Absolute Valued Algebras with Strongly One Sided Unit

Alassane Diouf¹

¹ Département de Mathématiques et Informatiques, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal

Correspondence: Alassane Diouf, Département de Mathématiques et Informatiques, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal. E-mail: dioufalassane@hotmail.fr

Received: October 30, 2016	Accepted: December 5, 2016	Online Published: December 30, 2016
doi:10.5539/jmr.v9n1p32	URL: http://dx.doi.org/10.5539/jmr.v9n1p32	

Abstract

We classify the absolute valued algebras with strongly left unit of dimension ≤ 4 . Also we prove that every 8-dimensional absolute valued algebra with strongly left unit contain a 4-dimensional subalgebra, next we determine the form of theirs algebras by the duplication process.

Keywords: absolute valued algebra, strongly left unit, duplication process

Mathematics Subject Classification: 17A35, 17A36

1. Introduction

The absolute valued algebras are introduced by Ostrowski 1918. It's the normed algebra A such that ||xy|| = ||x||||y|| for all x, y in A. For an element a in an algebra A, we denote by $L_a : A \to A \ x \mapsto ax$ and $R_a : A \to A \ x \mapsto xa$. The algebra is called division if and only if R_a and L_a are bijective for all a in A. We denote by O the orthogonal group of linear isometries of Euclidean space \mathbb{H} . We recall O^+ the subgroup of proper linear isometries and O^- the subset of improper linear isometries. Let A be an absolute valued algebra with unit, then A is isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} or \mathbb{O} (Urbanik & Wright, 1960). The absolute valued algebras with left unit satisfying to $(x^2, x^2, x^2) = 0$, for all $x \in A$ is classified in (Diankha & all, 2013₂). These algebras are finite dimensional and isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} , $*\mathbb{H}(i, 1)$, \mathbb{O} , $*\mathbb{O}(i, 1)$, \mathbb{O} or $\mathbb{O}(i)$ and the element e satisfy to $L_e = R_e^2 = I_A$. The algebras \mathbb{H}_i , \mathbb{O}_i (Diankha & all, 2013₁), satisfy to $L_e = R_e^2 = I_A$ and not satisfy to $(x^2, x^2, x^2) = 0$. In this paper we give a classification of the absolute valued algebras with strongly left unit of dimensional subalgebra and A is obtained by the duplication process. Otherwise A is of the form $\mathbb{H} \times \mathbb{H}_{(\varphi,\psi)}$ with $\varphi, \psi : \mathbb{H} \to \mathbb{H}$ are linear isometries such that $\varphi(1) = 1$ and $(\varphi, \psi)^2 = (\varphi, \psi)$. The algebras \mathbb{R} , \mathbb{C} , $*\mathbb{C}$, \mathbb{H} , $*\mathbb{H}$, \mathbb{H}_i , $*\mathbb{H}(i, 1)$, \mathbb{O} , $*\mathbb{O}(i, 1)$, \mathbb{O} are absolute valued algebras with strongly left unit. This list is completed by new algebras.

2. Preliminary

In this section we recall the some interest results:

Theorem 1 *The finite-dimensional absolute valued real algebras with a left unit are precisely those of the form* \mathbb{A}_{φ} *, where* $\mathbb{A} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$ *and* φ *is an isometric of the euclidien espace* \mathbb{A} *fixes 1, and* \mathbb{A}_{φ} *denotes the absolute-valued real algebra obtained by endowing the normed space of* \mathbb{A} *with the product* $x \odot y := \varphi(x)y$ *. Moreover, given linear isometries* $\varphi, \phi : \mathbb{A} \to \mathbb{A}$ *fixing 1, the algebras* \mathbb{A}_{φ} *and* \mathbb{A}_{ϕ} *are isomorphic if and only if there exists an algebra automorphism* ψ *of* \mathbb{A} *satisfying* $\phi = \psi \circ \varphi \circ \psi^{-1}$ (Rochdi, 2003).

Lemma 1 Let A be an absolute valued algebra with strongly left unit. The following equalities hold for all $x \in A$.

- 1. [(xe)x]e = x(xe)
- 2. [x(xe)]e = (xe)x
- 3. $[xe, x] = \langle e, x \rangle [e, x xe]$ If, moreover, *x* is orthogonal to *e*, then
- 4. [xe, x] = 0
- 5. $(xe)x^2 = 2 < e, x^2 > x ||x||^2 xe$
- 6. $(xe)^2 = 2 < e, x^2 > e x^2$
- 7. $x^2 x = -||x||^2 xe$ (Chandid & Rochdi, 2008).

