all analytic methods only for a single time point.

A series of statistical models have been developed to locate and identify QTL that affect dynamic complex trait. Wu et al.
(2002) first presented a logistic mixture model for detecting major genes responsible for growth trajectories to illustrate
how the genes causing differentiation in growth trajectories. In the meantime, Ma et al. (2002) developed a general
statistical framework called functional mapping, which integrates the mathematical features of dynamic complex traits
within the QTL mapping theory to identify QTL affecting growth trajectories in inbred lines. Ma et al. (2004) proposed
a likelihood approach for mapping growth trajectories in a phase-unknown full-sib family, and used dominant markers
only. More recently, Yang et al. (2006) presented an approach based on Legendre polynomials for QTL mapping of
longitudinal traits in inbred lines. Further more£Yang et al. (2007) developed a semiparametric approach for composite
functional mapping of dynamic QTL. The time-dependent genetic effects of QTL tested within a marker interval were
modeled by functional mapping method based on a biologically meaningful parametric function and the marker effects
outside the test interval were modeled by a nonparametric approach based on Legendre polynomials. It has tremendous
power to detect and separate linked QTL located on the similar regions of a chromosome.
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Forest trees have several unique biological characteristics including a long generation cycle, high genetic heterozygosity,
high genetic load and high environmental heterogeneity (Yi et al. 1998). It is difficult or even impossible to gain two
homozygous parents through self-fertilization or backcross and to perform accurate QTL mapping through inbred genetic
design. We should not directly apply the QTL mapping model for inbred lines to outbreed species (Shi and Tong 2006).
For this reason, it is necessary to establish the statistical model for functional QTL mapping in outbreed species.

We proposed a functional mapping statistical model for a full-sib family in forest trees. In a diploid full-sib family,
we supposed that the QTL genotype of one parent was heterozygous but the other was homozygous, i.e., QQ×Qq, and
considered all pairwise combinations of marker segregation types and all possible linkage phases between any two mark
loci into our model. A maximum likelihood approach based on a logistic-mixture model, implemented with EM algorithm
(Dempster et al. 1977), was developed to provide the estimates of QTL positions, QTL effects, and other model parameters
responsible for growth trajectories. A series of simulation studies showed that our model was robust for identifying the
QTL position and estimating the parameters of QTL effects and residual (co)variance. A real example was given for
illustrating the validation of our functional QTL mapping model in practice.

2. Statistical model

2.1 Growth trajectory

The common property of dynamic complex traits is that they can be described as a function (or stochastic process),
which relates some independent and continuous variables consisting of an infinite number of points to the measures of
the phenotypic size. Throughout this article, growth trajectories (Wu et al. 2002) are used as a concrete example to
illustrate the idea that functional mapping relies on the concepts from functional analysis and stochastic processes. It
is well known that growth trajectories are governed by biological laws, and a biological law controls and propels the
phenotypic change of ontogeny and traces out the ontogenetic trajectories (Wu et al. 2002). Many functions have been
established to describe the growth trajectories, such as logistic (or sigmoid) growth curve, which is regarded as one of the
most important functions to represent the change of development. In the present study, we use logistic growth curve to
represent growth trajectories of an individual. It can be mathematically described by

g(t) =
a

1 + be−ct
(1)

Where a is the asymptotic or limit value ofgwhen t → ∞, a/(1+b) is the initial value of gwhen t= 0, and c is the relative
rate of growth.

2.2 Genetic design

We consider a full-sib family derived from two parents that have some traits of interest differing substantially. There are
up to four different alleles at an informative marker locus in the two parents. Maliepaard et al. (1997) summarized that
the combinations of the two parental marker genotypes (e.g., segregation types) may be ab x aa, aa x ab, ab x ab, ab x
cd, a0 xa0, ab xa0 or a0 x ab, where a, b, c and d denote different alleles at a marker locus, 0 denotes the null allele, the
two characters left of the crossing symbol represents the maternal marker genotype and the two characters on the right
the paternal marker genotype. The linkage phases between any two marker loci include several cases: (1) coupling (c) in
the maternal parent and uninformative in the paternal parent, or vice versa, (2) repulsion (r) in the maternal parent and
uninformative in the paternal parent, or vice versa, (3) coupling in both parents (cxc), (4) repulsion in both parents (rxr)
and (5) coupling in the maternal parent and repulsion in the paternal parent (cxr), or vice versa (rxc). Here, the linkage
phases between any two adjacent loci on a linkage group are assumed to be known.

