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Abstract

Consider homogeneous linear recurring sequences over a finite field Fq, based on the irreducible characteristic polynomial
of degree d and order m. We give upper and lower bounds, and in some cases the exact values of the cardinality of the set
of zeros of the sequences within its least period. We also prove that the cyclotomy bound introduced here is the best upper
bound as it is reached in infinitely many cases. In addition, the exact number of occurrences of zeros is determined using
the correlation with irreducible cyclic codes when (qd − 1)/m follows the quadratic residue conditions and also when it
has the form q2a − qa + 1 where a ∈ N.
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1. Introduction

Let Fq be the finite field with q elements where q = pm for prime p. Let k be a positive integer, and let a0, a1, . . . , ak−1 be
given elements of Fq. A sequence s0, s1, . . . of elements of Fq satisfying the relation

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . . + a0sn f or n = 0, 1, . . . (1)

is called a (kth-order) homogeneous linear recurring sequence in Fq. The terms s0, s1, . . . sk−1, which determine the com-
plete sequence uniquely, are referred to as the initial values. A relation in the form of (1) is called a (kth-order) homoge-
neous linear recurrence relation. Let s0, s1, . . . be a kth order homogeneous linear recurring sequence in Fq satisfying the
linear recurrence relation (1), where a j ∈ Fq for 0 ≤ j ≤ k − 1. The polynomial

f (x) = xk − ak−1xk−1 − ak−2xk−2 − . . . − a0 ∈ Fq[x]

is called a characteristic polynomial of the linear recurring sequence. For s0, s1, . . . homogeneous linear recurring se-
quence in Fq, m(x) ∈ Fq[x] is said to be the minimal polynomial of the sequence if it has the following property: a monic
polynomial f (x) ∈ Fq[x] of positive degree is a characteristic polynomial of s0, s1, . . . if and only if m(x) divides f (x).

Definition Let f ∈ Fq[x] be a non zero polynomial. If f (0) , 0, then the least positive integer e for which f (x) divides
xe − 1 is called the order of f which is denoted by ord( f ).

Theorem 1. (Lidl & Niederreiter, 1994) Let s0, s1, ... be a homogeneous linear recurring sequence in Fq with minimal
polynomial m(x) ∈ Fq[x]. Then the least period of the sequence is equal to ord(m(x)).

Linear recurring sequences were discussed for many years with a substantial development in the study of examining
zeros and determining effective bounds for the set of zeros over infinite fields (Everest, Poorten, Shparlinski & Ward,
2003). Here we will consider homogeneous linear recurring sequences over finite fields based on irreducible minimal
polynomials of certain degree d and order m. Let P(d,m) be the set of all irreducible polynomials over Fq of degree d and
order m. For f ∈ P(d,m) and I ∈ (Fd

q)∗ = (Fd
q) \ {0}, let S (I, f ) := {sn(I, f )|1 ≤ n ≤ m} be the first m terms (terms within

the least period) of the homogeneous linear recurring sequence S over Fq. Let A := {Z(S (I, f ))|I ∈ (Fd
q)∗, f ∈ P(d,m)}

be the set of zeros. Let t = (qd − 1)/m. We will always assume that t > 1. If t = 1 then the polynomials in P(d,m)
are primitive and the number of zeros in the sequence is qd−1 − 1 (Lidl & Niederreiter, 1994). However, in the general
case such an equitable distribution of zeros cannot be expected. Theorem 6.84 in Lidl and Niederreiter (1994) provides
an estimate for the number of occurrences of zeros based on Gaussian sums and Mullen and Panario (2013) provides an
improved bound. Table 1 gives some observations on the number of zeros of some linear recurring sequences over F2
computed via MAPLE (Kottegoda, 2010, Appendix I-VIII) with the degrees and orders of their corresponding irreducible
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minimal polynomials. In this paper, in addition to explaining why there are so few choices for the number of zeros, we
will give an accurate bound for the cardinality of the set of zeros, also providing formulas for the exact number of zeros
when t has the form q2a − qa + 1 where a ∈ N.

