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Abstract

In this paper, we investigate the sign of permutations induced by the Anick automorphism and the Nagata-Anick automor-
phism over finite fields. We shall prove that if the Anick automorphism and the Nagata-Anick automorphism are defined
over a prime field of characteristic two, they induce odd permutations, and otherwise, they induce even permutations.
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1. Introduction

Let K be a field. We denote the polynomial ring in n indeterminates X1, . . . , Xn over K by K[X1, . . . , Xn]. Let K⟨X1, . . . , Xn⟩
denote the free associative algebra in n indeterminates X1, . . . , Xn over K. For polynomials f1, . . . , fn ∈ K[X1, . . . , Xn],
the n-tuple of polynomials F = ( f1, . . . , fn) is called a polynomial map. The set of polynomial maps over K and the set
of maps from Kn to Kn are denoted by MEn(K) and Maps(Kn,Kn), respectively. Each polynomial map can be identified
with a map from Kn to Kn via the following natural map

π : MEn(K) → Maps(Kn,Kn).

We denote by GAn(K) (resp. Affn(K), EAn(K)) the set of polynomial automorphisms (resp. affine automorphisms,
elementary automorphisms) of Kn. We recall that

Affn (K) � Kn o GLn (K) .

Let us denote by TAn(K) the subgroup of GAn(K) generated by two subgroups Affn(K) and EAn(K). For F ∈ GAn(K), F
is called tame automorphism if F ∈ TAn(K), and otherwise (F ∈ GAn(K) \ TAn(K)) F is called wild automorphism. The
Tame Generators Problem asks whether GAn(K) = TAn(K), and is related to the Jacobian conjecture (See (Essen, 2000)
for more details).

For any finite set T , we denote the symmetric group (resp. the alternating group) on T by Sym(T ) (resp. Alt(T )). Let
sgn : Sym(T )→ {±1} be the sign function. If K is a finite field Fq with q elements (p = char(Fq), q = pm, and m ≥ 1), we
use the symbol πq instead of π:

πq : MEn(Fq) → Maps(Fn
q,Fn

q).

When we restrict the map πq to GAn(Fq), πq (G) is a subgroup of Sym(Fn
q) for any subgroup G ⊆ GAn(Fq). Maubach has

investigated the subgroup πq (G) in the case G = TAn(Fq) (Maubach, 2001).

Theorem 1. If n ≥ 2, then πq(TAn(Fq)) = Sym(Fn
q) if q is odd or q = 2. If q = 2m where m ≥ 2 then πq(TAn(Fq)) = Alt(Fn

q).

If there exists F ∈ GAn(F2m ) such that sgn (π2m (F)) = −1, then we must have F ∈ GAn(F2m ) \ TAn(F2m ). This indicates
that the polynomial automorphism F is wild. Thus, the following question is very important (Maubach, 2008).

Question 1. For q = 2m and m ≥ 2, do there exist polynomial automorphisms such that the permutations induced by the
polynomial automorphisms belong to Sym(Fn

q) \ Alt(Fn
q)?

It is natural to consider the sign of the famous polynomial automorphisms such as the Nagata automorphism (Nagata,
1972), the Anick automorphism (Cohn, 2006), and the Nagata-Anick automorphism (Cohn, 2006).
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In this paper, we investigate the sign of permutations induced by the Anick automorphism and the Nagata-Anick automor-
phism over finite fields. We shall prove that if the Anick automorphism and the Nagata-Anick automorphism are defined
over a prime field of characteristic two, they induce odd permutations, and otherwise, they induce even permutations.

2. Sign of Permutations Induced by Anick Automorphism

The Anick automorphism is defined by

δ := (x + y(xy − yz), y, z + (xy − yz)y) ∈ AutK K⟨x, y, z⟩. (1)

Remark that there exists a group homomorphism

θ : AutK K⟨X1, . . . , Xn⟩ → GAn(K) (2)

(See (Cohn, 2006) for details). We call πq (θ (δ)) the permutation induced by the Anick automorphism. This section
investigates the sign of the permutation induced by the Anick automorphism over a finite field. We begin with the
following lemma.

Lemma 1. Let ϕ, τ be elementary automorphisms defined by

ϕ := (x, y, z − x), τ := (x − y2z, y, z) ∈ EA3 (K) .

