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Abstract

The integral transform technique is used to discuss the existence as well as numerical solutions for the following fractional
differential equation,

Dqx(t) = f (t, x(t)) + p(t, x(t)), n − 1 < q < n, n = [q] + 1,

x(0) = x0 ∈ R.

where t ∈ J = [0,T ] and Dq denotes the fractional Caputo derivative of order q. f , p : J × R → R is continuous
function.The numerical solution via sequence of successive approximations is obtained using iteration method.
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1. Introduction

Researchers and mathematicians are attracted towards the fractional differential equations because many applications in a
variety of Science, Engineering, Economics, Applied Mathematics and Bio-Engineering disciplines attracted the attention
of many researchers and mathematicians. We will investigate the conditions applied to the generalized hybrid fixed point
theorem for simplicity.As everyone is interested in getting better interpretations of their results by incorporating more
and more information by utilizing different mathematical tools, one of them is the use of fractional order derivatives. On
comparing fractional order differential equations (FDEs) with ordinary differential equations, then we get fractional order
differential equations are more informative and have a better approach. Hybrid coupled boundary value fractional differ-
ential equations have also studied by several mathematicians. Such type of equations involving the fractional derivative
of an unknown hybrid with the nonlinearity depending on it.

In this direction every interested researcher can prepare a good research paper and monographs such as (Bashir, A. &
Sotiris, K. N., 2014; Bashir, A. & Sotiris, K. N., 2014; Bashir, A. & Ahmed, A., 2010; Sangita C. & Varsha, D.-G.,
2014; Dhage, B. C., 2005; Bapurao, C. D. & Shyam B. D., 2015; Ahmed, E.- S. & Hind, H., 2013; Kazen, G. & Yousef,
G., 2013; Yousef G., 2014; Yousef, G., 2014; Lebedev, L. P., et al., 2002; Kilbas, A. A., et al., 2006; Petras, I., 2011;
Podlubny, I., 1999; Lakshmikantham, V., et al., 2009; Miller, K. S. & Ross, B., 1993) and references given. The work
which is presented in this paper is inspired from masterwork of Igor Podlubny in (Podlubny, I., 1999) and the references
(Bashir, A. & Sotiris, K. N., 2014), (Sangita C. & Varsha, D.-G., 2014), (Bapurao, C. D. & Shyam B. D., 2015) and
(Bhausaheb, R. S. & Govind, P. K., 2016). The authors in (Bapurao, C. D. & Shyam, B. D. 2015) based on the iteration
technique studied the approximating solution of

d
dt

[
x(t)

f (t,x(t))

]
+ λ

[
x(t)

f (t,x(t))

]
= g(t, x(t)), t ∈ J = [0,T ],

x(0) = x(T ).

For the following multi-order fractional boundary value problem

L(D)u(t) = f (t, u(t)), t ∈ [0,T ],T > 0,
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L(D) = λn
cDαn + λn−1

cDαn−1 + ...... + λ1
cDα1 + λ0

cDα0 ,

λi ∈ R, λn , 0, 0 ≤ α0 < α1 < .... < αn−1 < αn < 1,

where cDα denotes the Caputo fractional derivative of order α.
As well as the authors in (Bashir, A. & Sotiris, K. N., 2014), got the existence of at least one-solution for the following
coupled system equipped to the Hadamard type fractional derivatives.

Dαu(t) = f (t, u(t), v(t)), 1 < t < e, 1 < α ≤ 2.

Dβv(t) = g(t, u(t), v(t)), 1 < t < e, 1 < β ≤ 2.

u(1) = 0, u(e) = Iγu(σ1) = 1
Γ(γ)

∫ σ1

0 (logσ1
s )γ−1 u(s)

s ds.

v(1) = 0, v(e) = Iγv(σ2) = 1
Γ(γ)

∫ σ2

0 (logσ2
s )γ−1 v(s)

s ds.

where γ > 0, 1 < σ1 < e, 1 < σ2 < e, D(.) is Hadamard fractional derivative of fractional order and Iγ is the Hadamard
fractional integral of order γ and f , g : [1, e] × R × R→ R are continuous functions.
Inspired by papers given above,and considering the fractional coupled hybrid system:

λ1D
α
0+

(
u(t)

f (t, u(t))

)
− λ2

(
u(t)

f (t, u(t))

)
= g1(t, u(t), v(t)) + p1(t, u(t), v(t)),

n < α < n + 1.

