Nilpotency of the Ordinary Lie-algebra of an *n*-Lie Algebra

Côme Chancel Likouka1

¹ Université Marien Ngouabi, BP: 69, Brazzaville, Congo

Correspondence: Côme Chancel Likouka, Université Marien Ngouabi, BP: 69, Brazzaville, Congo. E-mail: clikouka@gmail.com

Received: November 11, 2016Accepted: February 3, 2017Online Published: March 16, 2017doi:10.5539/jmr.v9n2p79URL: https://doi.org/10.5539/jmr.v9n2p79

The author was supported by the International Mathematical Union under the project IMU-Congo.

Abstract

In this paper, we generalize to *n*-Lie algebras a corollary of the well-known Engel's theorem which offers some justification for the terminology "nilpotent" and we construct a nilpotent ordinary Lie algebra from a nilpotent *n*-Lie algebra.

Keywords: Lie algebra, n-Lie algebra, nilpotency

1. Introduction

(Filipov, 1985) Introduced a generalization of a Lie algebra, which he called an n-Lie algebra. The Lie product is taken between n elements of the algebra instead of two. This new bracket is n-linear, anti-symmetric and satisfies a generalization of the Jacobi identity.

(Bossoto, Okassa, & Omporo, 2013) Associate to an *n*-Lie algebra, a Lie algebra called the ordinary Lie algebra.

In this paper, we generalize to *n*-Lie algebras a corollary of the well-known Engel's theorem and we construct a nilpotent ordinary Lie algebra from a nilpotent *n*-Lie algebra.

1.1 n-Lie Algebra Structure

In the following, K will denote a commutative field with characteristic zero.

An *n*-Lie algebra \mathcal{G} over K is a vector space together with a multilinear fully skewsymmetric map

$$\{,...,\}: \mathcal{G}^n = \mathcal{G} \times \mathcal{G} \times ... \times \mathcal{G} \longrightarrow \mathcal{G}, (x_1, x_2, ..., x_n) \longmapsto \{x_1, x_2, ..., x_n\},\$$

such that

$$\{x_1, x_2, ..., x_{n-1}, \{y_1, y_2, ..., y_n\}\} = \sum_{i=1}^n \{y_1, y_2, ..., y_{i-1}, \{x_1, x_2, ..., x_{n-1}, y_i\}, y_{i+1}, ..., y_n\}$$

for all $x_1, x_2, ..., x_{n-1}, y_1, y_2, ..., y_n$ elements of *G*.

The above equation is called the generalized Jacobi Identity.

A subspace \mathcal{G}_0 of \mathcal{G} is called an *n*-Lie subalgebra if for any $y_1, y_2, ..., y_n \in \mathcal{G}_0, \{y_1, y_2, ..., y_n\} \in \mathcal{G}_0$.

Let $\mathcal{G}_1, \mathcal{G}_2, ..., \mathcal{G}_n$ be subalgebras of n-Lie algebra \mathcal{G} and let $\{\mathcal{G}_1, \mathcal{G}_2, ..., \mathcal{G}_n\}$ denote the subspace of \mathcal{G} generated by all vectors $\{x_1, x_2, ..., x_n\}$, where $x_i \in \mathcal{G}_i$ for i = 1, 2, ..., n. The subalgebra $\{\mathcal{G}, \mathcal{G}, ..., \mathcal{G}\}$ is called the derived algebra of \mathcal{G} , and is denoted by \mathcal{G}^1 . If $\mathcal{G}^1 = 0$, then \mathcal{G} is called an abelian n-Lie algebra.

Using the derivation $ad(x_1, x_2, ..., x_{n-1}) : \mathcal{G} \longrightarrow \mathcal{G}, y \longmapsto \{x_1, x_2, ..., x_{n-1}, y\}$, we can rephrase this definition as follows:

A vector subspace \mathcal{G}_0 of \mathcal{G} is an *n*-Lie subalgebra of \mathcal{G} if $ad(x_1, x_2, ..., x_{n-1})(\mathcal{G}_0) \subset \mathcal{G}_0$ for any $x_1, x_2, ..., x_{n-1} \in \mathcal{G}_0$. That is, $ad(\mathcal{G}_0, \mathcal{G}_0, ..., \mathcal{G}_0)(\mathcal{G}_0) \subset \mathcal{G}_0$.

A subspace I of G is called an ideal if $\{x, y_1, y_2, ..., y_{n-1}\} \in I$ for any $x \in I$, and for any $y_1, y_2, ..., y_{n-1} \in G$. That is equivalent to say that $ad(G, ..., G)(I) \subset I$.

