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Abstract

Boundary value problems are formulated on infinite-genus surfaces. These are solved for a variety of boundary conditions.
The symbol calculus for differential operators is developed further for solution of parabolic differential equations at infinite
genus.
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1. Introduction

The theory of partial differential equations with given boundary conditions has developed from series solutions and in-
tegral transforms to an operator calculus (Hormander, 1985). The matrix algebra formed from the symbols representing
a set of operators for a pseudodifferential equation defined at the interior and the boundary can be used to evaluate the
inverse for elliptic boundary value problems (Boutet de Monvel, 1971). A framework for this derivation may be given
with this symbolic calculus for parabolic boundary value problems. The Volterra pseudodifferential differential equations
were solved for a given set of boundary conditions (Piriou, 1970). It had been proven that an isomorphism existed between
a normed space of solutions to elliptic boundary value problems with these boundary conditions in the complex plane on
the real line to a normed space of solutions to a corresponding parabolic differential equation (Agronovich and Vishik,
1964). The exponential long-time asymptotics on a noncompact manifold in the elliptic problem (Schuss, 1973) similarly
may be transformed to asymptotics in a parabolic problem.

The existence and uniqueness of solutions to parabolic differential equations with exponential asymptotics in the t → ∞
limit have been established (Krainer, 2002). External states in string amplitudes are known to be described by semi-
infinite cylinders and the solutions to equations on these ends in the Euclidean formalism may be related to the parabolic
boundary value problems through a generalized inverse Laplace transform. Therefore, the asymptotics of solutions in
string theory would be represented. The t → ∞ limit, however, does not necessarily arise for infinite-genus surfaces
with accumulating handles. Exponentially decaying solutions at t = −∞ are not required for the semi-infinite cylinders
representing the propagation of external states. Nevertheless, a change of coordinates equivalent to r = e−t again maps
the boundary conditions at t = ∞ to the origin of a punctured disk at r = 0.

The methods for solving differential equations of field theories at the ideal boundaries of surfaces will be given. Ideal
boundaries may consist of discrete sets of points or a continuum. An example of a series solution to an elliptic differential
equation on a surface with a boundary with an infinite number of ends is provided in §2. The uniqueness of the function
which represents the harmonic measure with a given set of boundary values follows. The path to ideal boundary will be
parameterized by a coordinate t tending to infinity, and the mapping from infinity to the origin can have an image that is
a discrete set or the real line. When it is not the real line, by the uniformization of surfaces of genus g ≥ 2, there is a
formalism based on the automorphic functions defined on the entire upper half plane instead of a fundamental region for
a Fuchsian group, and boundary conditions may be specified on the real line. Infinite-genus surfaces in the class OG are
parabolic and have a countable number of ends. The mapping to a surface with one end to a finite region would yield a
surface with handles accumulating to only one point. Therefore, the boundary is not identified with a continuum. The
boundary value problem shall be solved through the above method of functions invariant under the uniformizing group.

Analytic function theory on infinite-genus surfaces is necessary for the set of conditions (Widom,1971) required for a
convergent representation of the Green function as a product over elements of the uniformizing group (Pommerenke, 1976)
The convergence of the series for theta functions similarly can be proven for spectral curves of the parabolic heat equation.

Nontrivial solutions ψ ∈ L∞loc(R2) to the heat equation
(
∂
∂t −

∂2

∂x2
2

)
ψ + q(x1, x2)ψ = 0 and ψ(x1 + ω1, x2 + ω2) = ξ1ψ(x1, x2)

and ψ(x1, x2+2π) = ξ2ψ(x1, x2) for q ∈ L2(R2/Γ), where Γ = (0, 2π)Z⊕(ω1, ω2)Z, may be mapped to functions that satisfy
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the Kadomtsev-Petviashvili equation on R2/Γ (Feldman, Knorrer Trubowitz, 2003). The pseudodifferential calculus for
this parabolic boundary value problem in §3 then yields a solution for the Kadomtsev-Petviahshvili equation in terms of
this theta function through the mapping to the hyperbolic space the covering transformation of the surface.

