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Abstract

In this paper, we generalize to n-Lie algebras a corollary of the well-known Engel’s theorem which offers some justifica-
tion for the terminology “nilpotent” and we construct a nilpotent ordinary Lie algebra from a nilpotent n-Lie algebra.
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1. Introduction

(Filipov, 1985) Introduced a generalization of a Lie algebra, which he called an n-Lie algebra. The Lie product is taken be-
tween n elements of the algebra instead of two. This new bracket is n-linear, anti-symmetric and satisfies a generalization
of the Jacobi identity.

(Bossoto,Okassa, & Omporo, 2013) Associate to an n-Lie algebra, a Lie algebra called the ordinary Lie algebra.

In this paper, we generalize to n-Lie algebras a corollary of the well-known Engel’s theorem and we construct a nilpotent
ordinary Lie algebra from a nilpotent n-Lie algebra.

1.1 n-Lie Algebra Structure
In the following, K will denote a commutative field with characteristic zero.

An n-Lie algebra G over K is a vector space together with a multilinear fully skewsymmetric map

(,.,] :G"=GXGX..XG— G, (X1,X2, ..., Xp) V> {X1, X2, ..., Xn},

such that

n

{x19x29 cees Xp—1,5 {)’13)72, »)’n}} = Z {y13y2s -~'9yi—1,{x1,x2, wees xn—lsyi} > Vitls -~-,)’n}
i=1

for all x1, X2, ..., Xu—1, V1, ¥2, ..., ¥ €lements of G.

The above equation is called the generalized Jacobi Identity.

A subspace Gy of G is called an n-Lie subalgebra if for any yi, y2, ..., yu € Go, {¥1, V2, ---» ¥n} € Go-

Let G1,G», ..., G, be subalgebras of n-Lie algebra G and let {G|, G», ..., G,} denote the subspace of G generated by all
vectors {xi, X, ..., X}, where x; € G; for i = 1,2,...,n. The subalgebra {G, G, ..., G} is called the derived algebra of G, and
is denoted by G'. If G! = 0, then G is called an abelian n-Lie algebra.

Using the derivation ad(xy, x3, ..., X,—1) : G — G,y +— {x1, X2, ..., Xp—1, ¥}, We can rephrase this definition as follows:

A vector subspace G of G is an n-Lie subalgebra of G if ad(x1, x2, ..., Xx,-1)(Go) C Gy for any x1, x2, ..., X,-1 € Go.That is,

ad(Go, Go, ... Go)(Go) C Go.

A subspace I of G is called an ideal if {x,y;,ys,...,y,-1} € Z for any x € 7, and for any yi,ys,...,yu—1 € G. That is
equivalent to say that ad(G, ...,G)(J) C 1.

1.2 The Ordinary Lie Algebra of an n-Lie Algebra

Let G be an n-Lie algebra over a field K. (Bossoto et al., 2013) associate to G a Lie algebra called the ordinary Lie algebra.
This construction goes as presented below:

Consider the map
G — Derg(G), (x1, X2, .y Xn_1) —> ad(X1, X2, ..., Xp_1),
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where Derg(G) denote the set of K—derivations of G.

Denote by A’I‘(‘l (@), the (n — 1)-exterior power of the K-vector space G, there exists a unique K-linear map

adg : N '(G) — Derk(G)

such that
adg(xiAxoA...Ax,_1) = ad(x1, x2, ..., Xp—1)

for all x1, x, ..., X,_1 € G.

When f : W — W is an endomorphism of a K-vector space W and when Ag(W) is the K-exterior algebra of W, then
there exists a unique derivation of degree zero

Dy Ag(W) — Ag(W)
such that, for p € N,
J
Dy(wiAwr A Awy) = Z wiAw AL Awi I Af(Ww)Awi AL Aw,

i=1

for all wi, wy, ...,w, elements of W.

Proposition 1 For all s and s, elements of A’;{l (@), then we have simultaneously

ladg(s1), adg(sy)] = adg (Dudg(sl)(SZ))
and

[adg(s1), adg(sy)] = adg (_Dadg(sz)(sl))
where [, ] denotes the usual bracket of endomorphisms.

We denote by Vi (G) the K-subspace of A';gl(g) generated by the elements of the form Dy, (s,)(52) + Dadg(sy)(51) where
s and s, describe A%(G).

Let
AFNG) — NN/ V(@) s — 5,

be the canonical surjection. Given the foregoing, we conclude that

adg [Vk(G@)] = 0.

We denote by -
adg : Ny (@) V(@) — Derk(G)

the unique linear map such that .
adg(s) = adg(s)

for all s € A’}(‘l(g).
Theorem 2 When (G, {, ..., }) is a n-Lie algebra, then the map

L1: [AF @/ Vi@)] — A G/ Vi(G). (57.53) — Dagio(52).

depends only on sy and 55, and defines an ordinary Lie algebra structure on A'}(‘l G/ Vk(G).

Proposition 3 If a subspace Gy of an n-Lie algebra G is stable for the representation

adg : N '(©)/Vi(@) — Derg(G),5 — adg(s),

then Gy is an ideal of the n-Lie algebra G.
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2. Nilpotency of the Ordinary Lie Algebra

An n-Lie algebra G is nilpotent if G satisfies G = 0 for some r > 0, where G° = G and G is defined by induction,
g =16".6.G..Glforr > 0.

Proposition 4 Let G be an n-Lie algebra over a field K. If G #0 is nilpotent then Z(G) # 0.
Proof. Let us suppose Z(G) =0.
Nilpotency of G implies that there exists an integer k > 0 such that G*! # 0 and G* = 0.

0=¢" = {¢.6.6. .6

= {6.6....6.6")
= adG,G,...6) (G ")
= 0

Then G¥'c Z(G).

