Some Results on FGS-modules

ALhousseynou BA¹, Albert Mankagna Diompy¹, Alassane Diouf¹ & André Souleye Diabang¹

¹ Department of Mathematics and Computer Sciences, Cheikh Anta Diop University, Dakar, Senegal

Correspondence: Alhousseynou BA, Department of Mathematics and Computer Sciences, Faculty of Sciences and Techmics, Cheikh Anta Diop University, B.P. 5005, - Dakar-Fann, - Senegal

Received: October 12, 2016	Accepted: December 5, 2016	Online Published: December 30, 2016
doi:10.5539/jmr.v9n1p36	URL: http://dx.doi.org/10.5539/jmr.v9n1p36	

Abstract

Let *R* be a commutative ring, with a unity $1 \neq 0$ and *M* a unitary left *R*-module. In this paper we give some properties of an *FGS*-module. After that we give others important characterizations. Indeed, we first show that *M* is a local *FGS*-module if and only if it is of finite representation type. Secondly, we show that *M* is a prime *FGS*-module if and only if it is a serial type module and of finite length if and only if it is a finite representation type module.

Keywords: Hopfian, finitely generated, finite representation type, local

1. Introduction

Let *R* be a commutative ring with $1 \neq 0$ as unity and *M* a left module over *R*. The category $\sigma[M]$ is a full subcategory of *R*-Mod. Its objects are all submodules of a *M*-generated module(Wisbauer, R., 1985). we call that a module *M* is Hopfian if every epimorphism of *M* is an automorphism of *M*. For a commutative ring any finitely generated module is Hopfian but Hopfian module is not always finitely generated(Ba, A. & Diankha, O., 2013). Therefore we characterize the modules for which every Hopfian object of $\sigma[M]$ is finitely generated. These modules are called *FGS*-modules.

An object *N* of $\sigma[M]$ is said to be *coherent* if it is finitely generated and every finitely generated submodule of *K* is finitely presented. If any submodule of a module *M* is an intersection of maximal submodule then, *M* is called *co-semismple*. A module *M* is said *good* if M/Rad(M) is co-semisimple where Rad(M) is the Jacobson radical of *M*. A module is *uniserial* if its submodules are linearly ordered by inclusion. A module is said *serial(resp. semisimple)* if it is direct sum of uniserial(resp. simple) modules. A module is said *serial type* if every object of $\sigma[M]$ is direct sum of uniserial modules of finite length. A module *M* is said to be prime module if for any submodule *N* of *M*, we have Ann(N) = Ann(M). A module of finite length is *finite representation type* if there exists, in $\sigma[M]$, only many non-isomorphic finitely generated indecomposable modules. A ring *R* is said to be *S*-ring if any Hopfian module over *R* is noetherian.

2. Some Properties of *FGS*-module

In this part we give some preliminaries results which we will use in this paper.

Proposition 1 Let R be a commutative ring and M a finitely generated prime FGS -module. Then, M is simple.

Proof. Since *M* is finitely generated.(Wisbauer, R., 1991) that $\sigma[M] = R/Ann(M)$ -Mod i.e any object of $\sigma[M]$ is a module over R/Ann(M). As *M* is an *FGS*-module then R/Ann(M) is also an *FGS*-ring. It results from(Gueye, C. T. & Sangharé, M.,2004)that R/Ann(M) is an artinian ring. We know that any finitely generated module over an artinian ring is artinian. Hence, *M* is an artinian module. Therefore, there exists a minimal submodule in *M*. Let N_1 be that minimal submodule and the following diagram:

We can see that $R/Ann(N_1) \simeq N_1$. Hence, $R/Ann(N_1)$ is a field.

Let $g : R \longrightarrow M$ be an epimorphism. Therefore, $M \simeq R/Ann(M)$. As *M* is a prime module(i.e. $Ann(M) = Ann(N_1)$), then *M* is simple.

Corollary 2 Let *R* be a commutative ring and *M* a finitely generated, faithful and prime FGS-module then, *R* is a field.

Proof. We have seen in proposition 1 that $R/Ann(N_1)$ is simple. Since *M* is prime then, $R/Ann(N_1) = R/Ann(M)$ is simple. As *M* is faithful then, *R* is a field.

Proposition 2 Let *R* be a commutative ring and *M* a prime and finitely generated FGS-module. Then:

(1) Every submodule of an object N of $\sigma[M]$ is maximal;

(2) There exists a finite number of submodules in N.

Proof. (1) It follows from the proposition 1 that M is simple, hence semisimple. Therefore, every module of $\sigma[M]$ is semisimple (Wisbauer, R., 1991). Let N be an objet of $\sigma[M]$ and $\{K_j\}_J$ a family of submodules of N. Let's assume $L = \bigoplus_{j \in J} N/K_j$. $L \in \sigma[M]$ because $\sigma[M]$ is closed under direct sum. As, any object of $\sigma[M]$ is semisimple then, L is semisimple too. Hence, for every $j \in J$, N/K_j is simple. Thus, for every $j \in J$, K_j is maximal.

(2) Let's suppose $L = \bigoplus_{j \in J} N/K_j$. We have already seen that for any $j \in J N/K_j$ is simple. And it is obvious to see that, for all $j \in J$, N/K_j is Hopfian and fully invariant. Then $L = \bigoplus_{j \in J} N/K_j$ is Hopfian. As *M* is an *FGS*-module, then *L* is finitely generated. Thus, *J* is finite.