Table 1. Zeros of some homogeneous linear recurring sequences over F2 based on degree d and order m irreducible
minimal polynomials.

d m Number of zeros Cardinality
8 51 27, 19 2
8 85 37, 45 2
9 73 33, 37, 45 3
10 93 45, 61 2
10 341 181, 165 2
11 89 49, 41, 33 3
12 65 39, 37, 35, 33, 31, 29, 27, 25 8
12 91 55, 51, 47, 43, 39 5
12 105 73, 57, 49 3
12 195 107, 99, 91 3
12 273 153, 141, 133, 129 4
12 315 155, 187 2
12 455 231, 199 2
12 585 305, 289, 281 3
12 819 435, 403 2
12 1365 693, 661 2
14 381 253, 189 2
14 5461 2773, 2709 2
15 1057 573, 553, 537, 525, 517, 513 6
15 4681 2361, 2345, 2265 3
16 3855 1807, 1935 2
16 771 411, 395, 387, 379, 363, 355 6
16 1285 669, 653, 645, 637, 621, 613, 581 7
16 4369 2225, 2185, 2177, 2169, 2097 5

Section 2 proves that the cardinality of the set of zeros is at most the number of q-cyclotomy classes in Zt, namely, the
cyclotomy bound.

In section 3, results on irreducible cyclic codes are used to show | A |= 2 if t has the form q2a − qa + 1 and also gives the
exact values forA in this case. We also get a lower bound on | A |when q = 2 using results from Wolfmann (2005). Exact
values for | A | when t follows the quadratic residue conditions are also discussed. Lastly, we show that the cyclotomy
bound given in section 2 is the best bound as it is reached infinitely often, assuming the Generalized Riemann Hypothesis.

2. Cyclotomy Bound

2.1 Construction of the Cyclotomy Bound

First we will define the following equivalence relation on Zt.

Definition For a, b ∈ Zt define a ∼ b iff qua ≡ b (mod t) for some u ∈ Z.

Definition Let t be relatively prime to q. The cyclotomy class of q (or q-cylcotomy coset) modulo t containing i is defined
by

Ci = {(iq j (mod t)) ∈ Zt | j = 0, 1, . . .}

which is the equivalence class that contains i in the above mentioned equivalence relation.

Let C denote the set of all equivalence classes. The following theorem explains that when the characteristic polynomial is
irreducible, a suitable trace form can be used to represent the terms of the linear recurring sequence S .

Theorem 2. (Lidl & Niederreiter, 1994) Let s0, s1, . . . be a kth-order homogeneous linear recurring sequence in K = Fq

whose characteristic polynomial f (x) is irreducible over K. Let α be a root of f (x) in the extension field F = Fqk . Then
there exists a uniquely determined θ ∈ F such that

sn = TrF/K (θαn) f or n = 0, 1, . . .
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Theorem 3 below gives the upper bound for the cardinality of the set of zeros.

Theorem 3. Consider the homogeneous linear recurring sequences over Fq based on an irreducible minimal polynomial
of degree d and order m. Set t = (qd − 1)/m. Then for the set of numbers of zerosA, we have | A |≤| C |.
Proof.

Let f ∈ P(d,m). By Theorem 2, there exists a root of f , β ∈ Fqd and θ ∈ F∗qd such that the nth term of the sequence S is
given by,

sn(I, f ) = TrFqd /Fq (θβn), f or all n, 1 ≤ n ≤ m.

Fix a primitive element α ∈ Fqd . Then order of β = m and hence β = αrt where t = (qd − 1)/m and (r,m) = 1. Define

sn(θ, t) := TrFqd /Fq (θαtn).

Hence
sn(I, f ) = TrFqd /Fq (θβn) = TrFqd /Fq (θαrtn) = sn(θ, rt).

Therefore,

A = {Z(S (θ, rt)) | θ ∈ F∗qd , t = (qd − 1)/m, (r,m) = 1} (2)

Lemma 1. First Reduction : For (r,m) = 1, Z(S (θ, t)) = Z(S (θ, rt)).

Proof. Since (r,m) = 1, there exists a u such that ur ≡ 1 (mod m) and then urt ≡ 1 (mod qn − 1). Hence

sk(θ, t) = TrK/F(θαtk) = TrK/F(θαkurt) = sku(θ, rt)

and sk(θ, rt) is simply sk(θ, t) in a new order. Therefore

Z(S (θ, t)) = Z(S (θ, rt)).