1.2 The Ordinary Lie Algebra of an n-Lie Algebra

Let G be an *n*-Lie algebra over a field K. (Bossoto et al., 2013) associate to G a Lie algebra called the ordinary Lie algebra. This construction goes as presented below:

Consider the map

$$\mathcal{G}^{n-1} \longrightarrow Der_K(\mathcal{G}), (x_1, x_2, ..., x_{n-1}) \longmapsto ad(x_1, x_2, ..., x_{n-1}),$$

where $Der_K(\mathcal{G})$ denote the set of *K*-derivations of \mathcal{G} .

Denote by $\Lambda_{K}^{n-1}(\mathcal{G})$, the (n-1)-exterior power of the K-vector space \mathcal{G} , there exists a unique K-linear map

$$ad_{\mathcal{G}}: \Lambda_{K}^{n-1}(\mathcal{G}) \longrightarrow Der_{K}(\mathcal{G})$$

such that

$$ad_{\mathcal{G}}(x_1 \Lambda x_2 \Lambda ... \Lambda x_{n-1}) = ad(x_1, x_2, ..., x_{n-1})$$

for all $x_1, x_2, ..., x_{n-1} \in G$.

When $f: W \longrightarrow W$ is an endomorphism of a *K*-vector space *W* and when $\Lambda_K(W)$ is the *K*-exterior algebra of *W*, then there exists a unique derivation of degree *zero*

$$D_f: \Lambda_K(W) \longrightarrow \Lambda_K(W)$$

such that, for $p \in \mathbb{N}$,

$$D_f(w_1 \Lambda w_2 \Lambda ... \Lambda w_p) = \sum_{i=1}^p w_1 \Lambda w_2 \Lambda ... \Lambda w_{i-1} \Lambda f(w_i) \Lambda w_{i+1} \Lambda ... \Lambda w_p$$

for all $w_1, w_2, ..., w_p$ elements of W.

Proposition 1 For all s_1 and s_2 elements of $\Lambda_K^{n-1}(\mathcal{G})$, then we have simultaneously

$$\left[ad_{\mathcal{G}}(s_1), ad_{\mathcal{G}}(s_2)\right] = ad_{\mathcal{G}}\left(D_{ad_{\mathcal{G}}(s_1)}(s_2)\right)$$

and

$$[ad_{\mathcal{G}}(s_1), ad_{\mathcal{G}}(s_2)] = ad_{\mathcal{G}} \left(-D_{ad_{\mathcal{G}}(s_2)}(s_1)\right)$$

where [,] denotes the usual bracket of endomorphisms.

We denote by $\mathcal{W}_{K}(\mathcal{G})$ the *K*-subspace of $\Lambda_{K}^{n-1}(\mathcal{G})$ generated by the elements of the form $D_{ad_{\mathcal{G}}(s_{1})}(s_{2}) + D_{ad_{\mathcal{G}}(s_{2})}(s_{1})$ where s_{1} and s_{2} describe $\Lambda_{K}^{n-1}(\mathcal{G})$.

Let

$$\Lambda_K^{n-1}(\mathcal{G}) \longrightarrow \Lambda_K^{n-1}(\mathcal{G})/\mathcal{V}_K(\mathcal{G}), s \longmapsto \overline{s},$$

be the canonical surjection. Given the foregoing, we conclude that

 $ad_{\mathcal{G}}\left[\mathcal{V}_{K}(\mathcal{G})\right]=0.$

We denote by

 $\widetilde{ad_{\mathcal{G}}}: \Lambda_{K}^{n-1}(\mathcal{G})/\mathcal{V}(\mathcal{G}) \longrightarrow Der_{K}(\mathcal{G})$

the unique linear map such that

$$ad_G(\overline{s}) = ad_G(s)$$

for all $s \in \Lambda_K^{n-1}(\mathcal{G})$.

Theorem 2 When $(\mathcal{G}, \{, ..., \})$ is a *n*-Lie algebra, then the map

$$[,]: \left[\Lambda_K^{n-1}(\mathcal{G})/\mathcal{V}_K(\mathcal{G})\right]^2 \longrightarrow \Lambda_K^{n-1}(\mathcal{G})/\mathcal{V}_K(\mathcal{G}), (\overline{s_1}, \overline{s_2}) \longmapsto \overline{D_{ad_{\mathcal{G}}(s_1)}(s_2)}$$

depends only on $\overline{s_1}$ and $\overline{s_2}$, and defines an ordinary Lie algebra structure on $\Lambda_K^{n-1}(\mathcal{G})/\mathcal{V}_K(\mathcal{G})$.