Then we have
θ (δ) = ϕ−1 ◦ τ ◦ ϕ. (3)

Proof. Since

τ ◦ ϕ = (x − y2z, y, z) ◦ (x, y, z − x)
= (x − y2(z − x), y, z − x)
= (x + y(xy − yz), y, z − x),

and ϕ−1 = (x, y, z + x), we have

ϕ−1 ◦ τ ◦ ϕ = (x + y(xy − yz), y, z − x + x + y(xy − yz))
= (x + y(xy − yz), y, z + y(xy − yz)).

Thus, θ(δ) = ϕ−1 ◦ τ ◦ ϕ. �

Next we prove Lemma 2 which is used to prove Main Theorem 1. Lemma 2 shows that the sign of πq (τ) can be determined
by Equation (4), where τ is the elementary automorphism defined in Lemma 1.

Lemma 2. (Sign of πq (τ)) Let τ be as in Lemma 1. Then we have

sgn(πq(τ)) = (−1)pm−1(p−1)(q−1)2
. (4)

Proof. Let y0, z0 be elements of F∗q. We define the map τ(y0,z0) : F3
q → F3

q as follows:

τ(y0,z0) : F3
q −→ F3

q

∈ ∈

(x, y, z) 7−→ (x − y2z, y, z), if y = y0 and z = z0,
(x, y, z) 7−→ (x, y, z), otherwise.

The map τ(y0,z0) is obviously bijective. We set

B
(
τ(y0,z0)

)
:=
{
(x, y, z) ∈ F3

q

∣∣∣ τ(y0,z0)(x, y, z) , (x, y, z)
}
.

Since B
(
τ(y0,z0)

)
∩ B
(
τ(y′0,z

′
0)
)
= ∅ for any (y′0, z

′
0) ∈ F∗q × F∗q \ {(y0, z0)}, it follows that

τ =
∏

y0,z0∈F∗q

τ(y0,z0),
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which is a composition of disjoint permutations on F3
q. For y0, z0 ∈ F∗q, we decompose each permutation τ(y0,z0) as a

composition of disjoint cycles on F3
q. In order to find such a decomposition, we define an equivalence relation (τ)∼ on Fq:

x ∈ Fq and x′ ∈ Fq are equivalent if and only if there exists l ∈ {0, 1, . . . , p − 1} such that x′ = x − ly2
0z0. Put

C(τ)
x := {x′ ∈ Fq | x

(τ)∼ x′}.

We choose a complete system of representatives Rτ for the above equivalence relation. Remark that ♯Rτ = q/p = pm/p =
pm−1. For any x0 ∈ Rτ, we define the bijective map τx0,(y0,z0) : F3

q → F3
q by

τx0,(y0,z0) : F3
q −→ F3

q

∈ ∈

(x, y, z) 7−→ (x − y2z, y, z), if x ∈ C(τ)
x0 , y = y0, and z = z0,

(x, y, z) 7−→ (x, y, z) , otherwise.

It is easy to see that τx0,(y0,z0) is a cycle of length p, namely,

sgn
(
πq

(
τx0,(y0,z0)

))
= (−1)p−1 .

Let x′0 be an element of Rτ. If x′0 < C(τ)
x0 then from C(τ)

x0 ∩C(τ)
x′0
= ∅, we have

τ(y0,z0) =
∏

x0∈Rτ

τx0,(y0,z0),

which is a composition of disjoint cycles on F3
q. Since πq and sgn are group homomorphisms, we obtain

sgn
(
πq (τ)

)
=

∏
y0,z0∈F∗q,x0∈Rτ

sgn
(
πq

(
τx0,(y0,z0)

))
=

∏
y0,z0∈F∗q,x0∈Rτ

(−1)p−1 = (−1)pm−1(p−1)(q−1)2
.

This completes the proof of Lemma 2. �

By Lemma 1 and Lemma 2, we obtain Main Theorem 1.

Main Theorem 1. (Sign of Anick automorphism) If q is odd or q = 2m, m ≥ 2 then we have πq (θ (δ)) ∈ Alt(F3
q). If

q = 2 then we have πq (θ (δ)) ∈ Sym(F3
q) \ Alt(F3

q). Namely,

sgn
(
πq (θ (δ))

)
=

1 (q is odd or q = 2m and m ≥ 2) ,
−1 (q = 2) .

