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Abstract

In this paper, we generalize to n-Lie algebras a corollary of the well-known Engel’s theorem which offers some justifica-
tion for the terminology ”nilpotent” and we construct a nilpotent ordinary Lie algebra from a nilpotent n-Lie algebra.
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1. Introduction

(Filipov, 1985) Introduced a generalization of a Lie algebra, which he called an n-Lie algebra. The Lie product is taken be-
tween n elements of the algebra instead of two. This new bracket is n-linear, anti-symmetric and satisfies a generalization
of the Jacobi identity.

(Bossoto,Okassa, & Omporo, 2013) Associate to an n-Lie algebra, a Lie algebra called the ordinary Lie algebra.

In this paper, we generalize to n-Lie algebras a corollary of the well-known Engel’s theorem and we construct a nilpotent
ordinary Lie algebra from a nilpotent n-Lie algebra.

1.1 n-Lie Algebra Structure

In the following, K will denote a commutative field with characteristic zero.

An n-Lie algebra G over K is a vector space together with a multilinear fully skewsymmetric map

{, ..., } : Gn = G × G × ... × G −→ G, (x1, x2, ..., xn) 7−→ {x1, x2, ..., xn} ,

such that

{x1, x2, ..., xn−1, {y1, y2, ..., yn}} =
n∑

i=1

{y1, y2, ..., yi−1, {x1, x2, ..., xn−1, yi} , yi+1, ..., yn}

for all x1, x2, ..., xn−1, y1, y2, ..., yn elements of G.

The above equation is called the generalized Jacobi Identity.

A subspace G0 of G is called an n-Lie subalgebra if for any y1, y2, ..., yn ∈ G0, {y1, y2, ..., yn} ∈ G0.

Let G1,G2, ...,Gn be subalgebras of n-Lie algebra G and let {G1,G2, ...,Gn} denote the subspace of G generated by all
vectors {x1, x2, ..., xn}, where xi ∈ Gi for i = 1, 2, ..., n. The subalgebra {G,G, ...,G} is called the derived algebra of G, and
is denoted by G1. If G1 = 0, then G is called an abelian n-Lie algebra.

Using the derivation ad(x1, x2, ..., xn−1) : G −→ G, y 7−→ {x1, x2, ..., xn−1, y}, we can rephrase this definition as follows:

A vector subspace G0 of G is an n-Lie subalgebra of G if ad(x1, x2, ..., xn−1)(G0) ⊂ G0 for any x1, x2, ..., xn−1 ∈ G0.That is,
ad(G0,G0, ...,G0)(G0) ⊂ G0.

A subspace I of G is called an ideal if {x, y1, y2, ..., yn−1} ∈ I for any x ∈ I, and for any y1, y2, ..., yn−1 ∈ G. That is
equivalent to say that ad(G, ...,G)(I) ⊂ I.

1.2 The Ordinary Lie Algebra of an n-Lie Algebra

Let G be an n-Lie algebra over a field K. (Bossoto et al., 2013) associate to G a Lie algebra called the ordinary Lie algebra.
This construction goes as presented below:

Consider the map
Gn−1 −→ DerK(G), (x1, x2, ..., xn−1) 7−→ ad(x1, x2, ..., xn−1),
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where DerK(G) denote the set of K−derivations of G.

Denote by Λn−1
K (G), the (n − 1)-exterior power of the K-vector space G, there exists a unique K-linear map

adG : Λn−1
K (G) −→ DerK(G)

such that
adG(x1Λx2Λ...Λxn−1) = ad(x1, x2, ..., xn−1)

for all x1, x2, ..., xn−1 ∈ G.

When f : W −→ W is an endomorphism of a K-vector space W and when ΛK(W) is the K-exterior algebra of W, then
there exists a unique derivation of degree zero

D f : ΛK(W) −→ ΛK(W)

such that, for p ∈ N,

D f (w1Λw2Λ...Λwp) =
p∑

i=1

w1Λw2Λ...Λwi−1Λ f (wi)Λwi+1Λ...Λwp

for all w1,w2, ...,wp elements of W.

Proposition 1 For all s1 and s2 elements of Λn−1
K (G), then we have simultaneously[

adG(s1), adG(s2)
]
= adG

(
DadG(s1)(s2)

)
and [

adG(s1), adG(s2)
]
= adG

(
−DadG(s2)(s1)

)
where [, ] denotes the usual bracket of endomorphisms.

