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Abstract

A subset S of the vertices of G = (V, E) is an [a, b]-set if for every vertex v not in S we have the number of neighbors of
v in S is between a and b for non-negative integers a and b, that is, every vertex v not in S is adjacent to at least a but
not more than b vertices in S . The minimum cardinality of an [a, b]-set of G is called the [a, b]-domination number of G.
The [a, b]-domination problem is to determine the [a, b]-domination number of a graph. In this paper, we show that the
[2,b]-domination problem is NP-complete for b at least 3, and the [1,2]-total domination problem is NP-complete. We
also determine the [1,2]-total domination and [1,2] domination numbers of toroidal grids with three rows and four rows.
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1. Introduction

Let G be a graph, S ⊆ V(G), v ∈ V(G). The open neighborhood of v in S , {u|uv ∈ E(G), u ∈ S }, is denoted by NS (v).
We write NS [v] = {v} ∪ NS (v). If S = V(G), we write NS (v) = N(v) and NS [v] = N[v]. Let T ⊆ V(G), we write
NG(T ) = ∪x∈T NG(x). We omit the subscript G, that is to say, NG(T ) = N(T ). The diameter of G is the maximum distance
between the vertices of G, denoted by diam(G). The maximum degree of graph G is denoted by ∆(G). For more definitions
and notations of graph theory, please consult (Bondy & Murty,1976). If n ≡ r (mod p), we write n ∈ Zr

p.

The Cartesian product F2G of graphs F and G is a graph with the vertex set F ×G, and ( f , g)( f ′, g′) ∈ E(F2G) if either
f f ′ ∈ E(F) and g = g′, or gg′ ∈ E(G) and f = f ′. For more information on the Cartesian product of graphs please
consult(Hammack, Imrich & Klavžar,2011). The graph Cm2Cn is called a toroidal grid with m rows and n columns, and
it is denoted by Tm,n.

Recently, a variation of the domination problem, called [a,b]-set, was proposed and studied (Chellali, Haynes, Hedetniemi
& McRae, 2013; Yang & Wu, 2014; Goharshady, Hooshmandasl & Meybodi,2016). A vertex subset S of a graph
G = (V, E) is an [a, b]-set if, a ≤ |N(v) ∩ S | ≤ b for every vertex v ∈ V \ S , that is, each vertex v ∈ V \ S is adjacent to
either one or two vertices in S . A vertex subset S ′ of a graph G = (V, E) is an [a, b]-total set if, a ≤ |N(v) ∩ S ′| ≤ b for
every vertex v ∈ V , that is, each vertex v ∈ V is adjacent to either one or two vertices in S ′. The minimum cardinality
of an [a, b]-set (resp. [a, b]-total set) of G, denoted by γ[a,b](G) (γt

[a,b](G)), is called the [a, b]- domination (resp. [a,
b]-total domination) number of G. The [a, b]-domination (resp. [a, b]-total domination) problem is to determine the [a,
b]- domination (resp. [a, b]-total domination) number of a graph. (Chellali et al., 2013) studied graph G with γ[1,2](G) = n
and grid graphs and prove that the [1,2]-domination graph is NP-complete for bipartite graphs by transforming an instance
of EXACT-3-COVER to the [1,2]-domination problem.

In this paper, we show that the [2,b]-domination problem is NP-complete for b ≥ 3, and the [1,2]-total domination problem
is NP-complete. We also determine the [1,2]-total domination and [1,2] domination numbers of toroidal grids T3,n and
T4,n.

2. Complexity of the [a,b]-domination Problem

In (Fiala, Golovach, Kratochvı́l, Lidický & Paulusma, 2012), the NP-completeness of Monotone Not-All-Equal p-Satisfiability
was applied, and in this paper, we will reduce from the Not-All-Equal p-Satisfiability problem, which is also NP-complete
for p ≥ 3 (Schaefer, 1978).

The Not-All-Equal p-Satisfiability:

Instance: A collection C = {C1,C2, · · · ,Cm} of clauses on a finite set X = {x1, x2, · · · , xn} of boolean variables such that
|Ci| = p for 1 ≤ i ≤ m.
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Question: Can the literals be assigned value true or false so that each clause has at least one true and at least one false
variable ?

The [a,b]-domination problem:

Instance: A graph G, and an integer k.

Question: Is there an [a,b]-dominating set of G with weight at most k ?

The [1,2]-total domination problem:

Instance: A graph G, and an integer k.

Question: Is there a [1,2]-total dominating set of G with weight at most k ?

We will prove the following result:

Theorem 1 The [2,b]-domination problem is NP-complete for b ≥ 3.