Proposition 3 If a subspace \mathcal{G}_0 of an n-Lie algebra \mathcal{G} is stable for the representation

$$ad_{\mathcal{G}}: \Lambda_{K}^{n-1}(\mathcal{G})/\mathcal{V}_{K}(\mathcal{G}) \longrightarrow Der_{K}(\mathcal{G}), \overline{s} \longmapsto ad_{\mathcal{G}}(s),$$

then \mathcal{G}_0 is an ideal of the *n*-Lie algebra \mathcal{G} .

2. Nilpotency of the Ordinary Lie Algebra

An *n*-Lie algebra \mathcal{G} is nilpotent if \mathcal{G} satisfies $\mathcal{G}^r = 0$ for some $r \ge 0$, where $\mathcal{G}^0 = \mathcal{G}$ and \mathcal{G}^r is defined by induction, $\mathcal{G}^{r+1} = [\mathcal{G}^r, \mathcal{G}, \mathcal{G}, \dots, \mathcal{G}]$ for $r \ge 0$.

Proposition 4 Let \mathcal{G} be an *n*-Lie algebra over a field K. If $\mathcal{G} \neq 0$ is nilpotent then $\mathcal{Z}(\mathcal{G}) \neq 0$.

Proof. Let us suppose $\mathcal{Z}(\mathcal{G}) = 0$.

Nilpotency of \mathcal{G} implies that there exists an integer $k \ge 0$ such that $\mathcal{G}^{k-1} \ne 0$ and $\mathcal{G}^k = 0$.

$$0 = \mathcal{G}^{k} = \{\mathcal{G}^{k-1}, \mathcal{G}, \mathcal{G}, ..., \mathcal{G}\}$$
$$= \{\mathcal{G}, \mathcal{G}, ..., \mathcal{G}, \mathcal{G}^{k-1}\}$$
$$= ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G})(\mathcal{G}^{k-1})$$
$$= 0$$

Then $\mathcal{G}^{k-1} \subset \mathcal{Z}(\mathcal{G})$.

Therefore $0 \neq \mathcal{G}^{k-1} \subset \mathcal{Z}(\mathcal{G}) = 0$ which is impossible.

Thus $\mathcal{Z}(\mathcal{G}) \neq 0$.

Below we give the statement of the Engel's theorem and its corollary for Lie algebras:

Theorem 5 (Engel) Let $\rho : \mathcal{G} \to End(V)$ be a linear representation of \mathcal{G} on the vector space V such that $\rho(x)$ is nilpotent for each $x \in \mathcal{G}$. If $V \neq (0)$, then there

exists $v \in V$, $v \neq 0$ such that $\rho(x)v = 0$ for all $x \in \mathcal{G}$.

Corollary 6 G is nilpotent if and only if adx is nilpotent for each $x \in G$.

Now we're going to give a generalization to *n*-Lie algebras of the above corollary:

Theorem 7 Let \mathcal{G} be an *n*-Lie algebra over a field *K*. \mathcal{G} is nilpotent if and only if $ad(x_1, x_2, ..., x_{n-1})$ is nilpotent for any $x_1, x_2, ..., x_{n-1} \in \mathcal{G}$.

To prove the Theorem, one needs some Lemmas:

Lemma 8 Let \mathcal{G} be an *n*-Lie algebra, $\mathcal{Z}(\mathcal{G})$ the center of \mathcal{G} and $\pi : \mathcal{G} \to \mathcal{G}/\mathcal{Z}(\mathcal{G})$ the canonical surjection. For any $x_1, x_2, ..., x_{n-1} \in \mathcal{G}$, if $ad(x_1, x_2, ..., x_{n-1}) : \mathcal{G} \to \mathcal{G}$ is nilpotent, then the unique linear map

$$\overline{ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1})} : \mathcal{G}/\mathcal{Z}(\mathcal{G}) \to \mathcal{G}/\mathcal{Z}(\mathcal{G}), \bar{y} \mapsto \overline{\{x_1, x_2, ..., x_{n-1}, y\}}$$

such that $\pi \circ \overline{ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1})} = ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1}) \circ \pi$ is nilpotent.

Proof. It's clear that $ad(x_1, x_2, ..., x_{n-1})[\mathcal{Z}(\mathcal{G})] = 0$. We denote by

$$\overline{ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1})} : \mathcal{G}/\mathcal{Z}(\mathcal{G}) \to \mathcal{G}/\mathcal{Z}(\mathcal{G}), \bar{y} \mapsto \overline{\{x_1, x_2, ..., x_{n-1}, y\}}$$

the unique linear map such that $\pi \circ \overline{ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1})} = ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1}) \circ \pi$.