�
NowA in (2) can be given as follows:

A = {Z(S (θ, t)) | θ ∈ F∗qd , t = (qd − 1)/m} (3)

Define
rn(a, t) := TrFqd /Fq (αa+tn), f or some a ∈ N.

Since θ ∈ F∗qd , let θ = αk. Then

sn(θ, t) = TrFqd /Fq (θαnt) = TrFqd /Fq (αk+tn) = rn(k, t).

HenceA in (3) can be written as the following

A = {Z(R(k, t)) | t = (qd − 1)/m, 0 ≤ k ≤ qd − 1} (4)

where R denotes the sequence r1, r2, . . .

Lemma 2. Second Reduction : If k1 ≡ k2(mod t) then Z(R(k1, t)) = Z(R(k2, t)).

Proof. If k2 = k1 + tu for some u ∈ Z, then

rn(k2, t) = TrFqd /Fq (αk2+tn) = TrFqd /Fq (αk1+(n+u)t) = rn+u(k1, t)

Hence rn(k2, t) is a shifted version of rn(k1, t). Therefore,

Z(R(k1, t)) = Z(R(k2, t)).

�
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Using Lemma 2,A in (4) can be given as follows:

A = {Z(R(k, t)) | t = (qd − 1)/m, 0 ≤ k < t}

Therefore
| A |≤ t.

Lemma 3. Third Reduction : Z(R(k,t)) = Z(R(qk,t)).

Proof.
rn(k, t) = TrFqd /Fq (αk+tn) = TrFqd /Fq ((αk+tn)q) = TrFqd /Fq (αqk+qnt) = rqn(qk, t)

Hence
Z(R(k, t)) = Z(R(qk, t)).

Therefore
A = {Z(R(k, t)) | t = (qd − 1)/m and Ck ∈ C}.

Hence | A |≤| C | .
2.2 Properties of Cyclotomy Classes

Here we discuss some properties of the cyclotomy classes where we will be able to find the exact value for the cyclotomy
bound and give the exact upper bound for the cardinality of the set of zeros | A |, under specific conditions. Let orda(b)
be the smallest positive integer c such that ac ≡ 1 (mod a). By the equivalence relation defined in section 2, C1 =

{1, q, q2, . . . , qk−1} (mod t) where k = ordt(q). Hence | C1 |= ordt(q).

Proposition 1. If t is a composite and l | t, then there exists Cl ∈ C.

Proof. Let l ∈ Ca for some a ∈ Zt. Then by the definition of Ca, l ≥ a and l ≡ qra (mod t) for some r ∈ Z. Since
l | t ⇒ l | qra and t | qd − 1⇒ (t, q) = 1, hence (l, q) = 1. Therefore l | a and hence l ≤ a. Hence l = a and Cl ∈ C.

�
The following well known result and the corollaries give the exact values for the cyclotomy bound | C | and hence the
exact upper bound for the cardinality of the set of zeros | A |.
Proposition 2. Let t ∈ N and t and q are relatively prime. Then

| C |=
∑
d|t

φ(t/d)
ordt/d(q)

.

Corollary 1. If t is a prime then | C |= t−1
k + 1.

Corollary 2. Let t be a prime power (say pk) where p is an odd prime. If 2 is a primitive root of Z∗p2 , then | C |= k + 1.

3. Coding Theory Approach

Weight distributions of irreducible cyclic codes were studied by Baumert and McEliece (1972), Baumert and Mykkeltveit
(1973), Aubrey and Langevin (2005), Wolfmann (2005), Vega (2007), Aubrey and Langevin (2008) and Ding (2009). We
will use these results to determine the exact occurrences of zeros in some cases, and determine the cardinality of the set
of zeros of homogeneous linear recurring sequences based on irreducible minimal polynomials of fixed degree and order.
First we set notations and review the basic facts as found on Lidl and Niederreiter (1994).

