Absolute Valued Algebras with Strongly One Sided Unit

Alassane Diouf ${ }^{1}$
${ }^{1}$ Département de Mathématiques et Informatiques, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
Correspondence: Alassane Diouf, Département de Mathématiques et Informatiques, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal. E-mail: dioufalassane@hotmail.fr

Received: October 30, 2016 Accepted: December 5, 2016 Online Published: December 30, 2016
doi:10.5539/jmr.v9n1p32 URL: http://dx.doi.org/10.5539/jmr.v9n1p32

Abstract

We classify the absolute valued algebras with strongly left unit of dimension ≤ 4. Also we prove that every 8 -dimensional absolute valued algebra with strongly left unit contain a 4-dimensional subalgebra, next we determine the form of theirs algebras by the duplication process.

Keywords: absolute valued algebra, strongly left unit, duplication process
Mathematics Subject Classification: 17A35, 17A36

1. Introduction

The absolute valued algebras are introduced by Ostrowski 1918. It's the normed algebra A such that $\|x y\|=\|x\|\|y\|$ for all x, y in A. For an element a in an algebra A, we denote by $L_{a}: A \rightarrow A x \mapsto a x$ and $R_{a}: A \rightarrow A x \mapsto x a$. The algebra is called division if and only if R_{a} and L_{a} are bijective for all a in A. We denote by O the orthogonal group of linear isometries of Euclidean space \mathbb{H}. We recall O^{+}the subgroup of proper linear isometries and O^{-}the subset of improper linear isometries. Let A be an absolute valued algebra with unit, then A is isomorphic to $\mathbb{R}, \mathbb{C}, \mathbb{H}$ or \mathbb{O} (Urbanik \& Wright, 1960). The absolute valued algebras with left unit satisfying to $\left(x^{2}, x^{2}, x^{2}\right)=0$, for all $x \in A$ is classified in (Diankha \& all, 2013_{2}). These algebras are finite dimensional and isomorphic to $\mathbb{R}, \mathbb{C},{ }^{\star} \mathbb{C}, \mathbb{H},{ }^{\star} \mathbb{H},{ }^{\star} \mathbb{H}(i, 1), \mathbb{O},{ }^{\star} \mathbb{O},{ }^{\star} \mathbb{O}(i, 1), \widetilde{\mathbb{O}}$ or $\widetilde{\mathbb{O}}(i)$ and the element e satisfy to $L_{e}=R_{e}^{2}=I_{A}$. The algebras $\mathbb{H}_{i}, \mathbb{O}_{i}(\text { Diankha \& all, 2013 })_{1}$), satisfy to $L_{e}=R_{e}^{2}=I_{A}$ and not satisfy to $\left(x^{2}, x^{2}, x^{2}\right)=0$. In this paper we give a classification of the absolute valued algebras with strongly left unit of dimension ≤ 4. We proves that if A is 8 -dimensional absolute valued algebra with strongly left unit, then A contain a 4-dimensional subalgebra and A is obtained by the duplication process. Otherwise A is of the form $\mathbb{H} \times \mathbb{H}_{(\varphi, \psi)}$ with $\varphi, \psi: \mathbb{H} \rightarrow \mathbb{H}$ are linear isometries such that $\varphi(1)=1$ and $(\varphi, \psi)^{2}=(\varphi, \psi)$. The algebras $\mathbb{R}, \mathbb{C}, \star \mathbb{C}, \mathbb{H}, \star \mathbb{H}, \mathbb{H}_{i},{ }^{\star} \mathbb{H}(i, 1)$, $\mathbb{O}, \star \mathbb{O}, \mathbb{O}_{i},{ }^{\star} \mathbb{O}(i, 1), \widetilde{\mathbb{O}}$ are absolute valued algebras with strongly left unit. This list is completed by new algebras.