Lemma 1 If M is a local module then, M is finitely generated.

Proof. It follows from 21.6 of (Wisbauer, R., 1991) and the definition of local module.

Proposition 3 Let *R* be commutative ring and *M* a local FGS-module. Then, for every object *N* of $\sigma[M]$, the following statements are equivalent:

(a) N is finitely generated;
(b) N is noetherian;
(c) N is artinian;
(d) N is of finite length.

Proof. Let *M* be a local module. By lemma 1, *M* is finitely generated. Hence $\sigma[M] = R/Ann(M)$ -Mod i.e every object of $\sigma[M]$ is a R/Ann(M)-module. Since, *M* is an *FGS*-module then, R/Ann(M) is an *FGS*-ring. Hence, R/Ann(M) is an artinian ring. It results from 15.21 of (Anderson, F. W. & Fuller, K., 1973) that (*a*), (*b*), (*c*) and (*d*) are equivalent.

Lemma 2 (Anderson, F.W & Fuller, K., 1973) R is noetherian iff every finitely generated R-module is finitely presented.

Proposition 4 *Let M be a local FGS-module. Then, M is a coherent module in* $\sigma[M]$ *.*

Proof. We have already seen that *M* is finitely generated. Hence, $M \simeq R/Ann(M)$. It results from the proposition 1 that R/Ann(M) is artinian. It is well known that any artinian ring is noetherian, hence R/Ann(M) is a noetherian ring. Let *N* be a finitely generated submodule of *M*. *N* is also module over R/Ann(M). It follows from the lemma 2 that *N* is finitely presented. Thus, *M* is coherent.

Proposition 5 Let M be a local FGS-module, then M is a good module and so is every module of $\sigma[M]$.

Proof. As *M* is local then, M/Rad(M) is simple hence semisimple. It is well know that any semisimple module is cosemisimple, hence M/Rad(M) is co-semisimple. By referring to 23.3 of (Wisbauer, R., 1991), *M* is a good module. Let *N* be an object of $\sigma[M]$. *N* is a module over R/Ann(M). We have seen that $M \simeq R/Ann(M)$, hence R/Ann(M) is good ring. It results from 23.7 of (Wisbauer, R., 1991) that *N* is a good module.

3. Results

Lemma 3 If M is an FGS -module then, there exists a finite number of non-isomorphic simple modules in $\sigma[M]$.

Proof. It results from proposition 2 of (Ba, A. & Diankha, O., 2013).

Theorem 1 Let *R* be a commutative ring and *M* a local module then, the following assertions are equivalent:

(1) *M* is an FGS -module;

(2) M is of finite representation type.

Proof. (1) \Rightarrow (2) By the proof of proposition 1 $M \simeq R/Ann(M)$ is artinian. Since *M* is of finitely generated, then is of finite length. It results from the lemma 3 that *M* is of finite representation type.

 $(2) \Rightarrow (1)$ We have already seen that $M \simeq R/Ann(M)$. As *M* is a finite representation type, then it is of finite length and it follows from theorem 3.1 of (Diankha, O., 2007) that *M* is an *I*-module. Hence R/Ann(M) is an *I*-ring. It results theorem 9 of (Kaidi, A. & Sanghare, M., 1965) that R/Ann(M) is a *S*-ring.

Let *N* be an Hopfian object of $\sigma[M]$. Since R/Ann(M) is *S*-ring then *N* is noetherian. Any noetherian module of an artinian ring is finitely generated. Thus *M* is an *FGS*-module.

Theorem 2 Let *R* be a commutative ring and *M* a prime module. Then, the following assertions are equivalent:

(1) *M* is an FGS-module;

(2) *M* is a serial type and of finite length;

(3) *M* is of finite representation type. Proof. (1) \Rightarrow (2) Assume that *M* is an *FGS*-module. It follows from proposition 1 that *M* is a simple module. Hence it of finite length and semisimple. Let $N = \bigoplus_{i \in I} N_i$ be an element of $\sigma[M]$. Since *N* is a semisimple module, then N_i is a simple module for all $i \in I$. It is uniserial and of finite length. Therefore *M* is of serial

type.

(2) \Rightarrow (3) It follows from 55.14 of (Wisbauer, R., 1991) that *M* is of finite representation type.

(3) \Rightarrow (1) It results from theorem 1.

References

Anderson, F. W, & Fuller, K. (1973). Rings and categories of modules. Springer-Verlag.

Ba, A., & Diankha, O. (2013). On FGS-Modules. Journal of Mathematics Research, 5(1), 61-64, ISSN 1916-9795.

Diankha, O. (2007). On I-modules. *Journal des Sciences*, 7, N°2.

- Gueye, C. T., & Sangharé, M. (2004). On commutative FGS-rings. Communications in Algebra volume, 32(5), 1715-1727.
- Kaidi, A., & Sanghare, M. (1988). Une caractérisation des anneaux artiniens á ideaux principaux. *Lect. Note in Math.* N?328 Springer-verlag,245-254.
- Vanaja, N. (1996). All finitely generated *M*-subgenerated modules are extending. Comm. Algebra, 24(2), 543-572.
- Wisbauer, R. (1985). Decomposition properties in modules categories. Acta. Univ. Corilia Math. Physica, 126(26), 57-68.

Wisbauer, R. (1991). Foundation of Module and Ring theory. Gordon and Breach Science Publishers.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).