
Journal of Mathematics Research; Vol. 9, No. 1; February 2017
ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

Some Results on FGS -modules
ALhousseynou BA1, Albert Mankagna Diompy1, Alassane Diouf1 & André Souleye Diabang1
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Abstract

Let R be a commutative ring, with a unity 1 , 0 and M a unitary left R-module. In this paper we give some properties of an
FGS -module. After that we give others important characterizations. Indeed, we first show that M is a local FGS -module
if and only if it is of finite representation type. Secondly, we show that M is a prime FGS -module if and only if it is a
serial type module and of finite length if and only if it is a finite representation type module.
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1. Introduction

Let R be a commutative ring with 1 , 0 as unity and M a left module over R. The category σ[M] is a full subcategory of
R-Mod. Its objects are all submodules of a M-generated module(Wisbauer, R., 1985). we call that a module M is Hopfian
if every epimorphism of M is an automorphism of M. For a commutative ring any finitely generated module is Hopfian
but Hopfian module is not always finitely generated(Ba, A. & Diankha, O., 2013). Therefore we characterize the modules
for which every Hopfian object of σ[M] is finitely generated. These modules are called FGS -modules.
An object N of σ[M] is said to be coherent if it is finitely generated and every finitely generated submodule of K is finitely
presented. If any submodule of a module M is an intersection of maximal submodule then, M is called co-semismple.
A module M is said good if M/Rad(M) is co-semisimple where Rad(M) is the Jacobson radical of M. A module is
uniserial if its submodules are linearly ordered by inclusion. A module is said serial( resp. semisimple) if it is direct sum
of uniserial(resp. simple) modules. A module is said serial type if every object of σ[M] is direct sum of uniserial modules
of finite length. A module M is said to be prime module if for any submodule N of M, we have Ann(N) = Ann(M). A
module of finite length is finite representation type if there exists, in σ[M], only many non-isomorphic finitely generated
indecomposable modules. A ring R is said to be S -ring if any Hopfian module over R is noetherian.

2. Some Properties of FGS -module

In this part we give some preliminaries results which we will use in this paper.

Proposition 1 Let R be a commutative ring and M a finitely generated prime FGS -module. Then, M is simple.

Proof. Since M is finitely generated.(Wisbauer, R., 1991) that σ[M] = R/Ann(M)-Mod i.e any object of σ[M] is a module
over R/Ann(M). As M is an FGS -module then R/Ann(M) is also an FGS -ring. It results from(Gueye, C. T. & Sangharé,
M.,2004)that R/Ann(M) is an artinian ring. We know that any finitely generated module over an artinian ring is artinian.
Hence, M is an artinian module. Therefore, there exists a minimal submodule in M. Let N1 be that minimal submodule
and the following diagram:

g : R //

��

N1

R/Ann(N1)

uuuuuuuuuu

uuuuuuuuuu

We can see that R/Ann(N1) ≃ N1. Hence, R/Ann(N1) is a field.
Let g : R −→ M be an epimorphism. Therefore, M ≃ R/Ann(M). As M is a prime module( i.e Ann(M) = Ann(N1)), then
M is simple.

Corollary 2 Let R be a commutative ring and M a finitely generated, faithful and prime FGS -module then, R is a field.

Proof. We have seen in proposition 1 that R/Ann(N1) is simple. Since M is prime then, R/Ann(N1) = R/Ann(M) is simple.
As M is faithful then, R is a field.

Proposition 2 Let R be a commutative ring and M a prime and finitely generated FGS -module. Then:
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(1) Every submodule of an object N of σ[M] is maximal;
(2) There exists a finite number of submodules in N.
Proof. (1) It follows from the proposition 1 that M is simple, hence semisimple. Therefore, every module of σ[M] is
semisimple (Wisbauer, R., 1991). Let N be an objet of σ[M] and {K j}J a family of submodules of N. Let’s assume
L =
⊕

j∈J N/K j. L ∈ σ[M] because σ[M] is closed under direct sum. As, any object of σ[M] is semisimple then, L is
semisimple too. Hence, for every j ∈ J, N/K j is simple.Thus, for every j ∈ J, K j is maximal.
(2) Let’s suppose L =

⊕
j∈J N/K j. We have already seen that for any j ∈ J N/K j is simple. And it is obvious to see that,

for all j ∈ J, N/K j is Hopfian and fully invariant. Then L =
⊕

j∈J N/K j is Hopfian. As M is an FGS -module, then L is
finitely generated. Thus, J is finite.