µ1D
β
0+

(
v(t)

f (t, v(t))

)
− µ2

(
v(t)

f (t, v(t))

)
= g2(t, u(t), v(t)) + p2(t, u(t), v(t)),

n < β < n + 1.

(1)

u(0) = u(T ), v(0) = v(T )

0 < λ2 < λ1 < ∞, 0 < µ2 < µ1 < ∞, n ∈ N,T ∈ R+.

where t ∈ J = [0,T ] and Dα
0+ represents the Caputo derivative of order α > 0.

To prove the existence results, we are going to use the following famous fixed point theorem
To begin the proof, we consider the following conditions be satisfied throughout this paper:
(C1) f , p ∈ Cn(J × R,R+) with sup f (t, u(t)) = ρ1, supp(t, u(t)) = ρ2,

(t, u) ∈ J × R, ρ1, ρ2 ∈ R+.

(C2)g1, g2 ∈ C(J × R × R,R+) and sup{g1(t, u, v) + p1(t, u, v)} = θ1,

sup{g2(t, u, v) + p2(t, u, v)} = θ2,

for all (t, u, v) ∈ J × R × R, θ1, θ2 ∈ R+.
(C3) [Positivity of L1, L2 defined by (14), (31)]

f (0, u(0)) − f (T, u(T ))Eα,1( λ2
λ1

Tα) > 0

and

f (0, v(0)) − f (T, v(T ))Eβ,1( µ2
µ1

T β) > 0
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where E.,.(t) denotes the two parameter Mittag-Leffler function is defined by the remark (2.3).

(C4)
[

u(t)
f (t,u(t))

](k)

t=0
= Mk,

[
v(t)

f (t,v(t))

](k)

t=0
= Nl, k, l = 1, 2, 3, ...., n,

Mk,Nl ∈ R+

2. Technical Background

In this section, we use some basic definitions and notations which are given in (Kilbas, A. A., et al., 2006), (Podlubny, I.,
1999) with details and present technical preperations needed for further discussion.

Definition 2.1 The Riemann -Liouville fractional integral of order α > 0 of a function u(t) : (0,∞) → R is defined as
below

Iα0+u(t) =
1
Γ(α)

∫ t

0
(t − τ)α−1u(τ)dτ, (2)

provided that the right hand side is pointwise defined on (0,∞)

Definition 2.2 The Caputo fractional derivative of order α > 0 for a function u(t) : (0,∞)→ R is given by

Dα
0+u(t) =

1
Γ(n − α)

∫ t

0
(t − τ)n−α−1un(τ)dτ, (3)

provided that the right hand side is pointwise defined on (0,∞) and n = [α] + 1.

Definition 2.3 Laplace transform of integrable function u(t) is defined by

L[u(t); s] =
∫ ∞

0
e−stu(t)dt, s ∈ R. (4)

Remark 2. 1: The Laplace transform of convolution of two integrable function f , g is given by

L[ f (t); s]L[g(t); s] = L[( f ∗ g)(t); s] = L[
∫ t

0
f (t − τ)g(τ)dτ; s] (5)

Remark 2. 2: The Laplace transform of fractional Caputo derivative is as below

L[Dα
0+u(t); s] = sαL[u(t); s] −

n∑
k=0

sα−k−1u(k)(0), n < α < n + 1. (6)

Definition 2.4 The one - parameter generalization of exponential function ez is called to be Mittag - Leffler function and
defined by

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
, z ∈ C, α > 0. (7)

Remark 2. 3 The two-parameter generalization of Mittag Leffler function is defined as

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, z ∈ C, α > 0β > 0. (8)

Lemma 2.1The generalized Mittag - Leffler function Eα,β(z) defined by equation (8) has the following properties:

(I) dk

dzk (zβ−1Eα,β(λzα)) = zβ−k−1Eα,β−k(λzα), λ, z ∈ C, k = 1, 2, 3, .......