2. The Harmonic Measure of the Ideal Boundary

The Dirichlet problem may be formulated for an infinite-genus surface. If △u = 0 with specified values at the boundary,
w(z, ∂Σ,Σ), which equals the Perron solution at z, gives the probability of random motion beginning at z and exiting
through ∂Σ (Kakutani, 1944). It equals the harmonic measure of the ideal boundary. Random motion does not produce a
flux to the embedding space unless the the capacity is non-zero, and the surface does not belong to OG. This result would
complement the introduction of exceptional group gauge symmetries through the intersection matrix (Davis, 2014).

The capacity of the ideal boundary is cβ = e−kβ , where

kβ = limn→∞

∫
∂En

sn ∗ dsn, (1)

with sn = ln|z|+φn(z) relative to some origin z = 0 and φn(z) being harmonic on En, an nth order approximation of the end
E (Sario Nakai, 1970). When there is a null boundary, there is no second source for the Green function and φn(z) will
not cancel ln|z| in the limit z → ∂En and n → ∞. If the ideal boundary has non-zero harmonic measure, the equivalent of
the second source is sufficient for a cancellation with ln|z| and the remainder is finite. The integral 1

2π

∫
β

sβ ∗ dsβ would be
finite and cβ , 0.

The harmonic measure of an end with respect to the ideal boundary is defined to be a solution to △w = 0 with w|α = 0
and w|β = 1. Uniqueness of the harmonic measure follows if it is an H̃D-minimal function, since another function may be
selected to be either less than or greater than u in an entire neighbourhood of the ideal boundary. Any harmonic function
with finite Dirichlet norm in H̃D(Σ) may be expressed as

∫
D P(z, p) f (p)dµ(p), where P(z, p) is the harmonic kernel, f (p)

is a boundary function and µ(p) is the harmonic measure (Sario Nakai, 1970).

An example of a surface in OHD−OG is Toki’s surface. If D0 is the slit disk D−∪m,n,νS ν
m,n, where S ν

mn = {z = reiθ |−2−2µ ≤
log r ≤ −2−2µ+1, θ = ν · 2π · 2−2µ, ν = 1, ..., 22µ, µ = 2m−1(2n − 1)}, the Riemann surface is constructed by joining the
copies of the disks Σ(i +m j) with Σ′(i +m +m j) for even j and Σ(i +m j) with Σ′(i −m +m j) for odd j cross along every
slit S ν

mn, n = 1, 2, ..., ν = 1, ..., 22µ (Toki, 1962). The Dirichlet problem may be solved on this surface by the integral

φ(z) = −
∫
∂Σ

dσφ0(σ)
∂G
∂n

(2)

where φ|∂Σ = φ0 and G(z, z′) is the Green function (Poincare, 1890). The solution on Tôki’s surface for the harmonic
measure would satisfy the boundary condition ϕ0(σ) = 1 at each of the slits in S ν

mn.

Theorem 1. The harmonic measure of Tôki’s surface may be given in series form.

Proof.

Given the Green function on the upper half plane G(z, z′) = − 1
4π ln (x−x′)2+(y−y′)2

(x−x′)2+(y+y′)2 , the normal derivative may be found on the
unit disk. Let us define a group ΓT generated by translations θν → θν+1, ν = 1, ..., 22ν − 1, θ22µ → θ1 and m → m + 1,
n→ n + 1. The Green function then can be evaluated by the method of images

G(z, z′) = − 1
4π

∑
γ∈ΓT

ln
(x − γx′)2 + (y − γy′)2

(x − γx′)2 + (y + γy′)2 , (3)

where the slit, − 1
4 ≤ log r ≤ 1

8 , θ = π
4 is aligned with the y axis. At each slit, the normal vector is perpendicular to the

direction given by γ(S 1
11) or S ν

mn. It is sufficient to establish the angle of the perpendicular relative to the adjusted y-axis,
which is π

2 + θ
ν

mn − π
4 =

π
4 + ν(2π)2−2m(2n−1). The effect of γs1

ν γ
s2
m γ

s3
n on this angle is

γs1
ν γ

s2
m γ

s3
n (θνmn) = θ

(ν+s1)
σ(22(m+s2)(2(n+s3)−1)

) (4)