The group G_2 acts transitively on the sphere $S(Im(\mathbb{O})) := S^6$, that is the mapping $G_2 \to S^6 \Phi \mapsto \Phi(i)$ is surjective (Postnikov, 1985).

Let \mathbb{A} be one of the unital absolute valued algebras \mathbb{R} , \mathbb{C} , \mathbb{H} of dimension *m*. Consider the caley dickson product \odot in $\mathbb{A} \times \mathbb{A}$, we define on the space $\mathbb{A} \times \mathbb{A}$ the product

$$(x, y) \star (x', y') = (f_1(x), f(x)) \odot (g_1(x'), g(y')).$$

With f_1, g_1, f, g be linear isometries of \mathbb{A} and $f_1(1) = g_1(1) = 1$. We obtain a 2*m*-dimensional absolute valued real algebra $\mathbb{A} \times \mathbb{A}_{(f_1,f),(g_1,g)}$. The process is called duplication process. Note that the algebra is left unit if $g_1 = g = I_{\mathbb{A}}$ and this case we not the algebra by $\mathbb{A} \times \mathbb{A}_{(f_1,f)}$. We have the following result (Calderon & all, 2011):

Theorem 2 Let A be an 8-dimensional absolute valued algebra, then the following are equivalent:

- 1. A contains a 4-dimensional subalgebra.
- 2. A is obtained by the duplication process.
- 3. Aut(A) contains a reflexion.

Lemma 2 Let $I^+ = \{f \in O^+ : f \text{ involutive}\}, I^- = \{f \in O^- : f \text{ involutive}\}, I^+_1 = \{f \in I^+ : f(1) = 1\} \text{ and } I^-_1 = \{f \in I^- : f(1) = 1\}.$ We have:

- 1. $O^+ = \{T_{a,b} : a, b \in S(\mathbb{H})\}$
- 2. $O^- = \{T_{a,b} \circ \sigma_{\mathbb{H}} : a, b \in S(\mathbb{H})\} := O^+ \circ \sigma_{\mathbb{H}}$
- 3. $O_1^+ = \{T_{a,\overline{a}} : a \in S(\mathbb{H})\}$
- 4. $O_1^- = \{T_{a,\overline{a}} \circ \sigma_{\mathbb{H}} : a \in S(\mathbb{H})\} := O_1^+ \circ \sigma_{\mathbb{H}}$
- 5. $I^+ = \{\pm I_{\mathbb{H}}\} \cup \{T_{a,b} : a, b \in S(Im(\mathbb{H}))\}$
- 6. $I^- = \{ \pm T_{a,\overline{a}} : a \in S(\mathbb{H}) \}$
- 7. $I_1^+ = \{I_{\mathbb{H}}\} \cup \{T_{a,\overline{a}} : a \in S(Im(\mathbb{H}))\}$
- 8. $I_1^- = \{\sigma_{\mathbb{H}}\} \cup \{T_{a,\overline{a}} \circ \sigma_{\mathbb{H}} : a \in S(Im(\mathbb{H}))\} := I_1^+ \circ \sigma_{\mathbb{H}} (Diankha \& all, 2013_2).$

Corollary 1 Let A be an absolute valued algebra with left unit satisfying to $(x^p, x^q, x^r) = 0$ with $\{p, q, r\} \in \{1, 2\}$. Then A contains a strongly left unit.

Proof. Lemma 1 (Diankha & all, 2013₂) and proof of Proposition 4.8 (Chandid & Rochdi, 2008).

The converse of Corollary 1 is false, an effect the algebra $A := \mathbb{O}_i$ is an absolute valued algebra with strongly left unit and A not satisfy to $(x^2, x^2, x^2) = 0$.

3. Absolute Valued Algebras with Strongly Left Unit

Definition 1 An element $e \in A$ is called strongly left unit, if it's left unit and square root of right unit $(L_e = R_e^2 = I_A)$.

Theorem 3 Let A be an absolute valued algebra with strongly left unit. Then A is finite dimensional. Moreover if $dim(A) \leq 4$, then A is isomorphic to \mathbb{R} , \mathbb{C} , $*\mathbb{C}$, \mathbb{H} , $*\mathbb{H}$, $\mathbb{H}(i, 1)$ or $*\mathbb{H}(i, 1)$.