(II)L[zαk+β−1E(k)
α,β(±λzα); s] = k!sα−β

(sα∓λ)k+1 ,Re(s) >| λ | 1α

Lemma 2.2 Assume that h1(t), h2(t) ∈ C(J,R) and condition (C1) be satisfied. Then u(t) is the solution of fractional
boundary value problem

λ1D
α
0+

(
u(t)

f (t, u(t))

)
− λ2

(
u(t)

f (t, u(t))

)
= h1(t) + h2(t),

n < α < n + 1, t ∈ ℑ
u(0) = u(T ), n ∈ N, 0 < λ2 < λ1 < ∞

(9)
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if and only if u(t) be a solution of the Volterra type integral equation

u(t) = Hλ1,λ2(t, u(t)) +
∫ T

0
Gλ1,λ2(t, s) {h1(s) + h2(s)} ds (10)

where

Gλ1,λ2 (t, s) =
f (t, u(t))
λ1

G1(λ1,λ2)(t, s); 0 ≤ s ≤ t ≤ T,
G2(λ1,λ2)(t, s); 0 ≤ t ≤ s ≤ T,

(11)

such that

G1(λ1,λ2)(t, s) = (t − s)α−1Eα,α

(
λ2

λ1
(t − s)α

)
+ L1Eα,1(

λ2

λ1
tα)(T − s)α−1Eα,α

(
λ2

λ1
(T − s)α

)
(12)

and

G2(λ1,λ2)(t, s) = L1Eα,1(
λ2

λ1
tα)(T − s)α−1Eα,α

(
λ2

λ1
(T − s)α

)
(13)

such that
L1 =

f (T, u(T ))

f (0, u(0)) − f (T, u(T ))Eα,1( λ2
λ1

Tα)
(14)

also

Hλ1,λ2 (t, u(t)) = f (t, u(t)){
n∑

k=1

[
u(t)

f (t, u(t))

](k)

t=0
{tkEα,k+1(

λ2

λ1
tα)

+L1T kEα,1(
λ2

λ1
tα)Eα,k+1(

λ2

λ1
Tα)}}.

(15)

Proof: Considering lemma (2.2) we have

λ1D
α
0+

(
u(t)

f (t,u(t))

)
− λ2

(
u(t)

f (t,u(t))

)
= h1(t) + h2(t)

by using equation (6),Laplace transform of this multi-term fractional differential equation becomes

λ1sαL
[

u(t)
f (t,u(t)) ; s

]
− λ1

∑n
k=0 sα−k−1

[
u(t)

f (t,u(t))

](k)

t=0
− λ2L

[
u(t)

f (t,u(t)) ; s
]

= L[h1(t); s] + L[h2(t); s].

so we have

{λ1sα − λ2}L
[

u(t)
f (t,u(t)) ; s

]
− λ1

∑n
k=0 sα−k−1

[
u(t)

f (t,u(t))

](k)

t=0
= L[h1(t); s] + L[h2(t); s]

Similarlly,

L

[
u(t)

f (t, u(t))
; s

]
=

L[h1(t); s]
λ1sα − λ2

+
L[h2(t); s]
λ1sα − λ2

+λ1

n∑
k=1

[
u(t)

f (t, u(t))

](k)

t=0

sα−k−1

λ1sα − λ2

+λ1
u(0)

f (0, u(0))
sα−1

λ1sα − λ2

(16)

Using Lemma (2.3) we conclude that

u(t) = f (t, u(t)){ 1
λ1
L−1

[
L[h1(t); s] 1

sα− λ2
λ1

; t
]

+ 1
λ1
L−1

[
L[h2(t); s] 1

sα− λ2
λ1

; t
]
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+
∑n

k=1

[
u(t)

f (t,u(t))

](k)

t=0
tkEα,k+1( λ2

λ1
tα)

+
u(0)

f (0,u(0)) Eα,1( λ2
λ1

tα)}.