=
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)(2π)2−2(m+s2)(2(n+s3)−1)

where σ(N) represents cyclic permutation with respect to N. The gradient vector perpendular to γs1
ν γ

s2
m γ

s3
n (S ν

mn) is
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cos
(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂x
(5)

+ sin
(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂y

Consequently,

∂G
∂n
= − 1

4π

∞∑
m=1

∞∑
n=1

2m(2n−1)∑
ν=1

(6){
cos

(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂x

+ sin
(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂y

}
ln

(x − γs1
ν γ

s2
m γ

s3
n x′)2 + (y − γs1

ν γ
s2
m γ

s3
n y′)2

(x − γs1
ν γ

s2
m γ

s3
n x′)2 + (y + γs1

ν γ
s2
m γ

s3
n y′)2

.

where the action of γs1
ν γ

s2
m γ

s3
n on points in the disk may be defined by the rotation and radial translation required from the

mapping of the midpoint of slit S 1
11 to the midpoint of S 1+s1 1+s2, 1+s3 . Then the formula (2) with the Dirichlet boundary

condition yields

ϕ(z) =
1

4π

∫
(x′,y′)∈S 1

11

∞∑
m=1

∞∑
n=1

2m(2n−1)∑
ν=1

(7){
cos

(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1) )(2π)2−2(m+s2)(2(n+s3)−1)
)
∂

∂x

+ sin
(
π

4
+ (ν + s1)

σ(22(m+s2)(2(n+s3)−1)
)(2π)2−2(m+s2)(2(n+s3)−1)

)
∂

∂y

}
ln

(x − γs1
ν γ

s2
m γ

s3
n x′)2 + (y − γs1

ν γ
s2
m γ

s3
n y′)2

(x − γs1
ν γ

s2
m γ

s3
n x′)2 + (y + γs1

ν γ
s2
m γ

s3
n y′)2

.

The uniqueness of this solution follows from evaluating the difference of two harmonic measures with same boundary
conditions to be a harmonic function vanishing everywhere on the boundary. By the maximum modulus principle, this
harmonic function vanishes and the two series are equal.

3. Solutions Spaces for Parabolic Surfaces of Infinite Genus

The identification of theta function on the Riemann surface of infinite genus and periodic solutions to the Kadomtsev-
Petviashvilli equation on R2 reflects an embedding into a calculus of symbols for this parabolic differential equation that
would unify the two analytic function spaces.

The solutions to differential equations on surfaces of infinite genus belong to Sobolev spaces W p
s . Given that the Hilbert

spaces H and H̃ admit a scaling group action, Λ is a conical manifold and the norm is ⟨ξ, λ⟩ℓ = (1 + |ξ|2ℓ + ||2)
1
2ℓ , which

satisfies a linear convexity relation, the space of L(H , H̃) anisotropic symbols of order µ, Λ (Krainer, 2002) is

S µ;ℓ(Rn × Λ;H , H̃) =
{
a ∈ C∞(Rn × Λ,L(H , H̃);∀k ∈ N0 :

sup (x,λ)∈Rn×Λ
|β|ℓ≤k

∥ κ̃−1
⟨ξ,λ⟩ℓ∂

β
(ξ,λ)a(ξ, λ)κ⟨ξ,λ⟩ℓ ∥ ⟨ξ, λ⟩

−µ+|β|ℓ
ℓ

< ∞
}

where κρ ∈ L(H) and κ̃ρ ∈ L(H̃) with ρ ∈ R+, while the

space of classical symbols is S µ;ℓ
cl (H2 × Λ;H , H̃) =

{
a ∈ S µ;ℓ(H2 × Λ,H , H̃); a ∼ ∑∞

k=0 χa(µ−k)

}
and χ ∈ C∞(H2 ×

Λ) =
{

0 (x,λ)=(0,0)
1 x→∞ and a(µ−k) ∈ C∞(H2 × Λ\{(0, 0)},L(H , H̃) consist of anisotropic functions of degree µ − k, with

f (ρξ, ρℓλ) = ρµκ̃ρ f (ξ, λ)κ−1
ρ (Krainer, 2002).