Proof. Given a Not-All-Equal p-Satisfiability with p = b instance C, we will construct a graph G whose order is polyno-
mially bounded in the size of C such that C is satisfiable if and only if G has a [2,b]-set of size at most k.

we construct a polynomial transformation from an instance of the The Not-All-Equal p-Satisfiability to an instance of the
[2,b]-domination problem. Let I be an arbitrary instance of The Not-All-Equal p-Satisfiability with p = b for the set of
clauses C = {C1,C2, · · · ,Cm} on the set of boolean variables X = {x1, x2, · · · , xn}. For every boolean variable x occurring
in C we introduce a gadget Gx, where V(Gx) = {x, x, a, b, c, y, z} and E(Gx) = {xx, xa, xb, xc, xa,xb,xc,ya,yb,yc,za,zb, zc,
yz, xy, xz}. For each clause C, we construct a clause gadget GC with specific vertex w, where V(GC) = {w, d, e, f , g, h} and
E(GC) = {wd, de, d f , dg, he, h f , hg}. If the literal x occurs in clause C we connect the specified vertex x in Gx with the
vertex w.

Let G denote the resulting graph. It can be seen that C is satisfiable (in the sense of Not-All-Equal p-Satisfiability) if and
only if G has a [2,b]-set of size at most 2n+2m. Moreover, we have that G has 6m+7n vertices and 16n+ (p+7)m edges,
and so it is a polynomial transformation. This completes the proof.

Theorem 2 The [1,2]-total domination problem is NP-complete.

Proof. Given Not-all-equal 3SAT instance C, we will construct a graph G whose order is polynomially bounded in the size
of C such that C is satisfiable if and only if G has a [1,2]-total set of size at most k.

we construct a polynomial transformation from an instance of the Not-all-equal 3SAT problem to an instance of the [1,2]-
total domination problem. Let I be an arbitrary instance of Not-all-equal 3SAT for the set of clauses C = {C1,C2, · · · ,Cm}
on the set of boolean variables X = {x1, x2, · · · , xn}. For every boolean variable x occurring in C we introduce a copy Gx

of the gadget K which contains two specific vertices x and x, where V(K) = {x, x, y, z,w, c}, E(K) = {xy, xy, cx, cx, cz, cw}.
For each clause Ci, we construct a vertex labeled ci. If the literal x occurs in clause Ci we connect the specified vertex x
in Gx with the vertex ci. (For an example see Figure. 1 where C = {x ∨ y ∨ z, x ∨ z ∨ w}).
Let G denote the resulting graph. It can be seen that C is satisfiable if and only if G has a [1,2]-total set of size at most 2n.
Moreover, we have that G has m+6n vertices and 6n+3m edges, and so it is a polynomial transformation. This completes
the proof.

Figure 1. The graph G for C = {x ∨ y ∨ z, x ∨ z ∨ w}

39



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 3; 2017

3. The [1,2]-total Domination Number of Some Cartesian Product of Two Cycles

We will use the following Observation.

Observation 1 Let n ≥ 3 and D is a [1,2]-total set of Tm,n. If |D∩Ci| = 0 for each i ∈ { j, j + 2} for some j ∈ {1, 2, · · · , n}.
Then we have |D ∩C j+1| ≥ ⌈m

2 ⌉.

Theorem 3 Let n ≥ 3. Then γt
[1,2](T3,n) = ⌈ 4n

5 ⌉.
Proof. The lower bound can be found in (Thiagarajan & Bhaskaram,2015), and we only need to show the upper bound.
Let

P =

 0 1 0 0 0
0 0 0 1 1
0 1 0 0 0

 ,Q =
 0

1
0


Then the pattern Pk induces a [1,2]-total set of with weight 4k of T3,5k for any k ≥ 1, and the pattern PkQi induces a
[1,2]-total set of with weight 4k + i of T3,5k+i for any k ≥ 1 and i ∈ {1, 2, 3, 4}. Thus, all the upper bounds are settled.

Theorem 4 Let n ≥ 4. Then

γt
[1,2](T4,n) =


n, n ≡ 0 (mod 4),
n + 1, n ≡ 1, 3 (mod 4),
n + 2, n ≡ 2 (mod 4).

.

Proof. The lower bound can be found in (Thiagarajan & Bhaskaram,2015), and we only need to show the upper bound.
Let

P =


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 ,Q1 =


1
0
1
0

 ,Q3 =


0 1 1
0 0 0
1 1 0
0 0 0

 ,
then the pattern Pk induces a [1,2]-total set of with weight 4k of T4,4k for any k ≥ 1, the pattern PkQ2

1 induces a [1,2]-total
set of with weight 4k + 4 of T4,4k+2 for any k ≥ 1, and the pattern PkQi induces a [1,2]-total set of with weight 4k + i + 1
of T4,4k+i for any k ≥ 1 and i ∈ {1, 3}. Thus, all the upper bounds are settled.