Now by Laplace transform of convolution, we have

u(t) = f (t, u(t)){ 1
λ1

∫ t

0
(t − s)α−1Eα,α

(
λ2

λ1
(t − s)α

)
h1(s)ds

+
1
λ1

∫ t

0
(t − s)α−1Eα,α

(
λ2

λ1
(t − s)α

)
h2(s)ds

+

n∑
k=1

[
u(t)

f (t, u(t))

](k)

t=0
tkEα,k+1(

λ2

λ1
tα) +

u(0)
f (0, u(0))

Eα,1(
λ2

λ1
tα)}.

(17)

Now applying the boundary condition u(0) = u(T ), we can observe the final result of u(t) as follows

u(t) = f (t, u(t)){ 1
λ1

∫ t
0 (t − s)α−1Eα,α

(
λ2
λ1

(t − s)α
)

h1(s)ds

+ 1
λ1

∫ t
0 (t − s)α−1Eα,α

(
λ2
λ1

(t − s)α
)

h2(s)ds

+
∑n

k=1

[
u(t)

f (t,u(t))

](k)

t=0
tkEα,k+1( λ2

λ1
tα)

+L1{ 1
λ1

∫ T
0 (T − s)α−1Eα,α

(
λ2
λ1

(T − s)α
)

h1(s)ds

+ 1
λ1

∫ T
0 (T − s)α−1Eα,α

(
λ2
λ1

(T − s)α
)

h2(s)ds

+
∑n

k=1

[
u(t)

f (t,u(t))

](k)

t=0
T kEα,k+1( λ2

λ1
Tα)}Eα,1( λ2

λ1
tα)}

= Hλ1,λ2 (t, u(t)) +
∫ T

0 Gλ1,λ2 (t, s){h1(s) + h2(s)}ds.

Lemma 2.3 The Green’s function Gλ1,λ2 (t, s) and Hλ1,λ2 (t, u(t)) defined by equations (11) - (13) and (15) respectively, have
the following properties:

(B1)Gλ1,λ2 (t, s) ∈ C(J × J,R+),Hλ1,λ2 (t) ∈ C(J,R+).

(B2)Gλ1,λ2 (t, s) ≤ ρTα−1

λ1

{
Eα,1( λ2

λ1
Tα)[1 + L1Eα,1( λ2

λ1
Tα)]

}
,

where t, s ∈ J and ρ = sup{ρ1, ρ2} for (t, u) ∈ J × R.

ρ1 = sup f (t, u(t)) and ρ2 = sup p(t, u(t))

(B3)Hλ1,λ2 (t, u(t)) ≤ ρ∑n
k=1 T k MkEα,1( λ2

λ1
Tα)

[
1 + L1Eα,1( λ2

λ1
Tα)

]
,

where t ∈ J and ρ = sup{ρ1, ρ2} for (t, u) ∈ J × R.

Proof: By using conditions (C3), (C4) and Eα,α(z) < Eα,1(z) for α ∈ (n, n + 1), n ∈ N and z ∈ J and simple calculations,
desired proof will be completed. Hence we omit it.
Now by introducing an additional principle condition as follows
(C5) There exist positive constants L1,u, L2,u withL1,u ≤ L2,u such that

| f (t, u1(t)) − f (t, u2(t)) |≤ L1,u | u1(t) − u2(t) |
4min{1 + ξ1, 1 + η1}(L2,u+ | u1(t) − u2(t) |)

and | p(t, u1(t)) − p(t, u2(t)) |≤ L1,u | u1(t) − u2(t) |
4min{1 + ξ1, 1 + η1}(L2,u+ | u1(t) − u2(t) |)

(18)
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where t ∈ J and

ξ1 =

n∑
k=1

T k MkEα,1(
λ2

λ1
Tα)

[
1 + L1Eα,1(

λ2

λ1
Tα)

]

η1 =
θ1Tα−1

λ1

{
Eα,1(

λ2

λ1
Tα)[1 + L1Eα,1(

λ2

λ1
Tα)]

}
.