We denote by VK(G) the K-subspace of Λn−1
K (G) generated by the elements of the form DadG(s1)(s2) + DadG(s2)(s1) where

s1 and s2 describe Λn−1
K (G).

Let
Λn−1

K (G) −→ Λn−1
K (G)/VK(G), s 7−→ s,

be the canonical surjection. Given the foregoing, we conclude that

adG [VK(G)] = 0.

We denote by
ãdG : Λn−1

K (G)/V(G) −→ DerK(G)

the unique linear map such that
ãdG(s) = adG(s)

for all s ∈ Λn−1
K (G).

Theorem 2 When (G, {, ..., }) is a n-Lie algebra, then the map

[, ] :
[
Λn−1

K (G)/VK(G)
]2 −→ Λn−1

K (G)/VK(G), (s1, s2) 7−→ DadG(s1)(s2),

depends only on s1 and s2, and defines an ordinary Lie algebra structure on Λn−1
K (G)/VK(G).

Proposition 3 If a subspace G0 of an n-Lie algebra G is stable for the representation

ãdG : Λn−1
K (G)/VK(G) −→ DerK(G), s 7−→ adG(s),

then G0 is an ideal of the n-Lie algebra G.
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2. Nilpotency of the Ordinary Lie Algebra

An n-Lie algebra G is nilpotent if G satisfies Gr = 0 for some r ≥ 0, where G0 = G and Gr is defined by induction,
Gr+1 = [Gr,G,G,···,G] for r ≥ 0.

Proposition 4 Let G be an n-Lie algebra over a field K. If G ,0 is nilpotent thenZ(G) , 0.

Proof. Let us supposeZ(G) =0.

Nilpotency of G implies that there exists an integer k ≥ 0 such that Gk−1 , 0 and Gk = 0.

0 = Gk =
{
Gk−1,G,G, ...,G

}
=
{
G,G, ...,G,Gk−1

}
= ad(G,G, ...,G)(Gk−1)
= 0

Then Gk−1⊂ Z(G).

Therefore 0 , Gk−1⊂ Z(G) =0 which is impossible.

ThusZ(G) , 0.

Below we give the statement of the Engel’s theorem and its corollary for Lie algebras:

Theorem 5 (Engel) Let ρ : G → End(V) be a linear representation of G on the vector space V such that ρ(x) is nilpotent
for each x ∈ G. If V , (0), then there

exists v ∈ V, v , 0 such that ρ(x)v = 0 for all x ∈ G.
Corollary 6 G is nilpotent if and only if adx is nilpotent for each x ∈ G.

Now we’re going to give a generalization to n-Lie algebras of the above corollary:

Theorem 7 Let G be an n-Lie algebra over a field K. G is nilpotent if and only if ad(x1, x2, ..., xn−1) is nilpotent for any
x1, x2, ..., xn−1 ∈ G.

To prove the Theorem, one needs some Lemmas:

Lemma 8 Let G be an n-Lie algebra, Z(G) the center of G and π : G → G/Z(G) the canonical surjection. For any
x1, x2, ..., xn−1 ∈ G, if ad(x1, x2, ..., xn−1) : G → G is nilpotent, then the unique linear map

adG(x1, x2, ..., xn−1) : G/Z(G)→ G/Z(G),ȳ 7→ {x1, x2, ..., xn−1, y}

such that π◦ adG(x1, x2, ..., xn−1) = adG(x1, x2, ..., xn−1) ◦ π is nilpotent.

Proof. It’s clear that ad(x1, x2, ..., xn−1)[Z(G)] = 0. We denote by

adG(x1, x2, ..., xn−1) : G/Z(G)→ G/Z(G),ȳ 7→ {x1, x2, ..., xn−1, y}

the unique linear map such that π◦ adG(x1, x2, ..., xn−1) = adG(x1, x2, ..., xn−1) ◦ π.

ad(x1, x2, ..., xn−1) nilpotent, then there exists k ≥ 0 such that (adG(x1, x2, ..., xn−1))k = 0. We have: ( adGh)k ◦ π =
π◦(adGh)k = 0. Since π is surjective⇒( adG(x1, x2, ..., xn−1))k = 0 ie adG(x1, x2, ..., xn−1) is nilpotent.