2. Preliminary

In this section we recall the some interest results:
Theorem 1 The finite-dimensional absolute valued real algebras with a left unit are precisely those of the form \mathbb{A}_{φ}, where $\mathbb{A} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$ and φ is an isometric of the euclidien espace \mathbb{A} fixes 1 , and \mathbb{A}_{φ} denotes the absolute-valued real algebra obtained by endowing the normed space of \mathbb{A} with the product $x \odot y:=\varphi(x) y$. Moreover, given linear isometries $\varphi, \phi: \mathbb{A} \rightarrow \mathbb{A}$ fixing 1 , the algebras \mathbb{A}_{φ} and \mathbb{A}_{ϕ} are isomorphic if and only if there exists an algebra automorphism ψ of \mathbb{A} satisfying $\phi=\psi \circ \varphi \circ \psi^{-1}$ (Rochdi, 2003).
Lemma 1 Let A be an absolute valued algebra with strongly left unit. The following equalities hold for all $x \in A$.

1. $[(x e) x] e=x(x e)$
2. $[x(x e)] e=(x e) x$
3. $[x e, x]=<e, x>[e, x-x e]$

If, moreover, x is orthogonal to e, then
4. $[x e, x]=0$
5. $(x e) x^{2}=2<e, x^{2}>x-\|x\|^{2} x e$
6. $(x e)^{2}=2<e, x^{2}>e-x^{2}$
7. $x^{2} x=-\|x\|^{2} x e$ (Chandid \& Rochdi, 2008).

The group G_{2} acts transitively on the sphere $S(\operatorname{Im}(\mathbb{O})):=S^{6}$, that is the mapping $G_{2} \rightarrow S^{6} \Phi \mapsto \Phi(i)$ is surjective (Postnikov, 1985).

Let \mathbb{A} be one of the unital absolute valued algebras $\mathbb{R}, \mathbb{C}, \mathbb{H}$ of dimension m. Consider the caley dickson product \odot in $\mathbb{A} \times \mathbb{A}$, we define on the space $\mathbb{A} \times \mathbb{A}$ the product

$$
(x, y) \star\left(x^{\prime}, y^{\prime}\right)=\left(f_{1}(x), f(x)\right) \odot\left(g_{1}\left(x^{\prime}\right), g\left(y^{\prime}\right)\right)
$$

With f_{1}, g_{1}, f, g be linear isometries of \mathbb{A} and $f_{1}(1)=g_{1}(1)=1$. We obtain a $2 m$-dimensional absolute valued real algebra $\mathbb{A} \times \mathbb{A}_{\left(f_{1}, f\right),\left(g_{1}, g\right)}$. The process is called duplication process. Note that the algebra is left unit if $g_{1}=g=I_{\mathbb{A}}$ and this case we not the algebra by $\mathbb{A} \times \mathbb{A}_{\left(f_{1}, f\right)}$. We have the following result (Calderon \& all, 2011):
Theorem 2 Let A be an 8-dimensional absolute valued algebra, then the following are equivalent:

1. A contains a 4-dimensional subalgebra.
2. A is obtained by the duplication process.
3. Aut (A) contains a reflexion.

Lemma 2 Let $\mathcal{I}^{+}=\left\{f \in O^{+}: f\right.$ involutive $\}, \mathcal{I}^{-}=\left\{f \in O^{-}: f\right.$ involutive $\}, \mathcal{I}_{1}^{+}=\left\{f \in \mathcal{I}^{+}: f(1)=1\right\}$ and $\mathcal{I}_{1}^{-}=\left\{f \in \mathcal{I}^{-}\right.$: $f(1)=1\}$. We have:

1. $O^{+}=\left\{T_{a, b}: a, b \in S(\mathbb{H})\right\}$
2. $O^{-}=\left\{T_{a, b} \circ \sigma_{\mathbb{H}}: a, b \in S(\mathbb{H})\right\}:=O^{+} \circ \sigma_{\mathbb{H}}$
3. $O_{1}^{+}=\left\{T_{a, \bar{a}}: a \in S(\mathbb{H})\right\}$
4. $O_{1}^{-}=\left\{T_{a, \bar{a}} \circ \sigma_{\mathbb{H}}: a \in S(\mathbb{H})\right\}:=O_{1}^{+} \circ \sigma_{\mathbb{H}}$
5. $\mathcal{I}^{+}=\left\{ \pm I_{\mathbb{H}}\right\} \cup\left\{T_{a, b}: a, b \in S(\operatorname{Im}(\mathbb{H}))\right\}$
6. $\mathcal{I}^{-}=\left\{ \pm T_{a, \bar{a}}: a \in S(\mathbb{H})\right\}$
7. $\mathcal{I}_{1}^{+}=\left\{I_{\mathbb{H}}\right\} \cup\left\{T_{a, \bar{a}}: a \in S(\operatorname{Im}(\mathbb{H}))\right\}$
8. $\mathcal{I}_{1}^{-}=\left\{\sigma_{\mathbb{H}}\right\} \cup\left\{T_{a, \bar{a}} \circ \sigma_{\mathbb{H}}: a \in S(\operatorname{Im}(\mathbb{H}))\right\}:=\mathcal{I}_{1}^{+} \circ \sigma_{\mathbb{H}}($ Diankha \mathcal{E} all, 2013 2$)$.

Corollary 1 Let A be an absolute valued algebra with left unit satisfying to $\left(x^{p}, x^{q}, x^{r}\right)=0$ with $\{p, q, r\} \in\{1,2\}$. Then A contains a strongly left unit.
Proof. Lemma 1 (Diankha \& all, $\mathbf{2 0 1 3}_{2}$) and proof of Proposition 4.8 (Chandid \& Rochdi, 2008)..
The converse of Corollary 1 is false, an effect the algebra $A:=\mathbb{O}_{i}$ is an absolute valued algebra with strongly left unit and A not satisfy to $\left(x^{2}, x^{2}, x^{2}\right)=0$.

3. Absolute Valued Algebras with Strongly Left Unit

Definition 1 An element $e \in A$ is called strongly left unit, if it's left unit and square root of right unit $\left(L_{e}=R_{e}^{2}=I_{A}\right)$.
Theorem 3 Let A be an absolute valued algebra with strongly left unit. Then A is finite dimensional. Moreover if $\operatorname{dim}(A) \leq 4$, then A is isomorphic to $\mathbb{R}, \mathbb{C},{ }^{\star} \mathbb{C}, \mathbb{H},{ }^{\star} \mathbb{H}, \mathbb{H}(i, 1)$ or ${ }^{\star} \mathbb{H}(i, 1)$.
Proof. The algebra A is left unit, hence A is left division (Rodriguez, 2004). Morover the assertion $R_{e}^{2}=I_{A}$ imply that A is right division, then A is finite dimensional. Also A is of the form \mathbb{A}_{φ}, with φ a linear isometric fixed 1 and $\mathbb{A} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$ (Theorem 1). If $\operatorname{dim}(A) \leq 2$, it's clear that A is isomorphic to \mathbb{R}, \mathbb{C} or ${ }^{\star} \mathbb{C}$.
Assume now $\operatorname{dim}(A) \geq 4$, then the assertion $R_{e}^{2}=I_{A}$ imply:

$$
\begin{aligned}
x & =(x \odot 1) \odot 1 \\
& =\varphi^{2}(x) .
\end{aligned}
$$

Then φ is an involutive linear isometric $\varphi^{2}=I_{\mathbb{A}}$.
If $\operatorname{dim}(A)=4$, we have:
$\varphi \in \mathcal{I}_{1}^{+} \cup \mathcal{I}_{1}^{-}=\left\{I_{\mathbb{H}}\right\} \cup\left\{T_{a, \bar{a}}: a \in S(\operatorname{Im}(\mathbb{H}))\right\} \cup\left\{\sigma_{\mathbb{H}}\right\} \cup\left\{T_{a, \bar{a}} \circ \sigma_{\mathbb{H}}: a \in S(\operatorname{Im}(\mathbb{H}))\right\}($ Lemma 2).