Theorem 5 Let n ≥ 6. Then γt
[1,2](T5,n) ≤ ⌈ 9n

7 ⌉.
Proof. We consider the following seven cases.

Case 1: n ∈ Z0
7.

Let n = 7k and

P =


0 0 1 0 0 1 0
1 0 0 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 0 0
0 0 1 0 0 1 0

 ,
then the pattern Pk induces a [1,2]-total set of with weight 9k of T5,7k for any k ≥ 1.

Case 2: n ∈ Z1
7.

Let n = 7k + 1

P8 =


0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0

 , P15 =


1 0 0 0 0 0 0 1 1 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0


and

P22 =


0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

 ,
then the pattern Pi induces a [1,2]-total set of with the desired weight of T5,i for i ∈ {8, 15, 22}.
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Let

Q22 =


0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

 ,
then the pattern PkQ22 induces a [1,2]-total set of with weight 9k + 2 of T5,7k+1 for any k ≥ 4.

Case 3: n ∈ Z2
7.

Let n = 7k + 2

P9 =


0 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0

 , P16 =


0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

 ,
then the patterns P9 and P16 induce a [1,2]-total set of with the desired weight of T5,9 and T5,16, respectively.

Let

Q16 =


0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

 ,
then the pattern PkQ16 induces a [1,2]-total set of with weight 9k + 3 of T5,7k+2 for any k ≥ 3.

Case 4: n ∈ Z3
7.

Let n = 7k + 3

P10 =


1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0

 ,
then the pattern P10 induces a [1,2]-total set of with the desired weight of T5,10.

Let

Q10 =


0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0

 ,
then the pattern PkQ10 induces a [1,2]-total set of with weight 9k + 4 of T5,7k+3 for any k ≥ 2.

Case 5: n ∈ Z4
7.

Let n = 7k + 4

Q4 =


0 0 1 0
1 0 1 0
1 0 0 0
1 0 0 0
0 0 1 0

 ,
then the pattern PkQ4 induces a [1,2]-total set of with weight 9k + 6 of T5,7k+4 for any k ≥ 2.

Case 6: n ∈ Z5
7.

Let n = 7k + 5

P12 =


0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0

 ,
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P19 =


1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 ,
then the patterns P12 and P19 induce a [1,2]-total set of with the desired weight of T5,12 and T5,19, respectively.

Let

Q19 =


0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

 ,
then the pattern PkQ19 induces a [1,2]-total set of with weight 9k + 7 of T5,7k+5 for any k ≥ 4.

Case 7: n ∈ Z5
7.

Let n = 7k + 6

Q6 =


0 1 0 0 1 0
1 0 0 0 0 0
1 0 1 1 0 0
1 0 0 0 0 0
0 1 0 0 1 0

 ,
then the pattern PkQ6 induces a [1,2]-total set of with weight 9k + 8 of T5,7k+6 for any k ≥ 2.

Therefore, all the upper bounds are obtained.

4. Some Graphs G with γ(G) = γ[1,2](G)

In 2013, Chellali et al. proposed the following Question (see [(Chellali et al., 2013), Question 8]):

Question 1 For which graphs is γ(G) = γ[1,2](G) ?

The following results concerning Question 1 are established in (Chellali et al., 2013):

Theorem 6 If G is claw-free, then γ(G) = i(G) = γ[1,2](G).

Corollary 1 If a graph G has maximum degree ∆(G) ≤ 2, then γ(G) = γ[1,2](G).

Corollary 2 For paths G = Pn or cycles G = Cn, then γ(G) = γ[1,2](G).

Proposition 1 If every vertex v of a graph G of order n ≥ 2 is either a support vertex or has degree at most 2, then
γ(G) = γ[1,2](G).

Corollary 3 If T is a caterpillar, then γ(T ) = γ[1,2](T ).

Let the corona G ◦ K1 be the graph obtained from a graph G = (V, E) by attaching a leaf to each vertex v ∈ V . Then
Corollary 4 If G is a corona H ◦ K1, then γ(G) = γ[1,2](G).

Proposition 2 If G is a non-trivial graph with ∆(G) ≥ |V(G)| − 3, then γ(G) = γ[1,2](G).

Theorem 7 If G is P4-free, then γ(G) = i(G) = γ[1,2](G).

The toroidal grid is neither a claw-free graph nor a P4-free graph, so it is of interest to investigate if it is a graph G with
γ(G) = γ[1,2](G).