(19)

In this step we introduce the classic Banach space for coupled system (1). Assume that E = {u(t)|u(t) ≥ 0, u ∈ C(J,R)}.If
we equip E to the max-norm

∥u∥E = sup{u(t)|t ∈ J},

then we can simply verify that (E, ∥.∥E) is a Banach space.
Now we set B = E × E = {(u, v)|u, v ∈ E} endowed with the norm

∥(u, v)∥B = ∥u∥E + ∥v∥E , (u, v) ∈ B.

Obviously(B, ∥.∥B) is also Banach space. Here we remark our desired norm this paper is ∥.∥B.
Let us define S ⊂ B as follows

S =

(u, v) ∈ B|0 ≤ u(t), v(t), t ∈ J, ∥(u, v)∥B ≤ r
(u, v) ∈ E|0 ≤ u(t), v(t), t ∈ J, ∥u∥E + ∥v∥E ≤ r.

(20)

Definition 2.5 Define the Volterra type integral equation T1, T2 : E → E as

T1(t) = Hλ1,λ2 (t, u(t)) + f (t, u(t))
∫ T

0
Gλ1,λ2 (t, s) {g1(s, u(s), v(s)) + p1(s, u(s), v(s))} ds,

T2(t) = Hµ1,µ2 (t, u(t)) + f (t, v(t))
∫ T

0
Gµ1,µ2 (t, s) {g2(s, u(s), v(s)) + p2(s, u(s), v(s))} ds,

(21)

where H.,.(t, s) defined by equation (15) and

G.,.(t, s) =

G1(.,.)(t, s); 0 ≤ s ≤ t ≤ T,
G2(.,.)(t, s); 0 ≤ t ≤ s ≤ T,

(22)

is defined by equations (12) and (13)

Definition 2.6 Let us define the operator T : B→ B as below

T(u, v)(t) = (T1,T2)(t) (23)

using definition (2.5) for T1,T2.

Definition 2.7 [Dhage, B.C.(2005] Let X be a normed vector space. A mapping T : X → X is said D - Lipschitzian,provided
that there exists a continuous and nondecreasing function ψT : R+ → R+ such that for x, y ∈ X

∥Tx − Ty∥ ≤ ψT (∥x − y∥), ψT (0) = 0.

Remark 2. 4 Every Lipschitzian mapping is D-Lipschitzian and if ψT (r) < r, then T is called nonlinear D-contraction on
X with contraction function ψT .
Remark 2. 5 Every nonlinear D-contraction is D-Lipschitzian while the reverse may not hold neccessarily. Definition
2.8 (Lebedev, L.P., etal., 2002) Let X be a normed space and suppose S ⊂ X. A finiteset of N balls B(xn, ϵ) with xn ∈ X
and ϵ > 0 is said to be a finite ϵ- covering of S, provided that every element of S lies inside one of the balls B(xn, ϵ), i.e,

S ⊂ ∪N
n=1 B(xn, ϵ),
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The set of centers {xn} of a finite ϵ - covering is called a finite ϵ - net for S.

Definition 2.9 (Lebedev, L.P., etal., 2002) Let X be a normed space. A set S ⊂ X is said to be a totally bounded if and
only if it has a finite ϵ - covering for every ϵ > 0.

Theorem 2.4 (Hausdroff copactness criterion). (Lebedev, L.P., etal., 2002) Assume that X be a normed space. A set S ⊂ X
is compact if and only if it is closed and totally bounded.

Theorem 2.5 (Dhage fixed point theorem ),(Dhage, B.C., (2005) Assume that S be a nonempty closed convex and bounded
subset of Banach algebra X. Let A,C : X → X and B : S → X be three operators with the following properties:

(I) A,C are D- Lischitzian with D-functions ϕA and ϕC respectively.

(II) B is completely continuous.

(III) x = AxBy +Cx ⇒ x ∈ S , for all y ∈ S .

(IV)MϕA(r) + ϕC(r) < r, for r > 0 where M = ∥B(S )∥.
Then the operator AB +C has a fixed point in S.