Let f (x) ∈ Fq[x] be an irreducible polynomial of degree d and order m. Let S = {sn} be a homogeneous linear recurring
sequence over Fq based on f as its minimal polynomial. By Theorem 2, sn = TrK/F(θαn), where F = Fq, K = Fqd , α ∈ K
is a root of f and θ ∈ K∗. Define the vector

c(θ, α) = [TrK/F(θα), TrK/F(θα2), . . . , TrK/F(θαm)],

where the entries represent the terms of the sequence S within its least period m. Set

C(α) = {c(θ, α) : θ ∈ K}.
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C(α) is then a cyclic code whose words represent the terms of each sequence S within its least period, based on f (x).
Thus C(α) has length m and dimension d. The generator polynomial of C(α) is the reciprocal of (xm − 1)/ f (x), so that
C(α) is in fact an irreducible cyclic code.

Note that the weight wt(c(θ, α)), the number of non zero entries of the code word c(θ, α) is m − Z(S ). The reductions
of Theorem 3 show that all sequences based on irreducible minimal polynomials of degree d and order m have the same
number of zeros. Hence

number o f non − zero weights o f C(α) =| A | .
We say a code is a N-weight code if it has N non-zero weights and hence for this case, N =| A |.
3.1 Lower Bounds for the Cardinality of the Set of Number of Zeros of Hhomogeneous Linear Recurring Sequences

Theorem 4. (Wolfmann, 2005) Let C be an [n, k] linear code over Fq. If C is a 1-weight code with weight w and if the
weight of the dual code is at least 2, then there exists λ ∈ N such that

n = λ
qk − 1
q − 1

, w = λqk−1.

Corollary 3. Let C be an irreducible cyclic 1-weight code with length m and dimension d. Set t = (qd − 1)/m. Then t
divides q − 1.

Proof. We first check that the dual code C⊥ does not have minimal weight one. Suppose it has a minimal weight of one.
As C⊥ is also cyclic, the existence of a codeword of weight 1 in C⊥ implies that all vectors of weight 1 are in C⊥ and
hence C⊥ = Fm

q . But then C = {0}, which is not a 1-weight code.

We can thus apply Theorem 4 to get m = λ(qd − 1)/(q − 1) for some λ. Hence q − 1 = λ(qd − 1)/m = λt.

�
Corollary 4. For q = 2, | A |≥ 2 unless the minimal polynomial is primitive.

Proof. Let f (x) be an irreducible polynomial of degree d and order m. Set t = (2d − 1)/m. If | A |= 1 then C(α), where α
is a root of f (x), is a 1-weight irreducible cyclic code. By Corollary 3, t divides q − 1 = 1 so that t = 1 and f is primitive.

�
3.2 Kasami-Welch approach

Theorem 5. (Wolfmann, 2005) Let C be an irreducible cyclic code of length m over Fq. Let Fqd be the splitting field of
xm − 1 over Fq. Let t be the integer such that mt = qd − 1. If d = 2e and if there exists a divisor r of e such that qr ≡ −1
(mod t), then C is a 2-weight code with weights

w1 = (q − 1)qe−1
(

qe + (t − 1)ϵ
t

)
w2 = (q − 1)qe−1

(
qe − ϵ

t

)
,

where ϵ is 1 or −1.

Theorem 6. Let q = 2. Consider sequences based on an irreducible, non-primitive polynomial of degree d and order m.
Set t = (2d − 1)/m. Suppose t is prime and 2 is a primitive root modulo t. Then

| A |= 2 =| C |

where C is the set of 2-cylcotomic classes in Zt. In fact, d is even (say d = 2e) andA consists of

m − 2e−1(2e + (t − 1)ϵ)
t

and m − 2e−1(2e − ϵ)
t

,

where ϵ is 1 or -1, determined by 2e ≡ ϵ (mod t).

Proof. C1 is the subgroup of Z∗t generated by 2, hence C1 = Z∗t . So there are exactly two cyclotomy classes, represented
by 0 and 1. We have ordt(2) = t − 1 is even and 2d ≡ 1 (mod t) so that t − 1 divides d. Write d = 2e. For r = t−1

2 we have
r | e and 2r ≡ −1 (mod t). So by Theorem 5, | A |= 2 and its values are as given.