By the definition of [1,2]-domination, it can be seen that

Lemma 1 For any graph G, γ(G) ≤ γ[1,2](G).

In (Klavžar & Seifter, 1995), it was prove that

Theorem 8 (Klavžar & Seifter, 1995) γ(T3,n) = n − ⌊ n
4 ⌋ for n ≥ 4.

Theorem 9 (Klavžar & Seifter, 1995) γ(T4,n) = n for n ≥ 4.

Theorem 10 γ[1,2](T3,n) = n − ⌊ n
4 ⌋ for n ≥ 4.

Proof. The lower bounds follows from Lemma 1 and Theorem 8 . Now we give the upper bounds.
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Case 1. n ∈ Z0
4. Let

P =

 0 0 1 0
1 0 0 0
0 0 1 0

 .
By repeating the pattern P for n

4 times, we obtain a [1,2]-set of weight 3n
4 . Therefore, γ[1,2](T3,n) ≤ n − ⌊ n

4 ⌋.
Case 2. n ∈ Z1

4.

Let

P1 =


0 0 1 0

... 0

1 0 0 0
... 1

0 0 1 0
... 0

 .
By repeating the leftmost 4 columns of the pattern P1 for n−1

4 times, we obtain a [1,2]-set of weight n − ⌊ n
4 ⌋. Therefore,

γ[1,2](T3,n) ≤ n − ⌊ n
4 ⌋.

Case 3. n ∈ Z2
4.

Let

P2 =


0 0 1 0

... 0 0

1 0 0 0
... 1 0

0 0 1 0
... 0 1

 .
By repeating the leftmost 4 columns of the pattern P2 for n−2

4 times, we obtain a [1,2]-set of weight n − ⌊ n
4 ⌋. Therefore,

γ[1,2](T3,n) ≤ n − ⌊ n
4 ⌋.

Case 4. n ∈ Z3
4.

Let

P3 =


0 0 1 0

... 0 1 0

1 0 0 0
... 1 0 0

0 0 1 0
... 0 1 0

 .
By repeating the leftmost 4 columns of the pattern P3 for n−3

4 times, we obtain a [1,2]-set of weight n − ⌊ n
4 ⌋. Therefore,

γ[1,2](T3,n) ≤ n − ⌊ n
4 ⌋.

Theorem 11 γ[1,2](T4,n) = n for n ≥ 4. Proof. The lower bounds follows from Lemma 1 and Theorem 9. Now we give
the upper bounds.

Case 1. n ∈ Z0
4.

Let

P =


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 .
By repeating the pattern P for n

4 times, we obtain a [1,2]-set of weight n of of T4,n. Therefore, γ[1,2](T4,n) ≤ n.

Case 2. n ∈ Z1
4.

Let

P1 =



0 0 1 1
... 0 1 0 0 1

0 0 0 0
... 0 0 0 1 0

1 1 0 0
... 1 0 0 0 0

0 0 0 0
... 0 0 1 0 0


, and P′1 =


0 1 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0

 .

For n ≥ 9, by repeating the leftmost 4 columns of the pattern P1 for n−1
4 times, we obtain a [1,2]-set of weight n of T4,n.

Therefore, γ[1,2](T4,n) ≤ n. The pattern P′1 induces a [1,2]-set of weight 5 of T4,5. Therefore, γ[1,2](T4,n) ≤ n for each n ≥ 5
in this case.
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Case 3. n ∈ Z2
4.

Let

P2 =



0 0 1 1
... 0 1

0 0 0 0
... 0 0

1 1 0 0
... 1 0

0 0 0 0
... 0 0


.

By repeating the leftmost 4 columns of the pattern P2 for n−2
4 times, we obtain a [1,2]-set of weight n of T4,n. Therefore,

γ[1,2](T4,n) ≤ n.

Case 4. n ∈ Z3
4.

Let

P3 =



0 0 1 1
... 0 1 1

0 0 0 0
... 0 0 0

1 1 0 0
... 1 0 0

0 0 0 0
... 0 0 0


.

By repeating the leftmost 4 columns of the pattern P3 for n−3
4 times, we obtain a [1,2]-set of weight n of T4,n. Therefore,

γ[1,2](T4,n) ≤ n.

5. Conclusion

We show that the [2,b]-domination problem is NP-complete for b at least 3, and the [1,2]-total domination problem is
NP-complete. Chellali et al. asked which graph satisfies the domination number equals to the [1,2] domination number.
We determine the [1,2]-total domination and [1,2] domination numbers of toroidal grids with three rows and four rows,
and show that this class of graphs satisfied the above condition.
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