3. Main Result

Theorem 3.1 Assume that the conditions (C1) − (C5) be satisfied. Then the fractional order multi-term coupled hybrid
system (1) has at least one positive solution in S defined by equation (20).
Proof: We will prove this in four steps as follows
Step. 1 Developing the main problem in [Ahmed, E.- S., & Hind, H. (2013] and considering the definition (2.5) together
with theorem (2.4), let us define

A1,u(t) = f (t, u(t)),

B1,u(t) =
∫ T

0
Gλ1,λ2 (t, s){g1(s, u(s), v(s)) + p1(s, u(s), v(s))}ds, (24)

C1,u(t) = Hλ1,λ2 u(t),

and

A2,v(t) = f (t, v(t)),

B2,v(t) =
∫ T

0
Gµ1,µ2 (t, s){g2(s, u(s), v(s)) + p2(s, u(s), v(s))}ds, (25)

C2,v(t) = Hµ1,µ2 v(t),

By conditions C1,C5, we have the following

|A1,u1 (t) − A1,u2 (t)| = | f (t, u1(t)) − f (t, u2(t))|

≤ L1 |u1(t)−u2(t)|
4min{1+ξ1,1+η1}(L2+|u1(t)−u2(t)|) , t ∈ J

Now take supremum on t we have

∥A1,u1 − A1,u2∥E ≤
L1,u∥u1 − u2∥

4min{1 + ξ1, 1 + η1}(L2,u + ∥u1 − u2∥)
, u1, u2 ∈ E. (26)

Thus A1,u is nonlinear D- contraction on E with D- function

ψA1,u(r) =
L1,ur

4min{1 + ξ1, 1 + η1}(L2,u + r)
. (27)
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In the same manner applying conditions (C1), (C5) we conclude that C1,u also is nonlinear D- contraction with D- function

ψC1,u(r) =
L1,ur

4{1 + ξ1}(L2,u + r)
(28)

Recall definition of T1 by equation(21) and gathering results represented by the equations (26)-(28), also considering the
remark (2.5), we conclude that not only A1,u,C1,u are nonlinear D-contraction with corresponding D-function ψA1,u and
ψC1,u, respectively but also in the same way A2,v,C2,v are D-contraction with D-function ψA2,v and ψC2,v, such that

ψA2,v (r) =
L1,vr

4min{1 + ξ2, 1 + η2}(L2,v + r)
,

ψC2,v (r) =
L1,vr

4{1 + ξ2, }(L2,v + r)

(29)

such that

ξ2 =

n∑
k=1

T kNkEβ,1(
µ2

µ1
T β)

[
1 + L2Eβ,1(

µ2

µ1
T β)

]

η2 =
θ2T β−1

µ1

{
Eβ,1(

µ2

µ1
T β)[1 + L2Eβ,1(

µ2

µ1
T β)]

}
,

(30)

where
L2 =

f (T, v(T ))
f (0, v(0)) − f (T, v(t))Eβ,1( µ2

µ1
T β)

(31)

Thus if we consider the operator T defined by (23) as

T(u, v)(t) =
(
C1,u
C2,v

)
(t) +

(
A1,u 0

0 A2,v

)
(t)

(
B1,u
B2,v

)
(t) = Cu,v(t) + Au,v(t)Bu,v(t), (32)

setting

∥Au,v∥B =
2∑

i=1

2∑
j=1

sup{Au,v(i, j)(t)|t ∈ J}. (33)

we conclude that ∥Au,v∥B = ∥A1,u∥E + ∥A2,v∥E . Therefore both Au,v,Cu,v are nonlinear D-contractions with corresponding
D- functions

ψAu,v(t) = ψA1,u + ψA2,v, ψCu,v(t) = ψC1,u + ψC2,v (34)

respectively. This is end of step.1.
Step. 2 To prove Bu,v defined by the equations(24),(25) and (32) is completely continuous. To show this we will use the
Hausdroff compactness criterion in theorem (2.4) as follows: Obviously S ⊂ B is a nonempty closed convex and bounded
in B. Let us define

S u = {u ∈ E | ∥u(t)∥ ≤ r
2
, t ∈ J},

S v = {v ∈ E | ∥v(t)∥ ≤ r
2
, t ∈ J}.