Lemma 1 If M is a local module then, M is finitely generated.

Proof. It follows from 21.6 of (Wisbauer, R., 1991) and the definition of local module.

Proposition 3 Let R be commutative ring and M a local FGS -module. Then, for every object N of σ[M], the following
statements are equivalent:
(a) N is finitely generated;
(b) N is noetherian;
(c) N is artinian;
(d) N is of finite length.

Proof. Let M be a local module. By lemma 1, M is finitely generated. Hence σ[M] = R/Ann(M)-Mod i.e every object
of σ[M] is a R/Ann(M)-module. Since, M is an FGS -module then, R/Ann(M) is an FGS -ring. Hence, R/Ann(M) is an
artinian ring. It results from 15.21 of (Anderson, F. W. & Fuller, K., 1973) that (a), (b), (c) and (d) are equivalent.

Lemma 2 (Anderson, F.W & Fuller, K., 1973) R is noetherian iff every finitely generated R-module is finitely presented.

Proposition 4 Let M be a local FGS -module. Then, M is a coherent module in σ[M].

Proof. We have already seen that M is finitely generated. Hence, M ≃ R/Ann(M). It results from the proposition 1 that
R/Ann(M) is artinian. It is well known that any artinian ring is noetherian, hence R/Ann(M) is a noetherian ring. Let N
be a finitely generated submodule of M. N is also module over R/Ann(M). It follows from the lemma 2 that N is finitely
presented. Thus, M is coherent.

Proposition 5 Let M be a local FGS -module, then M is a good module and so is every module of σ[M].

Proof. As M is local then, M/Rad(M) is simple hence semisimple. It is well know that any semisimple module is co-
semisimple, hence M/Rad(M) is co-semisimple. By referring to 23.3 of (Wisbauer, R., 1991), M is a good module. Let
N be an object of σ[M]. N is a module over R/Ann(M). We have seen that M ≃ R/Ann(M), hence R/Ann(M) is good
ring. It results from 23.7 of (Wisbauer, R., 1991) that N is a good module.

3. Results

Lemma 3 If M is an FGS -module then, there exists a finite number of non-isomorphic simple modules in σ[M].

Proof. It results from proposition 2 of (Ba, A. & Diankha, O., 2013).

Theorem 1 Let R be a commutative ring and M a local module then, the following assertions are equivalent:
(1) M is an FGS -module;
(2) M is of finite representation type.

Proof. (1) ⇒ (2) By the proof of proposition 1 M ≃ R/Ann(M) is artinian. Since M is of finitely generated, then is of
finite length. It results from the lemma 3 that M is of finite representation type.
(2)⇒ (1) We have already seen that M ≃ R/Ann(M). As M is a finite representation type, then it is of finite length and it
follows from theorem 3.1 of (Diankha, O., 2007) that M is an I-module. Hence R/Ann(M) is an I-ring. It results theorem
9 of (Kaidi, A. & Sanghare, M., 1965) that R/Ann(M) is a S -ring.
Let N be an Hopfian object of σ[M]. Since R/Ann(M) is S -ring then N is noetherian. Any noetherian module of an
artinian ring is finitely generated. Thus M is an FGS -module.

Theorem 2 Let R be a commutative ring and M a prime module. Then, the following assertions are equivalent:
(1) M is an FGS -module;
(2) M is a serial type and of finite length;
(3) M is of finite representation type. Proof. (1) ⇒ (2) Assume that M is an FGS -module. It follows from proposition 1
that M is a simple module. Hence it of finite length and semisimple. Let N = ⊕i∈I Ni be an element of σ[M]. Since N is
a semisimple module, then Ni is a simple module for all i ∈ I. It is uniserial and of finite length. Therefore M is of serial
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type.
(2)⇒ (3) It follows from 55.14 of (Wisbauer, R., 1991) that M is of finite representation type.
(3)⇒ (1) It results from theorem 1.
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