Proof. The algebra *A* is left unit, hence *A* is left division (Rodriguez, 2004). Moreover the assertion $R_e^2 = I_A$ imply that *A* is right division, then *A* is finite dimensional. Also *A* is of the form \mathbb{A}_{φ} , with φ a linear isometric fixed 1 and $\mathbb{A} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$ (Theorem 1). If $dim(A) \leq 2$, it's clear that *A* is isomorphic to \mathbb{R} , \mathbb{C} or $*\mathbb{C}$. Assume now $dim(A) \geq 4$, then the assertion $R_e^2 = I_A$ imply:

$$\begin{aligned} x &= (x \odot 1) \odot 1 \\ &= \varphi^2(x). \end{aligned}$$

Then φ is an involutive linear isometric $\varphi^2 = I_{\mathbb{A}}$. If dim(A) = 4, we have: $\varphi \in I_1^+ \cup I_1^- = \{I_{\mathbb{H}}\} \cup \{T_{a,\overline{a}} : a \in S(Im(\mathbb{H}))\} \cup \{\sigma_{\mathbb{H}}\} \cup \{T_{a,\overline{a}} \circ \sigma_{\mathbb{H}} : a \in S(Im(\mathbb{H}))\}$ (Lemma 2). - If $\varphi = I_{\mathbb{H}}$, then *A* is isomorphic to \mathbb{H} .

- If $\varphi = \sigma_{\mathbb{H}}$, then *A* is isomorphic to $*\mathbb{H}$.

- If $\varphi = T_{a,\overline{a}}$: $a \in S(Im(\mathbb{H}))$, there exist $v \in S(\mathbb{H})$ such that $va\overline{v} = i$ and let the automorphism $\Phi = T_{v,\overline{v}}$ of \mathbb{H} with $\Phi^{-1} = T_{\overline{v},v}$, we have $\Phi \circ T_{a,\overline{a}} \circ \Phi^{-1} = T_{i,\overline{i}}$. Then *A* is isomorphic to $\mathbb{H}_{T_{i,\overline{i}}}$ (Theorem 1) and the map $\Phi : \mathbb{H}(i, 1) \to \mathbb{H}_{T_{i,\overline{i}}}$ $x \mapsto xi$ is an isomorphism algebras.

- If $\varphi = T_{a,\overline{a}} \circ \sigma_{\mathbb{H}}$: $a \in S(Im(\mathbb{H}))$, there exist $u \in S(\mathbb{H})$ such that $ua\overline{u} = i$ and let the automorphism $\Phi = T_{u,\overline{u}}$ of \mathbb{H} , we have:

$$\begin{split} \Phi \circ T_{a,\overline{a}} \circ \sigma_{\mathbb{H}} \circ \Phi^{-1} &= T_{u,\overline{u}} \circ T_{a,\overline{a}} \circ \sigma_{\mathbb{H}} \circ T_{\overline{u},u} \\ &= T_{u,\overline{u}} \circ T_{a,\overline{a}} \circ T_{\overline{u},u} \circ \sigma_{\mathbb{H}} \\ &= T_{ua\overline{u},u\overline{au}} \circ \sigma_{\mathbb{H}} \\ &= T_{i,\overline{i}} \circ \sigma_{\mathbb{H}}. \end{split}$$

Then *A* is isomorphic to $\mathbb{H}_{T_{i,\bar{i}}\circ\sigma_{\mathbb{H}}}$ (Theorem 1) and the map $\Phi :^{\star} \mathbb{H}(i, 1) \to \mathbb{H}_{T_{i,\bar{i}}\circ\sigma_{\mathbb{H}}} x \mapsto \bar{i}x$ is an isomorphism of algebras.

If dim(A) = 4, the last result can be obtained so by using the identity $R_e^2 = I_{\mathbb{H}}$ and the principal isotopes of \mathbb{H} : $\mathbb{H}(a, 1)$, * $\mathbb{H}(a, 1)$, where $a \in S(\mathbb{H})$. For the first isotope $e = \overline{a}$, and for the second isotope e = a.