The norm may be defined on the product of the fundamental domain of the uniformizing Fuchsian group of the surface
with Λ, FΓ × Λ = H2/Γ × Λ to be

⟨ξ, λ⟩Σ,ℓ = (1 + |ξ|2ℓH + |λ|2)
1
2ℓ . (8)

The metric in H2 is dx2+dy2

|y|2 and has isometries given by the fractional linear transformations z → az+b
cz+d and fractional

antilinear transformations z → cz̄+d
az̄+b with ad − bc = 1. The composition of two pure translations z → z + b1 and
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z → z + b2 yields the pure translation z → z + b1 + b2 with b1, b2 ∈ R. The product of the two groups is isomorphic to
PS L(2;R)× PS L(2;R). It may be noted that fractional linear transformations with complex coefficients are isometries of
H3. Since hyperbolic Riemann surfaces would represent boundary components of the space H3/G, where G is a discrete
subgroup of PS L(2;C), the restriction to the boundary yields a complex isometry on the covering space H2 if it preserves
the upper half plane. The set of translations z → z + b where Im b > 0 have an image in H2 the composition defines a
group. The composition of two translations along geodesics, by contrast, yields a mapping along another geodesic which
is not related directly by translation either in H2 or the unit disk with the hyperbolic metric. The first type of translations
will be considered in proving the convexity of the anisotropic norm.

Lemma 1. The norm on H2/Γ satisfies the inequality

⟨ξ1 + ξ2, λ1 + λ2⟩|s|Σ,ℓ ≤ c|s|⟨ξ1, λ1⟩|s|ℓ ⟨ξ2, λ2⟩|s|ℓ .

with c = max
(
3, 1 + 3c1

max(|ξ1 |2H,|ξ2 |2H,2|ξ1 |H |ξ2 |H)

)
and

[
|ξ1|2ℓ1

H |ξ2|2ℓ2
H (
√

2|ξ1|
1
2
H|ξ2|H)2ℓ3

] 1
ℓ

≤ c1.

Proof.

The absolute value of γ(ξ1 + ξ2) in the hyperbolic plane is

|γ(ξ1 + ξ2)|H =
|ξ1 + ξ2|E
|Im(ξ1 + ξ2)|2E

≤ |ξ1|E
|Im(ξ1)|2 +

|ξ2|E
|Im(ξ2)|2 = |γ(ξ1)|H + |γ(ξ2)|H. (9)

for any γ ∈ Γ. It follows that the norm ⟨ξ, λ⟩Σ,ℓ is invariant under the action of Γ and can be defined on the fundamental
domain. The inequalities

⟨ξ1 + ξ2, λ1 + λ2⟩|s|ℓ = (1 + |ξ1 + ξ2|2ℓ + |λ1 + λ2|2)
|s|
2ℓ (10)

=

[
1 +

( |ξ1 + ξ2|E
|Im(ξ1 + ξ2)|2

)2ℓ
+ |λ1 + λ2|2

] |s|
2ℓ

≤
[
1 +

 |ξ1|E
|Im(ξ1)|2E

+
|ξ2|E
|Im(ξ2)|2E

2ℓ

+ 1 + |λ1|2 + |λ2|2 + |λ1λ2|2
] |s|

2ℓ

≤
[
2 +

 |ξ1|2E
|Im(ξ1)|4 +

|ξ2|2E
|Im(ξ2)|4 + 2

|ξ1ξ2|E
|Im(ξ1)Im(ξ2)|2E

ℓ
+ |λ1|2 + |λ2|2 + |λ1λ2|2

] |s|
ℓ

≤
[
2 +

(
|ξ1|2H + |ξ2|2H + 2|ξ1||H|ξ2|H

)ℓ
+ |λ1|2 + |λ2|2 + |λ1λ2|

] |s|
2ℓ

and

|ξ1 + ξ2|2ℓH ≤
[
|ξ1|2H + |ξ2|2H + 2|ξ1|H|ξ2|H

]ℓ
(11)1 + 3c1

|ξ1|2H + |ξ2|2H + 2|ξ1|H|ξ2|H

ℓ ,
where

|ξ1|2ℓ1
H |ξ2|2ℓ2 (|ξ1|H|ξ2|H)2ℓ3 ≤ cℓ1, (12)

yield
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⟨ξ1 + ξ2, λ1 + λ2⟩|s|ℓ ≤ c|s|
[
3 + |λ1|2 + |λ2|2 + |λ1λ2|2 + |ξ1|2ℓH + |ξ2|2ℓH (13)

+ (|ξ1|Hξ2|H)2ℓ + |λ1|2|ξ2|2ℓH + |λ2|2|ξ1|2ℓH
] |s|

2ℓ

≤ c|s|⟨ξ1, λ1⟩|s|ℓ ⟨ξ2, λ2⟩|s|ℓ

with c = max
(
3, 1 + 3c1

max(|ξ1 |2H,|ξ2 |2H,2|ξ1 |H |ξ2 |H)

)
.