Lemma 9 If for any x1, x2, ..., xn−1 ∈ G, ad(x1, x2, ..., xn−1) : G → G is nilpotent, thenZ(G) , (0).

Proof. Using the well-known Engel’s theorem, there exists u ∈ G, u , 0, such that
ad(x1, x2, ..., xn−1)(u) = 0, for any x1, x2, ..., xn−1 ∈ G. That implies u ∈ Z(G). And as u , 0, thus Z(G) , (0).We are
done.

The set
{
ad(x1, x2, ..., xn−1)/ad(x1, x2, ..., xn−1) is nilpotent for any x1, x2, ..., xn−1 ∈ G

}
is a Lie subalgebra of Endk(G).

Proof. ”⇒ ”:

G nilpotent implies that there exists k ≥ 0 such that Gk−1 , 0 and Gk = 0.
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0 = Gk=
{
G,G, ...,G,Gk−1

}
= ad(G,G, ...,G)(Gk−1)
= ad(G,G, ...,G)

{
G,G, ...,G,Gk−2

}
= ad(G,G, ...,G)

[
ad(G,G, ...,G)(Gk−2)

]
= [ad(G,G, ...,G) ◦ ad(G,G, ...,G) ◦ ad(G,G, ...,G) ◦ ... ◦ ad(G,G, ...,G)]︸                                                                                          ︷︷                                                                                          ︸

k−times

(G)

= [ad(G,G, ...,G)]k (G)

i.e [ad(x1, x2, ..., xn−1)]k = 0 for any x1, x2, ..., xn−1 ∈ G.

Thus ad(x1, x2, ..., xn−1) is nilpotent.

”⇐= ” we prove by induction on the dimension of G.

• dimG =1, ad(x1, x2, ..., xn−1) : G → G is nilpotent⇒ ad(x1, x2, ..., xn−1)(y) = 0 for any x1, x2, ..., xn−1, y ∈ G, that is G is
commutative. Thus ad(Gn−1) (G) = 0 ie G1 = 0.Therefore G is nilpotent.

• Suppose the assumption true for dimG =n.Let’s verify the assumption for dimG =n + 1.

ad(x1, x2, ..., xn−1) nilpotent for any x1, x2, ..., xn−1 ∈ G, then from Lemma 8,adG(x1, x2, ..., xn−1) : G/Z(G) → G/Z(G)
is nilpotent for any x1, x2, ..., xn−1 ∈ G.⇒ G/Z(G) is nilpotent and Z(G) , 0 from Lemma 9. G/Z(G) nilpotent, there
exists k ≥ 0 such that [G/Z(G)]k = 0. As π : G → G/Z(G), then [G/Z(G)]k = π(Gk) = 0 since π is surjective. Thus
Gk ⊂ Z(G). Gk+1 = ad(Gn−1)(Gk) ⊂ ad(Gn−1)(Z(G)) = 0.Therefore G is nilpotent.That ends the proof.

Below we give the statement of the main theorem we obtained:

Theorem 10 If G is a nilpotent n-Lie algebra over a field k and if ãdG : Λn−1
K (G)/VK(G) −→ DerK(G), s 7−→ adG(s),is

the canonical representation of Λn−1
K (G)/VK(G) in G, then

[
Λn−1

K (G)/VK(G)
]
/KerãdG is a nilpotent Lie algebra.

Proof. Let G be an n-Lie algebra. Then the mapping

Gn−1 −→ DerK(G), (x1, x2, ..., xn−1) 7−→ ad(x1, x2, ..., xn−1),

induces a representation ãdG : Λn−1
K (G)/VK(G) −→ DerK(G), s 7−→ adG(s) of Λn−1

K (G)/VK(G) in G. When G is a
nilpotent n-Lie algebra then ãdG(Λn−1

K (G)/VK(G)) is a Lie subalgebra of DerK(G) whose all elements are nilpotent.Thus
ãdG(Λn−1

K (G)/VK(G)) is a nilpotent Lie algebra. Therefore
[
Λn−1

K (G)/VK(G)
]
/KerãdG is a nilpotent Lie algebra.
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