Although the number of QTL alleles is not fixed for the two heterozygous parents, we consider a QTL with genotype QQ

for the maternal parent and Qq for the paternal parent for simplicity. For a particular genotype j ( j =1 for QQand j =2
for Qq), the logistic curve is described by the parameters a j, b j and c j. These parameters of two different genotypes will
be compared to determine whether and how this QTL affects growth trajectories.

Assume that there are a total of Nprogeny measured at T time points in a full-sib family. The phenotypic trait value of
progeny i measured at time t (t = 1, · · · ,T ), governed by the QTL genotype located on a marker interval flanked by two
markers, can be expressed by a linear statistical model (Wu et al. 2002; Ma et al. 2002).

yi(t) =
2∑

j=1

xi jg j(t) + ei(t) (2)

where xi j is an indicator variable for the possible QTL genotype of progeny i and defined as 1 if the QTL genotype is j or
0 otherwise; g j(t) is the genotypic value of the QTL genotype j for the trait at time t; ei(t) is the residual effect of progeny
i at time t and distributed as N(0, σ2

e(t)). The residual effect includes the aggregate effect of polygenes and error effect.
The probability of xi j which takes 1 or 0 depends on the marker genotype of the two flanking markers and the position of
the QTL on the marker interval.

Published by Canadian Center of Science and Education 119



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

The conditional probability of a QTL genotype (QQ or Qq) is determined by the QTL position and the different genotypes
of the two flanking markers. The principle about how to derive the conditional probabilities of QTL genotypes between
the two flanking markers was described by Tong and Shi (2002). According to the approach, we derive a uniform for-
mula for computing conditional probabilities of QTL genotypes given the two flanking markers with different alleles and
linkage phases in a full-sib family. As an example, we consider one of the combinations of marker segregation types,
abab×aacd, e.g., the maternal genotype being abab and the paternal genotype aacd at the two marker loci. A putative
QTL that governs growth trajectory is presumably located between the two marker loci. Let r be the recombination frac-
tion between the two marker loci, r1 be the recombination fraction between the first marker locus and the QTL, and r2 be
the recombination fraction between the QTL and the second marker locus, then we have the relationship, r = r1£r2£2r1r2,
under the assumption of no interruption between two intervals on chromosomes. The frequencies of the combined geno-
types in the progeny at the two marker loci and QTL are shown in table 1. Dividing each element of every row by the
sum of all the elements of the same row in table 1, we can obtain the conditional probabilities of QTL genotypes given
flanking markers.

(Insert Table 1 here)

2.3 Statistical methods

The phenotypic observation of progeny i measured at T time points for QTL genotype j is conditional on the unknown
parameters (Ω) and the marker data (M) and follows a multivariate normal distribution with density,

f j(yi|Ω,M) =
1

(2π)T/2 |Σ|1/2 exp
[
−

(
yi − g j

)′
Σ−1

(
yi − g j

)/
2
]

(3)

where yi =
[
yi(1), yi(2), · · · , yi(T )

]
is the vector of phenotypic observation measured at T time points; g j is the vector

of the expected genotypic values for QTL genotype j ( j = 1, 2); Σ is the residual variance-covariance matrix of the
phenotypes measured at different time points. According to the logistic curve of equation 1, g j is modeled as

g j = [g j(t)]1×T =

[
a j

1 + b je
−c jt

]
1×T

(4)

for QTL genotype j and the set of parameters
(
a j, b j, c j

)
defines the shape of the growth curve. Σ is assumed identical

among different genotypes and modeled by using AR(1) (first-order autoregressive) model as

Σ = σ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 ρ · · · ρT−1

ρ 1 · · · ρT−2

...
...

. . .
...