- If $\varphi=I_{\mathbb{H}}$, then A is isomorphic to \mathbb{H}.
- If $\varphi=\sigma_{\mathbb{H}}$, then A is isomorphic to ${ }^{\star} \mathbb{H}$.
- If $\varphi=T_{a, \bar{a}}: a \in S(\operatorname{Im}(\mathbb{H}))$, there exist $v \in S(\mathbb{H})$ such that $v a \bar{v}=i$ and let the automorphism $\Phi=T_{v, \bar{v}}$ of \mathbb{H} with $\Phi^{-1}=T_{\overline{\bar{v}}, v}$, we have $\Phi \circ T_{a, \bar{a}} \circ \Phi^{-1}=T_{i, \bar{i}}$. Then A is isomorphic to $\mathbb{H}_{T_{i, \bar{i}}}$ (Theorem 1) and the map $\Phi: \mathbb{H}(i, 1) \rightarrow \mathbb{H}_{T_{i, \bar{i}}}$ $x \mapsto x i$ is an isomorphism algebras.
- If $\varphi=T_{a, \bar{a}} \circ \sigma_{\mathbb{H}}: a \in S(\operatorname{Im}(\mathbb{H}))$, there exist $u \in S(\mathbb{H})$ such that $u a \bar{u}=i$ and let the automorphism $\Phi=T_{u, \bar{u}}$ of \mathbb{H}, we have:

$$
\begin{aligned}
\Phi \circ T_{a, \bar{a}} \circ \sigma_{\mathbb{H}} \circ \Phi^{-1} & =T_{u, \bar{u}} \circ T_{a, \bar{a}} \circ \sigma_{\mathbb{H}} \circ T_{\bar{u}, u} \\
& =T_{u, \bar{u}} \circ T_{a, \bar{a}} \circ T_{\bar{u}, u} \circ \sigma_{\mathbb{H}} \\
& =T_{u a \bar{u}, u \overline{a u}} \circ \sigma_{\mathbb{H}} \\
& =T_{i, \bar{i}} \circ \sigma_{\mathbb{H}} .
\end{aligned}
$$

Then A is isomorphic to $\mathbb{H}_{T_{i, \bar{\circ}} \sigma_{\mathbb{H}}}$ (Theorem 1) and the map $\Phi:^{\star} \mathbb{H}(i, 1) \rightarrow \mathbb{H}_{T_{i, i} \circ \sigma_{\mathbb{H}}} x \mapsto \bar{i} x$ is an isomorphism of algebras.. If $\operatorname{dim}(A)=4$, the last result can be obtained so by using the identity $R_{e}^{2}=I_{\mathbb{H}}$ and the principal isotopes of $\mathbb{H}: \mathbb{H}(a, 1)$, ${ }^{\star} \mathbb{H}(a, 1)$, where $a \in S(\mathbb{H})$. For the first isotope $e=\bar{a}$, and for the second isotope $e=a$.

For all alternative algebra A, Artin's theorem (Schafer, 1996) shows that for any $x, y \in A$, the set $\{x, y, \bar{x}, \bar{y}\}$ is contained in an associative subalgebra of A. We note by $T(x)=x+\bar{x}$ the tace of $x \in A$ and we have $x^{2}-T(x) x+\|x\|^{2} e=0$ for all $x \in A$. As A is real alternative quadratic algebra, we have $A=\mathbb{R} e \oplus \operatorname{Im}(A)$ (Frobenius decomposition) and their exist a unique linear form $\lambda: A \rightarrow \mathbb{R}$ such that $\lambda(1)=1, \operatorname{ker}(\lambda)=\operatorname{Im}(A)$ and $<x, y>=\lambda(x \bar{y})=\lambda(\bar{x} y)$ for all $x, y \in A$ (*) (Koecher \& Remmert, 1991). Otherwise for all $x, y \in \operatorname{Im}(A)$ we have $x y+y x=-2<x, y>e(\star)$ and the identity $x y x=2 \lambda(x y) x-\|x\|^{2} \bar{y}$ for all $x, y \in \operatorname{Im}(A)$ is called the triple product identity (TPI).
In 8 -dimensional, by the duplication process we recover theirs algebras.
Theorem 4 Let A be an 8-dimensional absolute valued algebra with strongly left unit. Then A contains a four-dimensional subalgeba.
Proof. We have $\mathbb{O}=\mathbb{R} \oplus \operatorname{Im}(\mathbb{O})$ and their exist a unique linear form $\lambda: \mathbb{O} \rightarrow \mathbb{R}$ such that $\lambda(1)=1$ and $\operatorname{ker}(\lambda)=\operatorname{Im}(\mathbb{O})$. Let $u \in 1^{\perp}$, we have $0=<1, u>=<\Phi^{n}(1), \Phi^{n}(u)>=<1, \Phi^{n}(u)>$. Then we have $\varphi^{n}\left(1^{\perp}\right) \subseteq 1^{\perp}$, for all $n \in \mathbb{N}$. The algebra A is of the form \mathbb{O}_{Φ} with $\Phi(1)=1$ and $\Phi^{2}=I_{\mathbb{O}}$ (Theorem 1 and Theorem 3). Otherwise we have $i \odot i=\Phi(i) i$ and $i \odot 1=\Phi(i)$. Using the equality (\star) we have $i \Phi(i)+\Phi(i) i=-2<i, \Phi(i)>1$. Also using Lemma 1 (7), we have $\Phi[\Phi(i) i]=\Phi(i) i$. Using the TPI we have