(35)

Clearly S u, S v are closed. So both of them are Banach spaces with the norm of E. Also u(t), v(t) are equicontinuous on J.
So by means of Arzela - Ascoli theorem we conclude that S u, S v are compact. Hence Theorem (2.4) ensures that S u, S v

are totally bounded.
Thus definition (2.9) implies that there exist two finite ϵ - coverings as
Uϵ(ui),Uϵ(v j), i = 1, 2, 3, ....l1, j = 1, 2, 3....., l2 such that

S u ⊂
l1∪

i=1

Uϵ(ui),

S v ⊂
l2∪

j=1

Uϵ(v j),

(36)
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where

Uϵ(ui) = {u ∈ S u | ∥u − ui∥E < ϵ},
Uϵ(v j) = {v ∈ S v | ∥v − v j∥E < ϵ},

(37)

Define

S i j = {(u, v) ∈ S u × S v|u ∈ Uϵ(ui), v ∈ Uϵ(v j)},

And this gives S ⊂ S u × S v ⊂
∪

i, j S i j, 1 ≤ i ≤ l1, 1 ≤ j ≤ l2
In fact if we take (ui j, vi j) ∈ S i j then S u × S v can be covered by finite 4ϵ - covering
U4ϵ(ui j, vi j) = {(u, v) ∈ S u × S v | ∥(u, v) − (ui j, vi j)∥B < 4ϵ}
In other means for every (u, v) ∈ S u × S v, there exist indices i,j such that

u ∈ Uϵ(ui), v ∈ Uϵ(v j)

Therefore

|u − ui j| ≤ |u − ui| + |ui − ui j| < ϵ + ϵ = 2ϵ,
|v − vi j| ≤ |v − vi| + |vi − vi j| < ϵ + ϵ = 2ϵ.

(38)

(38) implies that ∥(u, v) − (ui j, vi j)∥B < 4ϵ. So our claim has been proved that S has a finite 4ϵ− covering. Hence using
theorem (2.4) we conclude that S is compact.
Now let us return to equation of Bu,v(t) in (32).According to conditions (C1), (C2) and Lemma (2.3), we know that Bu,v is
continuous on S. Thus Bu,v(S ) is relatively compact and consequently Bu,v is completely continuous on S. This completes
the step 2.
step. 3 To show T1 ≤ r1, T2 ≤ r2 for u, v ∈ E. Using definition (2.5) and Lemma (2.3) also conditions (C1) − (C5), we
have

T1(t) = Hλ1,λ2 (t, u(t)) + f (t, u(t))
∫ T

0
Gλ1,λ2 (t, s){g1(s, u(s), v(s)) + p1(s, u(s), v(s))}ds (39)

≤ ∑n
k=1 ρT k MkEα,1( λ2

λ1
Tα)

[
1 + L1Eα,1( λ2

λ1
Tα)

]
+
ρθ1Tα−1

λ1

{
Eα,1( λ2

λ1
Tα)[1 + L1Eα,1( λ2

λ1
Tα)]

}
= r1

Similarly we can prove that

T2(t) = Hµ1,µ2 (t, v(t)) + f (t, v(t))
∫ T

0
Gµ1,µ2 (t, s){g2(s, u(s), v(s)) + p2(s, u(s), v(s))}ds (40)

≤ ∑n
k=1 ρT kNkEβ,1( µ2

µ1
T β)

[
1 + L2Eβ,1( µ2

µ1
T β)

]
+
ρθ2T β−1

µ1

{
Eβ,1( µ2

µ1
T β)[1 + L2Eβ,1( µ2

µ1
T β)]

}
,

= r2
So considering (39) and (40) we conclude that

∥T1∥E ≤ r1, ∥T2∥E ≤ r2, u, v ∈ E. (41)

Finally
∥T(u, v)∥B = ∥T1∥E + ∥T2∥E ≤ r = 2max{r1, r2}, (u, v) ∈ B. (42)