Therefore 0 # G*"'c Z(G) =0 which is impossible.

Thus Z(G) # 0.

Below we give the statement of the Engel’s theorem and its corollary for Lie algebras:

Theorem 5 (Engel) Let p : G — End(V) be a linear representation of G on the vector space V such that p(x) is nilpotent
for each x € G. If V # (0), then there

exists v € V,v # 0 such that p(x)v = 0 for all x € G.
Corollary 6 G is nilpotent if and only if adx is nilpotent for each x € G.
Now we’re going to give a generalization to n-Lie algebras of the above corollary:

Theorem 7 Let G be an n-Lie algebra over a field K. G is nilpotent if and only if ad(xy, x2, ..., x,—1) is nilpotent for any
X1, X2, 00y Xpo1 € G.

To prove the Theorem, one needs some Lemmas:

Lemma 8 Let G be an n-Lie algebra, Z(G) the center of G and 7 : G — G/Z(G) the canonical surjection. For any
X1, X2, o0y X1 € G, if ad(x1, X2, ..., X,-1) : G — G is nilpotent, then the unique linear map

adg(x1, X2, ..., X,-1) : G/ Z(G) — G/ Z(G).F = (X1, %2, .0, Xn_1, Y}

such that 7o adg(x1, X2, ..., Xp—1) = adg(x1, X2, ..., X,—1) © 7 is nilpotent.
Proof. 1t’s clear that ad(x, x3, ..., X,—1)[Z(G)] = 0. We denote by

adg(x1, X2, ..., Xp-1) : G/ Z(G) = G/ Z(G),y = {x1, %2, .0, X1, Y}

the unique linear map such that 7o adg(x;, x2, ..., X,—1) = adg(x1, X2, ..., Xy—1) 0 7.

ad(xy, xy, ..., X,—1) nilpotent, then there exists k > 0 such that (adg(xi, x2, o Xm))¥ = 0. We have: ( adgh)k om =
no(adgh)* = 0. Since r is surjective =( adg(x1, X2, ..., X,-1))* = 0 ie adg(x1, X2, ..., X,-1) is nilpotent.

Lemma 9 If for any xi, x5, ..., X,-1 € G, ad(xy, x2, ..., X,—1) : G — @G is nilpotent, then Z(G) # (0).

Proof. Using the well-known Engel’s theorem, there exists u € G, u # 0, such that
ad(xy, X2, ..., Xy—1)(m) = 0, for any xy, x2, ..., X,-1 € G. That implies u € Z(G). And as u # 0, thus Z(G) # (0).We are
done.

The set {ad(xy, X3, ..., Xu—1)/ad(xy, X3, ..., X,—1) is nilpotent for any x;, Xy, ..., x,—1 € G} is a Lie subalgebra of Endy(G).
Proof. > ="

G nilpotent implies that there exists k > 0 such that G"! # 0 and G* = 0.
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0 = ¢={6.6...6.6""
= ad@G.G,...6)G")
= adG.G...6)6.6....6.6%

= ad(G.G....6)[ad(G.G....6)G" )|
= [ad(G,G,....G)cad(G,G,....G) cad(G, G, ...G) o ..0ad(G, G, ..., )(G)

k—times

= [adG,G,...0)1 ()

i.e [ad(x), x2, ..., x,-)]* = 0 for any x1, X2, ..., X,_1 € G.
Thus ad(x1, x, ..., X,—1) is nilpotent.
7= " we prove by induction on the dimension of G.

odimG =1,ad(xy, x3, ..., X,—1) : G — G is nilpotent = ad(xy, x3, ..., X,—1)(y) = 0 for any xy, x3, ..., X,-1,y € G, thatis G is
commutative. Thus ad(G"™") (G) = 0ie G' = 0.Therefore G is nilpotent.

o Suppose the assumption true for dim G =n.Let’s verify the assumption for dim G =n + 1.

ad(xy, Xa, ..., x,—1) nilpotent for any xi, x,, ..., X,—1 € G, then from Lemma 8,adg(x1, X2, ..., x,-1) : G/ Z(G) — G/ Z(G)
is nilpotent for any xi, x5, ..., X,-1 € G.= G/Z(G) is nilpotent and Z(G) # 0 from Lemma 9. G/Z(G) nilpotent, there
exists k > 0 such that [G/Z(@)]" = 0. As 7 : G — G/Z(G), then [G/Z(G)]" = n(G") = 0 since 7 is surjective. Thus
G' c Z(@). G = ad(G™NGY) C ad(G")Z(G)) = 0.Therefore G is nilpotent.That ends the proof.

Below we give the statement of the main theorem we obtained:

Theorem 10 If G is a nilpotent n-Lie algebra over a field k and if c;l; : A;'(’l(g) [Vk(G) — Derg(G),s — adg(s),is
the canonical representation of A"K‘l (@)/Vk(G) in G, then [A’}(‘l(g) /V K(g)] /K er@ is a nilpotent Lie algebra.

Proof. Let G be an n-Lie algebra. Then the mapping

-
G — Derg(G), (x1, X2, ..., Xp—1) V> ad(X1, X2, ..., Xn—1),

induces a representation @ : A';;l(g)/fv,{(g) — Derg(G),s +— adg(s) of A’}{l(g)/(VK(Q) in G. When G is a
nilpotent n-Lie algebra then adg(A'}(" (G)/Vk(G)) is a Lie subalgebra of Derg(G) whose all elements are nilpotent.Thus
adg(N'(G)/Vk(G)) is a nilpotent Lie algebra. Therefore [A';gl &) /(VK(Q)] /Keradg is a nilpotent Lie algebra.
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