$$
\begin{equation*}
\Phi(i) i \Phi(i)=2 \lambda[\Phi(i) i] \Phi(i)+i=-2<i, \Phi(i)>\Phi(i)+i \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
i \Phi(i) i=2 \lambda[i \Phi(i)] i+\Phi(i)=-2<i, \Phi(i)>i+\Phi(i) . \tag{*}
\end{equation*}
$$

Hence we have the products,

$$
\begin{gathered}
\Phi(i) \odot 1=\Phi^{2}(i)=i . \\
\Phi(i) \odot i=\Phi^{2}(i) i=-1 . \\
\Phi(i) \odot \Phi(i)=\Phi^{2}(i) \Phi(i)=i \Phi(i)=-2<i, \Phi(i)>1-\Phi(i) i . \quad(\star) \\
\Phi(i) \odot \Phi(i) i=\quad \Phi^{2}(i) \Phi(i) i=i \Phi(i) i=-2<i, \Phi(i)>i+\Phi(i) . \quad(\mathbf{T P I}) \\
\Phi(i) i \odot 1=\Phi[\Phi(i) i]=\Phi(i) i . \\
\Phi(i) i \odot i=\Phi[\Phi(i) i] i=\Phi(i) i^{2}=-\Phi(i) . \\
\Phi(i) i \odot \Phi(i)=\quad \Phi[\Phi(i) i] \Phi(i)=\Phi(i) i \Phi(i)=-2<i, \Phi(i)>\Phi(i)+i . \quad(\mathbf{T P} \\
\Phi(i) i \odot \Phi(i) i=\quad \Phi[\Phi(i) i] \Phi(i) i=(\Phi(i) i)^{2}=T[\Phi(i) i] \Phi(i) i-1 .
\end{gathered}
$$

\odot	1	i	$\Phi(i)$	$\Phi(i) i$
1	1	i	$\Phi(i)$	$\Phi(i) i$
i	$\Phi(i)$	$\Phi(i) i$	-1	$-i$
$\Phi(i)$	i	-1	$-2<i, \Phi(i)>1-\Phi(i) i$	$-2<i, \Phi(i)>i+\Phi(i)$
$\Phi(i) i$	$\Phi(i) i$	$-\Phi(i)$	$-2<i, \Phi(i)>\Phi(i)+i$	$T[\Phi(i) i] \Phi(i) i-1$