(5)

Proof. By the fact that πq and sgn are group homomorphisms and by Lemma 1, we have

sgn
(
πq (θ (δ))

)
= sgn

(
πq

(
θ
(
ϕ−1 ◦ τ ◦ ϕ

)))
= sgn

(
πq

(
ϕ−1
)
πq (τ) πq (ϕ)

)
= sgn

(
πq

(
ϕ−1
))

sgn
(
πq (τ)

)
sgn
(
πq (ϕ)

)
= sgn

(
πq (ϕ)

)−1
sgn
(
πq (τ)

)
sgn
(
πq (ϕ)

)
= sgn

(
πq (τ)

)
.

Thus, it follows immediately from Lemma 2. �

In (Drenski & Yu, 2007), the following automorphism

ω := (x + y (xy − yz) , y, z + (xy − yz) y) ∈ AutK K⟨x, y, z⟩ (6)

is called the Anick automorphism. These two Anick automorphisms θ (δ) and θ (ω) have the following relation:

θ (ω) = ψ ◦ θ (δ) ◦ ψ, (7)

where ψ = (x, z, y) ∈ Aff3(K). By Main Theorem 1 and by Equation (7), we obtain the following corollary (Corollary 1).
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Corollary 1. (Sign of Anick automorphism θ (ω)) Let δ ∈ AutFq Fq⟨x, y, z⟩ is the Anick automorphism defined by
Equation (1), and let ω ∈ AutFq Fq⟨x, y, z⟩ is the Anick automorphism defined by Equation (6). Then we have

sgn
(
πq (θ (δ))

)
= sgn

(
πq (θ (ω))

)
. (8)

Namely, the sign of the permutation induced by the Anick automorphism θ (δ) is equal to that of the permutation induced
by the Anick automorphism θ (ω).

3. Sign of Permutations Induced by Nagata-Anick Automorphism

The Nagata-Anick automorphism is defined by

ρ := (w, x + (wx − yz)z, y + w(wx − yz), z) ∈ AutK K⟨w, x, y, z⟩.

We call πq(θ(ρ)) the permutation induced by the Nagata-Anick automorphism, where θ is a group homomorphism defined
by (2). In this section we consider the sign of the permutation induced by the Nagata-Anick automorphism over a finite
field.

Let t be a new variable. We define the polynomial f (t) ∈ Fq[t] as follows:

f (t) :=
∏
c∈F∗q

(t − c) ∈ Fq[t].

Choose a generator g of the multiplicative group F∗q. Then one can easily see that

f (α) =

0 (α ∈ F∗q),
(−1)q−1∏q−2

i=0 gi (α = 0),

=

0 (α ∈ F∗q),
(−1)q−1g(q−2)(q−1)/2 (α = 0).

We put c0 := f (0) = (−1)q−1g(q−2)(q−1)/2. Remark that c0 ∈ F∗q. Setting h(t) := c−1
0 × f (t) ∈ Fq[t] yields that

h(α) =

0 (α ∈ F∗q),
1 (α = 0).

(9)

We prove the following lemma (Lemma 3) which states that the permutation induced by the Nagata-Anick automorphism
is equal to the permutation induced by a composition of four elementary automorphisms.

Lemma 3. Let ψ, ξ, λ be elementary automorphisms defined by

ψ := (w, x, y − wxzq−2, z) ∈ EA4(Fq),

ξ := (w, x − yz2, y, z) ∈ EA4(Fq),

and
λ := (w, x, y + w2xh(z), z) ∈ EA4(Fq).

Then we have
πq (θ (ρ)) = πq(λ ◦ ψ−1 ◦ ξ ◦ ψ). (10)

Proof. By easy calculation, one can easily verify that

πq(ξ ◦ ψ) = πq((w, x − yz2, y, z) ◦ (w, x, y − wxzq−2, z))

= πq((w, x − (y − wxzq−2)z2, y − wxzq−2, z))

= πq((w, x + (wx − yz)z, y − wxzq−2, z)).

Since ψ−1 = (w, x, y + wxzq−2, z) ∈ EA4(Fq), we have

πq(ψ−1 ◦ ξ ◦ ψ)

= πq((w, x, y + wxzq−2, z) ◦ (w, x + (wx − yz)z, y − wxzq−2, z))

= πq((w, x + (wx − yz)z, y − wxzq−2 + w(x + (wx − yz)z)zq−2, z))

= πq((w, x + (wx − yz)z, y + w(wx − yz)zq−1, z)).
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Therefore,

πq(λ ◦ ψ−1 ◦ ξ ◦ ψ)

= πq((w, x, y + w2xh(z), z) ◦ (w, x + (wx − yz)z, y + w(wx − yz)zq−1, z))

= πq((w, x + (wx − yz)z, y + w(wx − yz)zq−1 + w2(x + (wx − yz)z)h(z), z))
= πq(θ(ρ)).