 $ad(x_1, x_2, ..., x_{n-1})$ nilpotent, then there exists $k \ge 0$ such that $(ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1}))^k = 0$. We have: $(\overline{ad_{\mathcal{G}}h})^k \circ \pi = \pi \circ (ad_{\mathcal{G}}h)^k = 0$. Since π is surjective $\Rightarrow (\overline{ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1})})^k = 0$ is $\overline{ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1})}$ is nilpotent.

Lemma 9 If for any $x_1, x_2, ..., x_{n-1} \in \mathcal{G}$, $ad(x_1, x_2, ..., x_{n-1}) : \mathcal{G} \to \mathcal{G}$ is nilpotent, then $\mathcal{Z}(\mathcal{G}) \neq (0)$.

Proof. Using the well-known Engel's theorem, there exists $u \in G$, $u \neq 0$, such that

 $ad(x_1, x_2, ..., x_{n-1})(u) = 0$, for any $x_1, x_2, ..., x_{n-1} \in \mathcal{G}$. That implies $u \in \mathcal{Z}(\mathcal{G})$. And as $u \neq 0$, thus $\mathcal{Z}(\mathcal{G}) \neq (0)$. We are done.

The set $\{ad(x_1, x_2, ..., x_{n-1})/ad(x_1, x_2, ..., x_{n-1})$ is nilpotent for any $x_1, x_2, ..., x_{n-1} \in \mathcal{G}\}$ is a Lie subalgebra of $End_{\mathbb{K}}(\mathcal{G})$. *Proof.* " \Rightarrow ":

 \mathcal{G} nilpotent implies that there exists $k \ge 0$ such that $\mathcal{G}^{k-1} \ne 0$ and $\mathcal{G}^k = 0$.

$$0 = \mathcal{G}^{k} = \{\mathcal{G}, \mathcal{G}, ..., \mathcal{G}, \mathcal{G}^{k-1}\}$$

= $ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G})(\mathcal{G}^{k-1})$
= $ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G})\{\mathcal{G}, \mathcal{G}, ..., \mathcal{G}, \mathcal{G}^{k-2}\}$
= $ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G}) [ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G})(\mathcal{G}^{k-2})]$
= $[ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G}) \circ ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G}) \circ ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G}) \circ ... \circ ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G})](\mathcal{G})$
= $[ad(\mathcal{G}, \mathcal{G}, ..., \mathcal{G})]^{k}(\mathcal{G})$

i.e $[ad(x_1, x_2, ..., x_{n-1})]^k = 0$ for any $x_1, x_2, ..., x_{n-1} \in \mathcal{G}$.

Thus $ad(x_1, x_2, ..., x_{n-1})$ is nilpotent.

" \Leftarrow " we prove by induction on the dimension of \mathcal{G} .

• dim $\mathcal{G} = 1$, $ad(x_1, x_2, ..., x_{n-1}) : \mathcal{G} \to \mathcal{G}$ is nilpotent $\Rightarrow ad(x_1, x_2, ..., x_{n-1})(y) = 0$ for any $x_1, x_2, ..., x_{n-1}, y \in \mathcal{G}$, that is \mathcal{G} is commutative. Thus $ad(\mathcal{G}^{n-1})(\mathcal{G}) = 0$ ie $\mathcal{G}^1 = 0$. Therefore \mathcal{G} is nilpotent.

• Suppose the assumption true for dim $\mathcal{G} = n$.Let's verify the assumption for dim $\mathcal{G} = n + 1$.

 $ad(x_1, x_2, ..., x_{n-1})$ nilpotent for any $x_1, x_2, ..., x_{n-1} \in \mathcal{G}$, then from Lemma $8, \overline{ad_{\mathcal{G}}(x_1, x_2, ..., x_{n-1})} : \mathcal{G}/\mathcal{Z}(\mathcal{G}) \to \mathcal{G}/\mathcal{Z}(\mathcal{G})$ is nilpotent for any $x_1, x_2, ..., x_{n-1} \in \mathcal{G}$. $\Rightarrow \mathcal{G}/\mathcal{Z}(\mathcal{G})$ is nilpotent and $\mathcal{Z}(\mathcal{G}) \neq 0$ from Lemma 9. $\mathcal{G}/\mathcal{Z}(\mathcal{G})$ nilpotent, there exists $k \geq 0$ such that $[\mathcal{G}/\mathcal{Z}(\mathcal{G})]^k = 0$. As $\pi : \mathcal{G} \to \mathcal{G}/\mathcal{Z}(\mathcal{G})$, then $[\mathcal{G}/\mathcal{Z}(\mathcal{G})]^k = \pi(\mathcal{G}^k) = 0$ since π is surjective. Thus $\mathcal{G}^k \subset \mathcal{Z}(\mathcal{G})$. $\mathcal{G}^{k+1} = ad(\mathcal{G}^{n-1})(\mathcal{G}^k) \subset ad(\mathcal{G}^{n-1})(\mathcal{Z}(\mathcal{G})) = 0$. Therefore \mathcal{G} is nilpotent. That ends the proof.