�

The space of Volterra symbols is defined by the space of classical symbols with the parameter space Λ equal to H. The
Volterra symbols are given by

a(ξ, ζ) =
∑∞

k=1 χ
(
ξ
ck
, ζcℓk

)
ak(ξ, ζ) =

∑∞
k=1(H(φ(ckt)ak)(ξ, ζ), ck → ∞ as k → ∞, and

(H(φ)b)(ξ, ζ) =
∫
H2

e−itτφ(t)b(ξ, η − τ)dtdτ
∼
V

∞∑
j=0

(
−1) j

j!
D j

tφ(0)
)
∂

j
ζb(ξ, ζ) (14)

and the translation operator is (Tiτa)(ξ, ζ) = a(ξ, ζ + iτ) (Krainer, 2002). The operator product for the symbols would
modified to

a#b(x, ξ, ζ) =
∫ ∫

e−iyηa(x, ξ + η, ζ)b(x + y, ξ, ζ)
dy

|Im(y)|2 dη
∼
V

∑
α∈Nn

0

1
α!

(∂αa)(Dxb). (15)

The operator algebra is defined such that each symbol a has an inverse p with a#p − 1 and p#a − 1 is a symbol of order

−∞ belonging to S −∞:ℓ(H2 × Λ,H, H̃) =
{
a ∈ C∞(H2 × Λ,L(H, H̃));∀k ∈ N0 : sup (ξ,λ)∈H2×Λ

|β|ℓ≤k
∥ κ̃−1
⟨ξ,λ⟩ℓ∂

β
(ξ,λ)a(ξ, λ)κ⟨ξ,λ⟩ℓ ∥

⟨ξ, λ⟩∞ℓ < ∞
}
. Given that ∥ κ̃−1

⟨ξ,λ⟩−1
ℓ

∂
β
(ξ,λ)a(ξ, λ)κ⟨ξ,λ⟩ℓ∥>0, ⟨ξ, λ⟩ℓ ≤ 1 and |ξ|2ℓH = |λ| = 0. Since |ξ|H = |ξ|E

|Im(ξ)|2 , either Im ξ = ∞.

Consequently, it is only necessary to establish that

∥ κ̃−1
⟨σ±i∞,0⟩∂

β
(σ+i∞,0)a(σ + i∞, 0)κ⟨σ+i∞,0⟩ ∥ =∥ κ̃−1

1 ∂
β
σa(σ + i∞, 0)κ1 ∥ (16)

=∥ ∂βσa(σ + i∞, 0) ∥< ∞.

since 1 + |β|2 ≤ k includes β = 0. Then a(ξ, 0) must be bounded at infinity in all directions in the upper half plane.
Furthermore, if ξ ∈ FΓ has finite coordinates, ⟨ξ, λ⟩ℓ > 1 and

∥ κ̃−1
⟨ξ,λ⟩ℓ∂

β
(ξ,λ)a(ξ, λ)κ⟨ξ,λ⟩ ∥= 0 (17)

and a(ξ, λ) must vanish in this space.

The operator symbol with respect to a boundary parameterized by x is

opx(a) : S µ;ℓ
cl (H2 ×H2 × Λ;CN− ,C−)→ S µ;ℓ(R × R × Λ; Hs,δ(R+,CN−),Hs−µ,δ(CN−)) (18)

s > −1
2
, δ ∈ R.