For all alternative algebra *A*, Artin's theorem (Schafer, 1996) shows that for any $x, y \in A$, the set $\{x, y, \overline{x}, \overline{y}\}$ is contained in an associative subalgebra of *A*. We note by $T(x) = x + \overline{x}$ the tace of $x \in A$ and we have $x^2 - T(x)x + ||x||^2 e = 0$ for all $x \in A$. As *A* is real alternative quadratic algebra, we have $A = \mathbb{R}e \oplus Im(A)$ (Frobenius decomposition) and their exist a unique linear form $\lambda : A \to \mathbb{R}$ such that $\lambda(1) = 1$, $ker(\lambda) = Im(A)$ and $\langle x, y \rangle = \lambda(\overline{xy}) = \lambda(\overline{xy})$ for all $x, y \in A$ (*) (Koecher & Remmert, 1991). Otherwise for all $x, y \in Im(A)$ we have $xy + yx = -2 \langle x, y \rangle e$ (*) and the identity $xyx = 2\lambda(xy)x - ||x||^2\overline{y}$ for all $x, y \in Im(A)$ is called the triple product identity (**TPI**).

In 8-dimensional, by the duplication process we recover theirs algebras.

Theorem 4 Let A be an 8-dimensional absolute valued algebra with strongly left unit. Then A contains a four-dimensional subalgeba.

Proof. We have $\mathbb{O} = \mathbb{R} \oplus Im(\mathbb{O})$ and their exist a unique linear form $\lambda : \mathbb{O} \to \mathbb{R}$ such that $\lambda(1) = 1$ and $ker(\lambda) = Im(\mathbb{O})$. Let $u \in 1^{\perp}$, we have $0 = < 1, u > = < \Phi^n(1), \Phi^n(u) > = < 1, \Phi^n(u) >$. Then we have $\varphi^n(1^{\perp}) \subseteq 1^{\perp}$, for all $n \in \mathbb{N}$. The algebra *A* is of the form \mathbb{O}_{Φ} with $\Phi(1) = 1$ and $\Phi^2 = I_{\mathbb{O}}$ (Theorem 1 and Theorem 3). Otherwise we have $i \odot i = \Phi(i)i$ and $i \odot 1 = \Phi(i)$. Using the equality (\star) we have $i\Phi(i) + \Phi(i)i = -2 < i, \Phi(i) > 1$. Also using Lemma 1 (7), we have $\Phi[\Phi(i)i] = \Phi(i)i$. Using the **TPI** we have

$$\Phi(i)i\Phi(i) = 2\lambda[\Phi(i)i]\Phi(i) + i = -2 < i, \Phi(i) > \Phi(i) + i. \quad (*)$$

and

$$i\Phi(i)i = 2\lambda[i\Phi(i)]i + \Phi(i) = -2 < i, \Phi(i) > i + \Phi(i).$$
 (*)

2

Hence we have the products,

$$\Phi(i) \odot 1 = \Phi^{2}(i) = i.$$

$$\Phi(i) \odot i = \Phi^{2}(i)i = -1.$$

$$\Phi(i) \odot \Phi(i) = \Phi^{2}(i)\Phi(i) = i\Phi(i) = -2 < i, \Phi(i) > 1 - \Phi(i)i. \quad (\star)$$

$$\Phi(i) \odot \Phi(i)i = \Phi^{2}(i)\Phi(i)i = i\Phi(i)i = -2 < i, \Phi(i) > i + \Phi(i). \quad (TPI)$$

$$\Phi(i)i \odot 1 = \Phi[\Phi(i)i] = \Phi(i)i.$$

$$\Phi(i)i \odot i = \Phi[\Phi(i)i]i = \Phi(i)i^{2} = -\Phi(i).$$

$$\Phi(i)i \odot \Phi(i) = \Phi[\Phi(i)i]\Phi(i) = \Phi(i)i\Phi(i) = -2 < i, \Phi(i) > \Phi(i) + i. \quad (TPI)$$

$$\Phi(i)i \odot \Phi(i)i = \Phi[\Phi(i)i]\Phi(i)i = (\Phi(i)i)^{2} = T[\Phi(i)i]\Phi(i)i - 1.$$

Journal of Mathematics Research

\odot	1	i	$\Phi(i)$	$\Phi(i)i$
1	1	i	$\Phi(i)$	$\Phi(i)i$
i	$\Phi(i)$	$\Phi(i)i$	-1	-i
$\Phi(i)$	i	-1	$-2 < i, \Phi(i) > 1 - \Phi(i)i$	$-2 < i, \Phi(i) > i + \Phi(i)$
$\Phi(i)i$	$\Phi(i)i$	$-\Phi(i)$	$-2 < i, \Phi(i) > \Phi(i) + i$	$T[\Phi(i)i]\Phi(i)i-1$

Then the algebra A contains a four-dimensional sub-algebra.