Below we give the statement of the main theorem we obtained:

Theorem 10 If \mathcal{G} is a nilpotent n-Lie algebra over a field k and if $\widetilde{ad_{\mathcal{G}}} : \Lambda_K^{n-1}(\mathcal{G})/\mathcal{V}_K(\mathcal{G}) \longrightarrow Der_K(\mathcal{G}), \overline{s} \longmapsto ad_{\mathcal{G}}(s)$, is the canonical representation of $\Lambda_K^{n-1}(\mathcal{G})/\mathcal{V}_K(\mathcal{G})$ in \mathcal{G} , then $\left[\Lambda_K^{n-1}(\mathcal{G})/\mathcal{V}_K(\mathcal{G})\right]/Ker\widetilde{ad_{\mathcal{G}}}$ is a nilpotent Lie algebra.

Proof. Let G be an n-Lie algebra. Then the mapping

$$\mathcal{G}^{n-1} \longrightarrow Der_K(\mathcal{G}), (x_1, x_2, ..., x_{n-1}) \longmapsto ad(x_1, x_2, ..., x_{n-1})$$

induces a representation $\widetilde{ad_{\mathcal{G}}}: \Lambda_{K}^{n-1}(\mathcal{G})/\mathcal{V}_{K}(\mathcal{G}) \longrightarrow Der_{K}(\mathcal{G}), \overline{s} \longmapsto ad_{\mathcal{G}}(s)$ of $\Lambda_{K}^{n-1}(\mathcal{G})/\mathcal{V}_{K}(\mathcal{G})$ in \mathcal{G} . When \mathcal{G} is a nilpotent n-Lie algebra then $\widetilde{ad_{\mathcal{G}}}(\Lambda_{K}^{n-1}(\mathcal{G})/\mathcal{V}_{K}(\mathcal{G}))$ is a Lie subalgebra of $Der_{K}(\mathcal{G})$ whose all elements are nilpotent. Thus $\widetilde{ad_{\mathcal{G}}}(\Lambda_{K}^{n-1}(\mathcal{G})/\mathcal{V}_{K}(\mathcal{G}))$ is a nilpotent Lie algebra. Therefore $\left[\Lambda_{K}^{n-1}(\mathcal{G})/\mathcal{V}_{K}(\mathcal{G})\right]/Ker\widetilde{ad_{\mathcal{G}}}$ is a nilpotent Lie algebra.

Acknowledgements

We are very grateful to Professor Eugène Okassa for his advice and for his help.

References

Bossoto, B. G. R., Okassa, E., & Omporo, M. (2013). Lie algebra of an n-Lie algebra.

Bourbaki, N. (1974). Elements of Mathematics: Algebra 1, chapters 1-3. Hermann.

- Filipov, V. T. (1985). n-Lie algebras. Sibirsk. Mat. Zh., 39(6), 126-140. (English translation: (1985). Siberian Math. J., 26(6), 879-891).
- Filipov, V. T. (1998). On n-Lie algebra of jacobians. *Sibirsk. Mat. Zh.*, 26(6), 126-140. (English translation: (1985). *Siberian Math. J.*, 26(6), 879-891.)
- Kasymov, S. M. (1987). Theory of n-Lie algebras. *Algebra i Logika*, 26(3), 277-297. (English translation: (1988). Algebra and Logic 26, 155-166.) https://doi.org/10.1007/BF02009328

Ling, W. X. (1993). On the structure of n-Lie algebras. Siegen, PhD thesis.

Pozhidaev, A. P. (1993). n-Lie algebras . Algebra and Logic, 38(3), 181-192. https://doi.org/10.1007/BF02671742

- Rotkiewicz, M. L. (2005). Cohomology Ring of n-Lie Algebras. Extracta mathematicae, 20(3), 219-232.
- Williams, M. P. (2009, June). Nilpotent n-Lie Algebras . Communications in Algebra, 37(6), 1843-1849. https://doi.org/10.1080/00927870802108007

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).