ρT−1 ρT−2 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

where, σ2 isthe same residual variance for the trait at each time; ρ (0 < ρ < 1) is the proportion parameter with which the
correlation decays with time lag.

The joint likelihood function conditional on the observed phenotype (y) and marker data (M) for a sample of size N can
be represented by a multivariate mixture model

L(Ω|y,M) =
N∏

i=1

⎡⎢⎢⎢⎢⎢⎢⎣ 2∑
j=1

p j|i f j(yi|Ω,M)

⎤⎥⎥⎥⎥⎥⎥⎦ (6)

where the vectorΩ =
(
a j, b j, c j, ρ, σ

2
)′

contains the unknown parameters to be estimated for the QTL effect, QTL position,
and residual (co)variances; p j|i is the probability of QTL genotype j conditional upon the genotypes of the two flanking
markers for progeny i in a full-sib family.

The maximum-likelihood estimates (MLEs) of the unknown parameters for a pleiotropic QTL can be computed by imple-
menting the EM algorithm. In the E-step (i.e., expectation), a posterior probability of progeny ihaving a QTL genotype
jis calculated as

Pj|i =
p j|i f j(yi|Ω,M)

2∑
j=1

p j|i f j(yi|Ω,M)
(7)

In the M-step (i.e., maximization), all parameters are estimated from the equations obtained by differentiating the log-
likelihood of equation 6 with respect to each unknown parameter inΩ and letting the derivatives equal zero. The estimates
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are then used to update P (P = {Pj|i, j = 1, 2; i = 1, · · · ,N}), and the process is repeated until the iterative value of each
parameter converge at a satisfying critical value. The values at convergence are the MLEs of Ω. Ma et al. (2002) gave
the iterative expressions for estimating the parameters in Ω, where the conditional probabilities of QTL genotype in our
model is completely different from the inbred lines. The standard errors of the MLEs can be estimated using the inverse
of the Fisher information matrix.

2.4 Hypothesis tests

The hypothesis about the existence of a major gene affecting an overall growth curve can be formulated as

H0: a1 = a2, b1 = b2, c1 = c2

H1: at least one of the equalities above does not hold. (8)

where H0 corresponds to the reduced model, in which the data can be fit by a single logistic curve, and H1 corresponds
to the full model, in which there exist two different logistic curves to fit the data. The test statistic for testing the above
hypotheses is calculated as the log-likelihood ratio of the full model over the reduced model:

LR = −2 log
[

L(Ω̂)
L(Ω̃)

]
(8)

where Ω̂ and Ω̃ denote the MLEs of the unknown parameters under H0 and H1, respectively.

LR is used as a kind of probable measurement of the potential QTL position on chromosome. The probable position of
QTL is determined by the critical thresholds of LR.

3. Results

3.1 Simulation design

A series of simulation studies were performed to investigate the theoretical power of our model. Suppose that there are
six equidistant makers on a linkage group of 100 cM orderly, whose segregation types are ab×aa, ab×cd, aa×ab, aa×ab,
ab×ab and ab×cd, respectively. The linkage phases between neighboring markers are assumed to be r, c, c, r and c × r,
respectively. A putative QTL is also assumed to be located at the position of 50 cM from the first marker of the linkage
group. The simulations were performed by considering different number of time points (T = 8 vs. T = 16), different
heritability levels (H2 = 0.1 vs. H2 = 0.4) and various sample size (N = 100 vs. N = 400). The true parameters in our
simulations are set to be the corresponding values in the first column of Table 2 and Table 3, where the σ2is determined
by the heritability H2and the largest variance σ2

G explained by the QTL over the T time points. The precision of the
parameter estimation was evaluated based on the square roots of the mean square errors (SMSE).