Then the algebra A contains a four-dimensional sub-algebra.:
Theorem 5 Let A be an 8-dimensional absolute valued algebra with strongly left unit. Then A is of the form $\mathbb{H} \times \mathbb{H}_{(\varphi, \psi)}$ where (φ, ψ) are linear isometries of \mathbb{H} belong to $\mathbb{S}_{1} \cup \mathbb{S}_{2} \cup \mathbb{S}_{3} \cup \mathbb{S}_{4}$ with:

$$
\begin{aligned}
\mathbb{S}_{1} & =\left\{I_{\mathbb{H}}\right\} \times\left\{ \pm I_{\mathbb{H}}, T_{a, b}: a, b \in S^{2}, \pm T_{c, \bar{c}} \circ \sigma_{\mathbb{H}}: c \in S^{3}\right\} \\
\mathbb{S}_{2} & =\left\{\sigma_{\mathbb{H}}\right\} \times\left\{ \pm I_{\mathbb{H}}, T_{a, b}: a, b \in S^{2}, \pm T_{c, c} \circ \sigma_{\mathbb{H}}: c \in S^{3}\right\} \\
\mathbb{S}_{3} & =\left\{T_{a, \bar{a}}: a \in S^{2}\right\} \times\left\{ \pm I_{\mathbb{H}}, T_{b, c}: b, c \in S^{2}, \pm T_{d, \bar{d}} \circ \sigma_{\mathbb{H}}: d \in S^{3}\right\} \\
\mathbb{S}_{4} & =\left\{T_{a, \bar{a}} \circ \sigma_{\mathbb{H}}: a \in S^{2}\right\} \times\left\{ \pm I_{\mathbb{H}}, T_{b, c}: b, c \in S^{2}, \pm T_{d, \bar{d}} \circ \sigma_{\mathbb{H}}: d \in S^{3}\right\} .
\end{aligned}
$$

Proof. Using the Theorem 2 and Theorem 4, the algebra A is obtained by the duplication process. It's clear that the algebra A is of the form $\mathbb{H} \times \mathbb{H}_{(\varphi, \psi)}$, with $\varphi(1)=1$. The linear isometric (φ, ψ) is involitive, then $\varphi^{2}=\psi^{2}=I_{A}$. We have $\varphi \in I_{1}^{+} \cup I_{1}^{-}$and $\psi \in \mathcal{I}^{+} \cup \mathcal{I}^{-}$. Then the lemma 2 gives the result.
Problem 1 In dimension 8, it will be interesting to specify these algebras by reducing the isomorphism classes.

Acknowledgements

I thank the reviewers for the relevant remarks and suggestions.

References

Albert, A. A. (1947). Absolute valued real algebras. Ann. Math., 48, 495-501.
Calderon, A., Kaidi, A., Martin, C., Morales, A., Ramirez, M., \& Rochdi, A. (2011). Finite - dimensional absolute valued algebras. israel journal of mathematics, 184, 193-220.
Chandid, A. \& Rochdi, A. (2008). A survey on absolute valued algebras satisfying (x^{i}, x^{j}, x^{k}) = 0. Int. J. Algebra, 2, 837-852.

Diankha, O., Diouf, A., \& Rochdi, A. (2013 $)$. A brief statement on the absolute-valued algebras with one-sided Unit. Int. J. Algebra, 7(17), 833-838.

Diankha, O., Diouf, A., Ramirez, M. I., \& Rochdi, A. (20132). Absolute-valued algebras with one-sided unit satisfying $\left(x^{2}, x^{2}, x^{2}\right)=0$. Int. J. Algebra, 7(19), 935-958.

Koecher, M., \& Remmert. (1991). Numbers. Springer Verlag.
Postnikov, M. (1985), Leçons de Géométrie. Groupes et algèbres de Lie. Editions Mir.
Rochdi, A. (2003). Eight-dimensional real absolute valued algebras with left unit whose automorphism group is trivial. IJMMS, 70, 4447-4454.

Rodriguez, A. (1992). One-sided division absolute valued algebras. Publ. Math., 36,925-954.
Rodriguez, A. (2004). Absolute valued algebras, and absolute valuable Banach spaces. Advanced courses of mathematical analysis I, 99-155, World Sci. Publ., Hackensack, NJ.
Ramirez, M. I. (1999). On four absolute valued algebras. Proceedings of the International Conference on Jordan Structures (Malaga, 1997), 169-173.

Schafer, R. (1996). An Introduction to Nonassociative Algebras. Academic Press.
Urbanik, K., \& Wright£F. B. (1960). Absolute valued algebras. Proc. Amer. Math. Soc. 11, 861-866.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