�
Example 1. Let q = 2. Consider sequences based on an irreducible polynomials of degree 10 and order 93 ( f (x) =
x10 + x5 + x4 + x2 + 1 is one such polynomial). Then t = (210 − 1)/93 = 11. As 2 is a primitive root modulo 11, Theorem
6 gives | A |= 2. In fact, using e = 5 and ϵ = −1, we haveA = {45, 61}. This explains the result on line 4 in Table 1.
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Assuming the Generalized Riemann Hypothesis (GRH), Hooley (1967) proved the Artin Conjecture and in particular,
that there are infinitely many primes t such that 2 is a primitive root modulo t. Together with Theorem 6, we thus get the
following corollary that proves the cyclotomy bound determined in section 2 is the best bound for | A |.
Corollary 5. Assume the GRH. For q = 2, the cyclotomy bound is achieved infinitely often.

Theorem 7. (Kasami-Welch case) Consider sequences based on an irreducible polynomial over Fq of degree d and
order m. Set t = (qd − 1)/m. If t has the form q2a − qa + 1 for some integer a (a ≥ 2 if q = 2) then d = 2e is even and
| A |= 2. In fact: A consists of

m − (q − 1)qe−1
(

qe + (t − 1)ϵ
t

)
m − (q − 1)qe−1

(
qe − ϵ

t

)
,

where ϵ = ±1.

Proof.

Let k = ordt(q). We Claim that k = 6a. The basic equation is:

q3a + 1 = (qa + 1)(q2a − qa + 1) = (qa + 1)t. (5)

Then q6a ≡ 1 (mod t) and so k | 6a. Thus k has the form x, 2x, 3x or 6x for some divisor x of a. Note that if k = x or 3x
then q3a ≡ 1 (mod t) while (5) gives q3a ≡ −1 (mod t). Hence k = 2x or 6x.

Suppose k has the form 2x. Then q2a ≡ 1 (mod t) and since t = q2a − qa + 1, we have q2a ≡ qa − 1 (mod t). So t divides
qa − 2. If q = 2, we assume that a ≥ 2 and hence qa − 2 , 0. Therefore,

t = q2a − qa + 1 ≤ qa − 2⇒ q2a ≤ 2qa − 3 < 2qa ⇒ qa < 2,

which is impossible.

Thus k has the form 6x. Write a = xy. We have (q3x)2 ≡ 1 (mod t) and by (2), (q3x)y ≡ −1 (mod t). Then y must be odd
and q3x ≡ −1 (mod t). Then

t = q2a − qa + 1 ≤ q3x + 1⇒ qa < qa(qa − 1) ≤ q3x.

Hence a = xy < 3x and y < 3. Suppose y = 2. Then

q2x(q2x − 1) ≤ q3x ⇒ q2x − 1 ≤ qx ⇒ qx ≤ 1 + q−x < 2,

which is impossible. So y = 1, a = x and k = 6a, proving the Claim.

Fix an irreducible polynomial f (x) ∈ Fq[x] of degree d and order m. Let α be a root of f . We wish to apply Theorem 5 to
C(α). Now t | qd − 1 so that the order of q modulo t, namely 6a, divides d. So d is even; write d = 2e. Set r = 3a. Then r
divides e and by (2), qr ≡ −1 (mod t). Thus C(α) is a 2-weight code and | A |= 2. We have wt[c(θ, α)] = m − Z(S (θ, α))
so Theorem 5 proves the elements of | A | are as stated.

�
Remark 1 When F is a finite field of even characteristic, the terms of the homogeneous linear recurring sequence take the
form of the well known Kasami-Welch function TrK/F(x22a−2a+1).

Example 2. Let q = 2. Consider sequences based on an irreducible polynomial of degree 12 and order 315 ( f =
x12 + x4 + x2 + x + 1 is one such polynomial). Then t = (212 − 1)/315 = 13 has the form 22a − 2a + 1 for a = 2. The
number of zeros in such a sequence is thus

315 − 25
(

26 + 12ϵ
13

)
or 315 − 25

(
26 − ϵ

13

)
,

where ϵ = ±1. To get integers we must take ϵ = −1. We get | A |= {155, 187}. This explains the values on line 12 in Table
1.

Theorem 8. Consider sequences based on an irreducible polynomial over Fq of degree d and order m. Set t = (qd−1)/m.
Suppose
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1. t is a prime where t ≡ 1 (mod 4),

2. ordt(q) = 1
2 (t − 1).

Then d = 2e is even and | A |= 2 andA consists of

m − (q − 1)qe−1
(

qe + (t − 1)ϵ
t

)
m − (q − 1)qe−1

(
qe − ϵ

t

)
,

where ϵ = ±1.