Theorem 5 Let A be an 8-dimensional absolute valued algebra with strongly left unit. Then A is of the form $\mathbb{H} \times \mathbb{H}_{(\varphi,\psi)}$ where (φ, ψ) are linear isometries of \mathbb{H} belong to $\mathbb{S}_1 \cup \mathbb{S}_2 \cup \mathbb{S}_3 \cup \mathbb{S}_4$ with:

- $\mathbb{S}_1 = \{I_{\mathbb{H}}\} \times \{\pm I_{\mathbb{H}}, T_{a,b} : a, b \in S^2, \ \pm T_{c,\overline{c}} \circ \sigma_{\mathbb{H}} : c \in S^3\}$
- $\mathbb{S}_2 = \{\sigma_{\mathbb{H}}\} \times \{\pm I_{\mathbb{H}}, T_{a,b} : a, b \in S^2, \pm T_{c,c} \circ \sigma_{\mathbb{H}} : c \in S^3\}$
- $\mathbb{S}_3 = \{T_{a,\overline{a}} : a \in S^2\} \times \{\pm I_{\mathbb{H}}, T_{b,c} : b, c \in S^2, \pm T_{d,\overline{d}} \circ \sigma_{\mathbb{H}} : d \in S^3\}$
- $\mathbb{S}_4 = \{T_{a,\overline{a}} \circ \sigma_{\mathbb{H}} : a \in S^2\} \times \{\pm I_{\mathbb{H}}, \ T_{b,c} : b, c \in S^2, \ \pm T_{d\overline{d}} \circ \sigma_{\mathbb{H}} : d \in S^3\}.$

Proof. Using the Theorem 2 and Theorem 4, the algebra *A* is obtained by the duplication process. It's clear that the algebra *A* is of the form $\mathbb{H} \times \mathbb{H}_{(\varphi,\psi)}$, with $\varphi(1) = 1$. The linear isometric (φ, ψ) is involitive, then $\varphi^2 = \psi^2 = I_A$. We have $\varphi \in I_1^+ \cup I_1^-$ and $\psi \in I^+ \cup I^-$. Then the lemma 2 gives the result.

Problem 1 In dimension 8, it will be interesting to specify these algebras by reducing the isomorphism classes.

Acknowledgements

I thank the reviewers for the relevant remarks and suggestions.

References

Albert, A. A. (1947). Absolute valued real algebras. Ann. Math., 48, 495-501.

- Calderon, A., Kaidi, A., Martin, C., Morales, A., Ramirez, M., & Rochdi, A. (2011). Finite dimensional absolute valued algebras. *israel journal of mathematics*, 184, 193 220.
- Chandid, A. & Rochdi, A. (2008). A survey on absolute valued algebras satisfying $(x^i, x^j, x^k) = 0$. Int. J. Algebra, 2, 837-852.
- Diankha, O., Diouf, A., & Rochdi, A. (2013₁). A brief statement on the absolute-valued algebras with one-sided Unit. Int. J. Algebra, 7(17), 833-838.
- Diankha, O., Diouf, A., Ramirez, M. I., & Rochdi, A. (2013₂). Absolute-valued algebras with one-sided unit satisfying $(x^2, x^2, x^2) = 0$. *Int. J. Algebra*, 7(19), 935-958.
- Koecher, M., & Remmert. (1991). Numbers. Springer Verlag.
- Postnikov, M. (1985), Leçons de Géométrie. Groupes et algèbres de Lie. Editions Mir.
- Rochdi, A. (2003). Eight-dimensional real absolute valued algebras with left unit whose automorphism group is trivial. *IJMMS*, 70, 4447-4454.
- Rodriguez, A. (1992). One-sided division absolute valued algebras. Publ. Math., 36,925-954.
- Rodriguez, A. (2004). Absolute valued algebras, and absolute valuable Banach spaces. *Advanced courses of mathematical analysis I*, 99-155, World Sci. Publ., Hackensack, NJ.
- Ramirez, M. I. (1999). On four absolute valued algebras. *Proceedings of the International Conference on Jordan Structures* (Malaga, 1997), 169-173.
- Schafer, R. (1996). An Introduction to Nonassociative Algebras. Academic Press.

Urbanik, K., & Wright & B. (1960). Absolute valued algebras. Proc. Amer. Math. Soc. 11, 861-866.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).