Near r = 0, the smoothing Mellin operator is

opγ−1
M (h)u(r) =

1
2πi

∫
Γ 3

2 −γ

∫
R+

( r
r′

)−s
h(r, z)u(r′)

dr′

r′
dz (19)

The calculus of classical symbols includes singular Green, trace, potential and boundary symbols (Schrohe, 2001). The
operator for the Green function can be expanded as g =

∑d
j=0 g j∂

j
x ∈ S µ;ℓ

cl (R ×R ×Λ, S ′(R+), S (R+) ⊗L(CN− ,CN+)), with
S(R+) ≃ pro j − lims,δ∈RHs,δ(R+) and S ′(R+) ≃ ind − lims,δ∈RHs,δ

0 (R̄+) and g j is a symbol of order µ − j and type 0, the
trace symbol of order µ and type d equals t =

∑d
j=0 t j∂

j
x ∈ S µ;ℓ

cl (R×R×Λ,S′(R+),C)⊗L(CN− ,CM+)), where t j is a symbol
of order µ − j and type 0, the potential symbol of order µ, k ∈ S µ;ℓ

cl (R × R;C, S (R+) ⊗ L(CM− ,CN+), with N−,N+ and
M−,M+ being the complex dimension of the domain and range of symbols satisfies the transmission condition (Boutet
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de Monvel, 1971), requiring an upper bound for derivatives with homogeneous components, and the more general class,
respectively, and the boundary symbol of order µ and type d is given by

a0 =

(
opx(a) + g k

t s

)
(20)

with the classical symbols being defined to be automorphic with respect to Γ, a(Γξ, λ) = a(ξ, λ) (Krainer, 2002). It can be
proven that g =

∑d−1
j=0 k jγ j + g0, where k j is a potential symbol of order µ − j − 1

2 , γν( f ) = ∂νx f is a trace symbol of order
ν + 1

2 ,

a0#b0 =

(
opx(a#xb) + g̃ k̃

t̃ s̃

)
(21)

a boundary symbol of order µ1+µ2 and type d = max(µ2+d1, d2) with a0 =

(
opx(a) + g1 k1

t1 s1

)
and b0 =

(
opx(b) + g2 k2

t2 s2

)
are boundary symbols of order and type (µ1, d1) and (µ2, d2) respectively.

Boundary value problems on a manifold X of dimension n would be formulated on a boundary Y of dimension n − 1.
The space of classical symbols have been defined with X and Y chosen to be H2 and R respectively. The ideal boundary
of a Riemann surface is given by (F ∩ R)/Γ. A differential operator A =

∑M
j=0 A j(t)∂

j
t =

∑M
j=0 A j(−ln r)(−r∂r) j and

the solutions to Au = f has the form
∑

j
∑m j

k=0 c̃ j,klogk(r)r−p j as r → 0. The data at the boundary determine the Mellin
asymptotic type {(p j,m j, L j), j ∈ Z}, where m j ∈ N0, L j are finite-dimensional operators of B−∞,d(X) and p j ∈ C such
that a(z) =

∑m j

k j=0 νk j (z − p j)−(k j+1) + a0(z).

Given a matrix (
A K
T Q

)
(22)

and the inverse (
P̂ K̂
T̂ Q̂

)
. (23)

provides a solution to the differential equation. Letting ωAω̃ = opγ−1
M (h) + AM+G near r = 0, ω, ω̃ ∈ C∞0 (R̄+), AM+G is

a Green operator of type d, h̃ = (Hγ−1h′)(r, z) is the interior symbol, P′ = ω1opγ−1
M (h̃)ω2 + (1 − ω1)opr(ã(1 − ω3), with

χ[0,T̃1] < ω3 < ω1 < ω2 < χ0,T̃1], P̃ = P′ + ωopγ−1
M (g)ω, where g = σ0

M(A)−1 − σ0
M(P′) ∈ M−∞,t

′

V,Q (X;H 3
2−γ), P = P̃(1 + D1)

or P = (1 + D2)P̃ satisfies PA = 1 (Krainer, 2002). Then u = P−1 f .

This technique easily transposes between R2 and H2 since the classical symbols had been defined initially for X = Rn.
The following lemma provides a mapping between solutions of elliptic and parabolic boundary value problems restricted
by conditions on the function in the upper half plane.

Lemma 2. The solution to a parabolic boundary value problem with conditions on the real line is given by a generalized
Fourier transform of a function satisfying an elliptic differential equation.

Proof.