Hence we have been proved that T(S ) ⊂ S .
In other words if we consider

x1 = C1,x1 + A1,x1 B1,y1 ,

x2 = C2,x2 + A2,x2 B2,y2 ,
(43)
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then (42) ensures that (x1, x2) ∈ S for all (y1, y2) ∈ S , the step 3. completed.
step. 4 First of all by means of equations (19), (30) and definition (2.5), it is clear that

∥B1,u∥E ≤ η1, ∥B2,V∥E ≤ η2. (44)

Hence ∥Bu,v∥B ≤ ∧ = 2max{η1, η2}
Therefore according to obtained results in step. 1. containing (27)-(34), we deduce that T(u, v) is nonlinear D -contraction
with corresponding D-function

ϕCu,v + ∧ϕAu,v

This completes the step. 4.
Since all conditions of theorem (2.4) are satisfied, then operator T defined by (23) or equivalently by (32) has a fixed point
in S. In other means the fractional order coupled system (1) has one positive solution S.The proof is complete.

Example 3.2 Consider the fractional order coupled system

5D
5
4
0+

(
u(t)

f (t, u(t))

)
− 4u(t)

f (t, u(t))
= g1(t, u(t), v(t)) + p1(t, u(t), v(t))

6D
12
7

0+

(
v(t)

f (t, v(t))

)
− v(t)

f (t, v(t))
= g1(t, u(t), v(t)) + p1(t, u(t), v(t))

u(0) = u(1), v(0) = v(1),

(45)

where

f (t, u(t)) = 2−u(t)
500(2−exp(4t+1))

f (t, v(t)) = 2−v(t)
550(2−exp(4t+1))

g1(t, u(t), v(t)) = cosec(u) + v2; (u, v) ∈ [0, 5] × [0, 1]

= 2cosec(u) + v2 − 1; (u, v) ∈ [0, 5] × [1, 3]

= cosec(u) + v2 + 1; (u, v) ∈ [0, 5] × [3, 5]

p1(t, u(t), v(t)) = u4 + sinv; (u, v) ∈ [0, 1] × [0, 5]

= u4 + 2sinv − 1; (u, v) ∈ [1, 3] × [0, 5]

= u4 + sinv + 1; (u, v) ∈ [3, 5] × [0, 5]

g2(t, u(t), v(t)) = sec2(v) + u; (u, v) ∈ [0, 1] × [0, 5]

= sec2(v) + 2u − 1; (u, v) ∈ [1,
√

3] × [0, 5]

= sec2(v) + u +
√

3 − 1; (u, v) ∈ [
√

3, 5] × [0, 5]

p2(t, u(t), v(t)) = cos4(u) + v; (u, v) ∈ [0, 5] × [0, 1]

= cos4(u) + 2v − 1; (u, v) ∈ [0, 5] × [1,
√

3]

= cos4(u) + v +
√

3 − 1; (u, v) ∈ [0, 5] × [
√

3, 5]

Calculations shows that for t ∈ J
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| f (t, u1) − f (t, u2) |≤ |u1−u2 |
500(2−e)

| f (t, v1) − f (t, v2) |≤ |v1−v2 |
550(2−e)

θ1 = 8, θ2 = 5 +
√

3

M1 = 5,N1 = 4,

f (0, u(0)) = 4, f (0, v(0)) = 3.70

f (1, u(1)) = f (1, v(1)) = 2

Hence

| f (t, u1) − f (t, u2) |≤ |u1(t)−u2(t)|
4min{1+ξ1,1+η1}(2+|u1(t)−u2(t)|)

| f (t, v1) − f (t, v2) |≤ |v1(t)−v2(t)|
4min{1+ξ2,1+η2}(2+|v1(t)−v2(t)|)

Hence conditions(C1) − (C5) are satisfied, therefore according to theorem (3.1), fractional coupled system (45) has one
positive solution in S.

4. Conclusion

The integral transform technique applied to the given fractional differential equation and solution obtained using these
techniques with the help of approximations.

5. Further Scope

The fractional differential equation solved by various techniques, here the integral transform technique used which will
be very helpful for such type of non-integer order fractional differential equations and gives the approximate result for the
fractional differential equation.
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