3.2 Simulation results

In general, our model can provide reasonable estimates for the QTL position and the parameters of QTL effects. Tables
2-3 lists the mean of the QTL location, the means of MLEs of the QTL effects and their SMSE based on 1000 simulation
replicates under different simulation schemes. We found that the estimation precision of the QTL effects and position was
dependent on heritability level, sample size and the number of time points. Even though heritability level, sample size and
the number of time points are all small, the means of all the parameter estimates approximate to the true values well and
all the SMSEs are also small. If one of the three factors (i.e., heritability level, sample size and the number of time points)
increases, the SMSE of partial or all parameters will decrease obviously: (1) The SMSE of QTL position and QTL effects
parameters decrease by about twofold when N increases from 100 to 400 for the fixed number of time points and fixed
heritability level; (2) When H2 increasesfrom 0.1 to 0.4 for the fixed number of time points and fixed sample size, the
precision of QTL position dose not increase obviously, but the estimation precision of the parameters (a j, b j, c j) which
describe the logistic curve of different QTL genotypes increases by about 2.5-3 times; (3) As T increases from 8 to 16
for fixed heritability level and fixed sample size, the estimation precision of the logistic curve parameters (a j, b j, c j) and
residual variance (σ2) increases with different degrees.

(Insert Table 2 and 3 here)

4. Discussion

The statistical model for functional QTL mapping has been well developed in inbred lines (Ma et al. 2002; Yang et al.
2007), it has not been proposed in a full-sib family, in which the number of alleles may vary over loci and the linkage
phases are usually unknown between loci. In this article, we developed a functional mapping model based on a logistic
mixed model for mapping QTL in a full-sib family in forest trees.

There are many factors that affect the power and precision of QTL mapping in a full-sib family in forest trees, such as the
heterozygous degree of two parents, the marker density, the population size, the heritability level, and the linkage phases

Published by Canadian Center of Science and Education 121



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

between loci. In the present study, we illuminated how the three controllable factors (i.e., heritability level, sample size
and the number of time points) impacted on the power of functional QTL mapping through a series of simulation studies.
We found that our model could achieve adequate power of QTL mapping and accuracy of the parameters estimation even
if sample size was smaller and heritability level was lower.

Our functional QTL mapping model is based on the assumption that the QTL genotype of one parent is heterozygous
and the other is homozygous in a full-sib family in forest trees. In summary, there are several major features in this
study. First, there are up to four marker alleles at a single locus and the number of alleles may vary over loci in a full-sib
family (Maliepaard et al. 1997). We considered all pairwise combinations of segregation types and all possible linkage
phases between marker loci in a full-sib family into functional mapping model of QTL for the first time. Therefore,
our model can be used to locate QTL on the genetic linkage maps which are constructed with a mixed set of different
segregation markers (Yin et al. 2002; Zhang 2005) in a full-sib family in forest trees. Second, functional mapping can
enhance the understanding of genetic architecture of quantitative traits by viewing the developmental process of dynamic
traits as a growth trajectory (Wu et al. 2006). We can draw growth trajectory of each QTL genotype by estimating
the QTL parameters and detect the dynamic pattern of QTL expression over time (Ma et al. 2002). With the growth
trajectories of trait, we can determine how each QTL genotype affects development of traits, how a trait expresses under
different environmental conditions and whether there is a common genetic basis for individual development (Wu et al.
2006). Third, the simulation results indicate that functional mapping model has high computational efficiency and robust
precision for identifying the QTL position and estimating the parameters of QTL effects and residual variance. An
important finding is that increasing heritability level can make more substantial improvements in the accuracy of QTL
parameters than increasing sample sizes. This conclusion suggests that an optimal experiment design is more advisable
for precise estimation of QTL parameters. For example, we should pay more attention to using silvicultural treatment to
increase site homogeneity rather than planting a large sample size on nonuniform sites (Lin et al. 2003).

In a general full-sib family, the segregation pattern of QTL genotype can be various for major genes governing growth
trajectories in different regions of the genome (Wu et al. 2002). A further study would be done by performing a model
selection process for many different QTL segregation types. That would discriminate the linkage phase between the
marker and QTL, and improve the power of QTL mapping through identifying the true QTL genotype.
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Table 1. Genotype frequencies in the progeny generated by hybridization, abQQab×aaQqcd, without interruption under
different linkage phases (coupling and repulsion) in a full-sib family.