Let u(x, t) be a solution to an elliptic equation
∂2u
∂t2 + k

∂2u
∂x2 = 0. (24)

Let U(x, p) be defined such that ∂U(x,p)
∂p is the inverse Laplace transform of ∂u(x,t)

∂t such that

U(x, p) =
1

2πi

∫ p

0
dp̃

∫ ρ+i∞

ρ−i∞
ep̃t ∂u(x, t)

∂t
dt. (25)

where t is generalized to be a complex variable and the line Re t = ρ is located to the right of any singularities of ∂u(x,t)
∂t .

Suppose that
∂U(p, x)
∂p

= κ
∂2U(p, x)
∂x2 . (26)

Then ∫ ρ+i∞

ρ−i∞
ept ∂u(x, t)

∂t
dt = κ

∫ ρ+i∞

ρ−i∞
ept ∂

2u(x, t)
∂t2 dt (27)
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and
1
p

∫ ρ+i∞

ρ−i∞

∂

∂t
(ept)

∂u(x, t)
∂t

dt = κ
∫ ρ+i∞

ρ−i∞
ept ∂

2u(x, t)
∂t2 dt. (28)

After integration by parts, setting the boundary terms equal to zero,

− 1
p

∫ ρ+i∞

ρ−i∞
ept ∂

2u(x, t)
∂t2 dt = κ

∫ ρ+i∞

ρ−i∞
ept ∂

2u(x, t)
∂t2 dt. (29)

The equation derived from the integrand is

1
p
∂2u(x, t)
∂t2 + κ

∂2u(x, t)
∂x2 = 0 (30)

which is the elliptic equation with k = κp. The space of functions with ∂u(x,t)
∂t defined in the plane Re t > γ such that∥∥∥ ∂u(x,t)

∂t

∥∥∥2

α
= supσ>γ

∫ ∣∣∣∣∣ ∂u(x,t)
∂t |t=σ+iτ

∣∣∣∣∣2|σ+iτ|2αdτ < ∞ is mapped to functions of the form ∂U(x,p)
∂p defined on the real line and e-

qual to zero for Re p < 0, with e−γp ∂U(x,p)
∂p ∈ H1

α(R) for Re γ > ρ and
∥∥∥∥ ∂U(x,p)

∂p

∥∥∥∥2

α
=

(∫
R

(
1 + |ξ|2α

) ∣∣∣∣∣ 1
2π

∫ ∞
−∞ e−iξp ∂U(x,p)

∂p

∣∣∣∣∣2dξ
)2

<

∞ (Agronovich & Vishik, 1964).

�

The region of support in the p plane can be rotated by π
2 to the upper half-plane. It follows that the method may be used

to invert the differential operator on R2/Γ1 and H2/Γ2. The mapping between the solutions with the specified asymptotic
data follows from the relation between the integral transformations.

Consequently, it is necessary to consider the eigenvalue spectrum of the heat equation on R2/Γ and the Kadomtsev-
Petviashvilli equation. The mapping between the calculus of symbols for the this equation and the heat curve is given in
the following theorem.

Theorem 2. There exists a transformation Φ from the class symbols of the heat equation operator on a curve of infinite
genus and the Kadomtsev-Petviashvili equation on R2 with periodic boundary conditions.

Proof. The Kadomtsev-Petviashvili equation with periodic boundary conditions and the differential equation defining the
heat curve may be formulated on R2/Γ1 and H2/Γ2 respectively for discrete group Γ1 and Γ2. The group Γ1 is the infinite
tensor product of Γper. generated by two lattice vectors (0, 2π) and (ω1, ω2) for each admissible value of (ξ1, ξ2). It is not
possible to formulate the solution on R2/Γper. because iterations of the boundary condition for ξ1 , 1 and ξ2 , 1 yield a
different values of ψ(x1, x2) at each lattice point. Instead, the quotient will be a surface consisting of an infinite sequence
of genus-one components with the same monodromy factor for each solution. The Fuchsian group Γ2 defined by the set
of periodicity factors (ξ1, ξ2) ∈ C∗ × C∗ corresponding to nontrivial ψ(x1, x2) ∈ L2(R2/Γ1) in the heat equation, requires