Hence we obtain Equation (10). �

Remark 1. In the case of the Anick automorphism, Equation (3) holds as polynomial automorphisms. On the other hand,
in the case of the Nagata-Anick automorphism, we have

θ(ρ) , λ ◦ ψ−1 ◦ ξ ◦ ψ.

Remark that Equation (10) holds as permutations on F4
q.

We use the same argument as in Lemma 1 in order to show the main result of this section (Main Theorem 2). Namely, we
consider the sign of πq(λ) and πq(ξ) which are defined in Lemma 3.

Lemma 4. Let λ be as in Lemma 3. Then we have

sgn(πq(λ)) = (−1)pm−1(p−1)(q−1)2
. (11)

Proof. Let w0, x0 be elements of F∗q. We define the map λ(w0,x0) : F4
q → F4

q as follows:

λ(w0,x0) : F4
q −→ F4

q

∈ ∈

(w, x, y, z) 7−→ (w, x, y + w2xh(z), z), if (w, x, z) = (w0, x0, 0),
(w, x, y, z) 7−→ (w, x, y, z), otherwise.

The map λ(w0,x0) is obviously bijective. We set

B
(
λ(w0,x0)

)
:=
{
(w, x, y, z) ∈ F4

q

∣∣∣ λ(w0,x0)(w, x, y, z) , (w, x, y, z)
}
.

Since B
(
λ(w0,x0)

) ∩ B
(
λ(w′0,x

′
0)
)
= ∅ for any (w′0, x

′
0) ∈ F∗q × F∗q \ {(w0, x0)}, it follows that

λ =
∏

w0,x0∈F∗q

λ(w0,x0),

which is a composition of disjoint permutations on F4
q. For w0, x0 ∈ F∗q, we decompose each permutation λ(w0,x0) as a

composition of disjoint cycles on F4
q. In order to find such a decomposition, we define an equivalence relation (λ)∼ on Fq:

y ∈ Fq and y′ ∈ Fq are equivalent if and only if there exists l ∈ {0, 1, . . . , p − 1} such that y′ = y + lw2
0x0. Put

C(λ)
y := {y′ ∈ Fq | y

(λ)∼ y′}.

We choose a complete system of representatives Rλ for the above equivalence relation. Remark that ♯Rλ = q/p = pm/p =
pm−1. For any y0 ∈ Rλ, we define the bijective map λy0,(w0,x0) : F4

q → F4
q by

λy0,(w0,x0) : F4
q −→ F4

q

∈ ∈

(w, x, y, z) 7−→ (w, x, y + w2xh(z), z),
if (w, x, z) = (w0, x0, 0), y ∈ C(λ)

y0 , and z = 0,
(w, x, y, z) 7−→ (w, x, y, z), otherwise.

It is easy to see that λy0,(w0,x0) is a cycle of length p, namely,

sgn
(
πq

(
λy0,(w0,x0)

))
= (−1)p−1 .
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Let y′0 be an element of Rλ. If y′0 < C(λ)
y0 then from C(λ)

y0 ∩C(λ)
y′0
= ∅, we have

λ(w0,x0) =
∏

y0∈Rλ

λy0,(w0,x0),

which is a composition of disjoint cycles on F4
q. Since πq and sgn are group homomorphisms, we obtain

sgn
(
πq (λ)

)
=

∏
w0,x0∈F∗q,y0∈Rλ

sgn
(
πq

(
λy0,(w0,x0)

))
=

∏
w0,x0∈F∗q,y0∈Rλ

(−1)p−1 = (−1)pm−1(p−1)(q−1)2
.

This completes the proof of Lemma 4. �

Lemma 5. Let ξ be as in Lemma 3. Then we have

sgn
(
πq (ξ)

)
= (−1)pm−1(p−1)(q−1)2q . (12)

Proof. Let y0, z0 be elements of F∗q. We define the map ξ(y0,z0) : F4
q → F4

q as follows:

ξ(y0,z0) : F4
q −→ F4

q

∈ ∈

(w, x, y, z) 7−→ (w, x − yz2, y, z), if (y, z) = (y0, z0),
(w, x, y, z) 7−→ (w, x, y, z), otherwise.

The map ξ(y0,z0) is obviously bijective. We set

B
(
ξ(y0,z0)

)
:=
{
(w, x, y, z) ∈ F4

q

∣∣∣ ξ(y0,z0)(w, x, y, z) , (w, x, y, z)
}
.