Proof.

Fix an irreducible polynomial f (x) ∈ Fq[x] of degree d and order m. Let α be a root of f . We will apply Theorem 5 to
C(α). Now t | qd − 1 and hence ordt(q) = 1

2 (t − 1) divides d. Since t ≡ 1 (mod 4), ordt(q) is even and hence d is even;

d =
1
2

(t − 1)k = 2e

where e = 1
4 (t−1)k. Set r = 1

4 (t−1). Then r | e. By the definition of t, t | (q q−1
2 −1) and since (t, q−1

4 +1) = 1, t | (q q−1
4 +1).

Therefore qr ≡ −1 (mod t).

Then C(α) is a 2-weight code by Theorem 5 and | A |= 2. We have wt[c(θ, α)] = m − Z(S (θ, α)) and Theorem 5 gives the
elements ofA as stated above.

�
Example 3. Let q = 2. Consider sequences based on an irreducible polynomial of degree 16 and order 3855. Then t =
(216−1)/3855 = 17 and ord17(2) = 1

2 (17−1). A particular polynomial that can be considered is f = x16+ x14+ x11+ x3+1.
To get integers, take ϵ = 1. Hence the values forA are:

3855 − 27(
28 + 16

17
) = 1807

3855 − 27(
28 − 1

17
) = 1935.

Hence | A |= 2 which is explains another observation in Table 1.

So far we have only computedA using Theorem 5 which gives | A |= 2. We will now discuss two other cases providing
conditions for which | A |= 3.

Theorem 9. Let q = 2. Consider sequences based on an irreducible polynomial of degree d and order m. Set t =
(2d − 1)/m. Suppose

1. t is a prime not equal to 3,

2. t ≡ 3 (mod 4),

3. ordt(2) = 1
2 (t − 1).

Then | A |= 3.

Proof. We have | C |= 3 by Corollary 1 and hence| A |≤ 3 by Theorem 3. | A |, 1 by Corollary 4. Pick a particular
polynomial f of degree d and order m. Let α be a root of f . The three conditions on t imply C(α) is not a 2-weight code
by Proposition 2 in Aubrey and Langevin (2005). Hence | A |, 2 and therefore | A |= 3.

�
Example 4. Let q = 2 Consider sequences based on an irreducible polynomial of degree 9 and order 73 (x9 + x + 1 is one
such polynomial). Then t = (29 − 1)/73 = 7, which satisfies all three conditions of Theorem 9. Hence | A |= 3. As given
in the third observation of Table 1, a computer computation yields that in factA = {33, 37, 45}.
Theorem 10. Consider sequences based on an irreducible polynomial of degree d and order m over Fq. Set t = (qd−1)/m.
Suppose
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1. t is a prime not equal to 3,

2. t ≡ 3 (mod 4),

3. ordt(q) = 1
2 (t − 1).

Then | A |= 2 or 3.

Proof. By Corollary 1, | C |= 3. Hence | A |≤ 3. Let f be a polynomial of degree d and order m and let α be a root
of f . If the irreducible cyclic code C(α) of length m and dimension d is 1-weight, then by Corollary 3, t | q − 1. Hence
ordt(q) = t−1

2 = 1 =⇒ t = 3 which contradicts the first condition above. Therefore | A |= 2 or 3.

�
The following result can be given using Theorem 10 and Theorem 8 in Aubrey and Langevin (2008).

Corollary 3.4. Suppose t satisfies the conditions given in Theorem 10. If t ≡ 7 (mod 8) then | A |= 3.

4. Conclusion

The main purpose here was to give an accurate bound for the cardinality of the set of zeros of homogeneous linear
recurring sequences over Fq based on irreducible minimal polynomials of given degree and order. This was achieved
by the cyclotomy bound defined here and it was proved to be the best bound as it is reached in infinitely many cases.
Besides determining a lower bound for sequences over F2, the exact number of zeros were given for Kasami Welch and
the quadratic residue cases based on results on weights of irreducible cyclic codes. The work here was restricted to
analyzing the conditions for the existence ofA = 2 and 3. This will be extended to an investigation of higher cardinality
in the future.
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