dual group Γ# =
(

2π
ω1
, 0

)
Z ⊕

(
−ω2
ω1
, 1

)
Z, the operator Hk = e−i⟨k,x⟩

(
∂
∂x1
− ∂2

∂x2
2

)
ei⟨k,x⟩ = ∂

∂x1
− 2ik1

∂
∂x2
− ∂2

∂x2
2
+ ik1 + k2

2 and the

union of the parabolas H(0) = ∪b∈Γ#Pb, Pb = {(k1, k2) ∈ C2|Pb(k1, k2) = i(k1 + b1) + (k2 + b2)2 = 0} (Feldman, Knorrer
Trubowitz, 2003). Therefore, condition on the periodicity factors is translated to a condition on eigenvalues of a related
differential operator.

Following the integral representation of operator symbols and products on R2 and H2, the mapping Φ will be defined by

Φ :
(

A K
T Q

)
R2/Γ1

→
(

A K
T Q

)
H2/Γ2

(31)

such that the transformation of the boundary symbol

ΦB :
(

opx(a) + g k
t s

)
R2/Γ1

→
(

opx(a) + g k
t s

)
H2/Γ2

(32)

is a continuous limit of Φ at the boundary R2/Γ1 ∩R. For a parabolic symbol, the boundary symbol is defined on a set of
null harmonic measure. The inverse of the mapping

Φ−1 :
(

A K
T Q

)−1

H2/Γ2

≡
(

P̂ K̂
T̂ Q̂

)
H2/Γ2

→
(

A K
T Q

)−1

R2/Γ1

≡
(

P̂ K̂
T̂ Q̂

)
R2/Γ1

(33)
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with P̂ yielding the inverse P of the differential operator A. It follows that solutions to the heat equation on the infinite-
genus curve H2/Γ2, including the theta function, would be mapped to a solution of the Kadomtsev-Petviashvili equation
on R2 with periodic boundary conditions. The independence of the eigenvalue spectrum and the heat curve with respect
to the time parameter allows an interpretation of the Green function of the differential operator in terms of the eigenvalues
through G(x1, x2) =

∑ ψ∗n(x1)ψn(x2)
λm−λ . Consequently, the differential operator also can be represented by the eigenvalue

spectrum and the infinite-genus curve. The coordinates on the Riemann surface may be derived from local complex
coordinates with an expansion of the holomorphic one-forms in terms of the differentials of these coordinates together
with vectors representing multiplicative coefficients (Feldman, Knorrer Trubowitz, 2003). It follows that the map Φ from
the theta function on the Riemann surface to the solution to the Kadomtsev-Petviashvili equation only requires that the
surface satisfies standard geometric hypotheses and bounds on the coefficients vectors in the theta function.

�

The introduction of a map from one differential system to another defined on a different domain may yield a method for
solving a similar class of equations.

4. Conclusion

There exist infinite-genus surfaces with ideal boundaries that are represented as images under an infinite group of a
single component. Then the Dirichlet problem may be solved through the method of images. The Green function can be
expressed as an infinite sum of functions on the upper half plane with an infinite number of sources. The solution to the
boundary value problem is an integral of the product of the field on a single component and the normal derivative of the
Green function.

The formulation of the class of symbols directly on the hyperbolic plane facilitates the study of differential equations on
Riemann surfaces of genus g ≥ 2. The class symbols has been given on a manifold of the form X × [t0,∞), where X is
Rn. The dimension has been set equal to 2 and the integrals representing the symbols have been generalized to H2. Norm
conditions have been demonstrated to be valid in hyperbolic space, which is necessary for the definition of equivalence
and symbols with order −∞. Consequently, it is possible to transform symbols and operators from R2 to H2.

Together with the quotient by the discrete uniformizing group, it has been found that there exists a transformation between
a theta function on a Riemann surface of infinite genus and the solution to the Kadomtsev-Petviashvili equation satisfying
periodic conditions. It is the operator between the two domains. The form of the solution requires the mapping to represent
the definition of the holomorphic one-forms and the theta functions in terms of coordinates on the complex plane. This
technique may have some degree of generality because an infinite symmetry with respect to one component of the surface
is not necessary and mappings to domains with tractable boundary value problems would provide a method for deriving
the solution.
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