Since B
(
ξ(y0,z0)

)
∩ B
(
ξ(y′0,z

′
0)
)
= ∅ for any (y′0, z

′
0) ∈ F∗q × F∗q \ {(y0, z0)}, it follows that

ξ =
∏

y0,z0∈F∗q

ξ(y0,z0), (13)

which is a composition of disjoint permutations on F4
q. For y0, z0 ∈ F∗q, we decompose each permutation ξ(y0,z0) as a

composition of disjoint cycles on F4
q. In order to find such a decomposition, we define an equivalence relation (ξ)∼ on Fq:

x ∈ Fq and x′ ∈ Fq are equivalent if and only if there exists l ∈ {0, 1, . . . , p − 1} such that x′ = x − ly0z2
0. Put

C(ξ)
x := {x′ ∈ Fq | x

(ξ)∼ x′}. (14)

We choose a complete system of representatives Rξ for the above equivalence relation. Remark that ♯Rξ = q/p = pm/p =
pm−1. For any x0 ∈ Rξ, we define the bijective map ξ(w0,x0),(y0,z0) : F4

q → F4
q by

ξ(w0,x0),(y0,z0) : F4
q −→ F4

q

∈ ∈

(w, x, y, z) 7−→ (w, x − yz2, y, z),
if (w, y, z) = (w0, y0, z0) and x ∈ C(ξ)

x0 ,
(w, x, y, z) 7−→ (w, x, y, z), otherwise.

It is easy to see that ξ(w0,x0),(y0,z0) is a cycle of length p, namely,

sgn
(
πq

(
ξ(w0,x0),(y0,z0)

))
= (−1)p−1 .

Let x′0 be an element of Rξ. If x′0 < C(ξ)
x0 then from C(ξ)

x0 ∩C(ξ)
x′0
= ∅, we have

ξ(y0,z0) =
∏

w0∈Fq,x0∈Rξ

ξ(w0,x0),(y0,z0).
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which is a composition of disjoint cycles on F4
q. Since πq and sgn are group homomorphisms, we obtain

sgn
(
πq (ξ)

)
=

∏
w0∈Fq,x0∈Rξ ,y0,z0∈F∗q

sgn
(
πq

(
ξ(w0,x0),(y0,z0)

))
=

∏
w0∈Fq,x0∈Rξ ,y0,z0∈F∗q

(−1)p−1 = (−1)pm−1(p−1)(q−1)2q .

This completes the proof of Lemma 5. �

By Lemma 3 through Lemma 5, we obtain Main Theorem 2.

Main Theorem 2. (Sign of Nagata-Anick automorphism) If q is odd or q = 2m, m ≥ 2 then we have πq (θ (ρ)) ∈ Alt(F4
q).

If q = 2 then we have πq (θ (ρ)) ∈ Sym(F4
q) \ Alt(F4

q). Namely,

sgn
(
πq (θ (ρ))

)
=

1 (q is odd or q = 2m and m ≥ 2) ,
−1 (q = 2) .

(15)

Proof. By the fact that πq and sgn are group homomorphisms and by Lemma 3, we have

sgn
(
πq (θ (ρ))

)
= sgn

(
πq

(
θ
(
λ ◦ ψ−1 ◦ ξ ◦ ψ

)))
= sgn

(
πq (λ) πq

(
ψ−1
)
πq (ξ) πq (ψ)

)
= sgn

(
πq (λ)

)
sgn
(
πq

(
ψ−1
))

sgn
(
πq (ξ)

)
sgn
(
πq (ψ)

)
= sgn

(
πq (λ)

)
sgn
(
πq (ψ)

)−1
sgn
(
πq (ξ)

)
sgn
(
πq (ψ)

)
= sgn

(
πq (λ)

)
sgn
(
πq (ξ)

)
. (16)

Thus, it follows immediately from Lemma 4 and Lemma 5. �

Remark 2. We derive the sign of permutation induced by the Anick automorphism (Main Theorem 1) by using Lemma 1
and Lemma 2, and also derive the sign of permutation induced by the Nagata-Anick automorphism (Main Theorem 2) by
using Lemma 3, Lemma 4, and Lemma 5. Our strategy might be used in the Nagata automorphism case if one can prove
the similar results to Lemma 1 and Lemma 2 for the Anick automorphism case, and Lemma 3 through Lemma 5 for the
Nagata-Anick automorphism case.
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