Marker genotype Coupling Repulsion
Locus 1 Locus 2 QQ Qq QQ Qq

aa ac (1-r2)(1-r)/4 r2(1-r)/4 (1-r2)r/4 r2r/4
aa ad r2(1-r)/4 (1-r2)(1-r)/4 r2r /4 (1-r2)r /4
aa bc (1-r2)r/4 r2r/4 (1-r2)(1-r)/4 r2(1-r)/4
aa bd r2r/4 (1-r2)r/4 r2(1-r)/4 (1-r2)(1-r)/4
ab ac (1-r2)r/4 r2r/4 (1-r2)(1-r)/4 r2(1-r)/4
ab ad r2r/4 (1-r2)r/4 r2(1-r)/4 (1-r2)(1-r)/4
ab bc (1-r2)(1-r)/4 r2(1-r)/4 (1-r2)r/4 r2r/4
ab bd r2(1-r)/4 (1-r2)(1-r)/4 r2r/4 (1-r2)r/4

Table 2. Mean of the QTL position and the MLEs of the model parameters for T = 8 under different heritability levels (H2

= 0.1 and 0.4) and sample size (N = 100 and 400) based on 1000 Monte Carlo simulations. The SMSE of each parameter
is in the parentheses.

True Parameters
H2 = 0.1 H2 = 0.4
N = 100 N = 400 N = 100 N = 400

QTL position
S = 50cM

49.790(2.5574) 49.984(1.2678) 50.104(2.5643) 50.005(1.2777)

a1 = 21 21.0011(0.0970) 20.9987(0.0500) 20.9998(0.0422) 20.9994(0.0199)
b1 = 5.0 4.9980(0.0828) 5.0007(0.0395) 5.0018(0.0327) 4.9995(0.0164)
c1 = 0.50 0.4999(0.0051) 0.5001(0.0026) 0.5001(0.0021) 0.5000(0.0010)
a2 = 16 16.0018(0.1117) 16.0027(0.0603) 15.9996(0.0476) 15.9993(0.0249)
b2 = 4.5 4.5056(0.0929) 4.4998(0.0463) 4.5024(0.0383) 4.5002(0.0187)
c2 =0.45 0.4499(0.0066) 0.4498(0.0033) 0.4501(0.0028) 0.4500(0.0014)
ρ = 0.80 0.7959(0.0188) 0.7993(0.0097) 0.7959(0.0196) 0.7990(0.0100)
σ2= 0.1842 0.1810(0.0164) 0.1835(0.0082)
σ2= 0.0307 0.0302(0.0027) 0.0306(0.0014)

Table 3. Mean of the QTL position and the MLEs of the model parameters for T = 16 under different heritability levels
(H2 = 0.1 and 0.4) and sample sizes (N = 100 and 400) based on 1000 Monte Carlo simulations. The SMSE of each
parameter is in the parentheses.

True Parameters
H2 = 0.1 H2 = 0.4
N = 100 N = 400 N = 100 N = 400

QTL position
S = 50cM

50.058(2.6385) 49.986(1.2631) 49.962(2.6072) 49.976(1.2763)

a1 = 21 20.999(0.0498) 21.001(0.0245) 21.0004(0.0211) 20.9999(0.0100)
b1 = 5.0 5.0028(0.0790) 4.9986(0.0402) 5.0019(0.0333) 5.0001(0.0163)
c1 = 0.50 0.5002(0.0039) 0.5000(0.0020) 0.5001(0.0016) 0.5000(0.0008)
a2 = 16 16.0037(0.0526) 15.9988(0.0264) 15.9994(0.0212) 16.0004(0.0106)
b2 = 4.5 4.5033(0.0934) 4.5019(0.0463) 4.4999(0.0369) 4.5005(0.0182)
c2 =0.45 0.4500(0.0047) 0.4500(0.0025) 0.4501(0.0021) 0.4500(0.0010)
ρ = 0.80 0.7967(0.0147) 0.7990(0.0072) 0.7967(0.0144) 0.7995(0.0072)
σ2= 0.1842 0.1816(0.0127) 0.1834(0.0066)
σ2= 0.0307 0.0303(0.0022) 0.0306(0.0011)
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