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Abstract

In this paper, we prove the existence of the Poncelet-Morley point for a given elliptic configuration. The paper ends with
an application of such a point in angle trisection problem.
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1. Introduction

Trisection is a classic problem of compass and straightedge constructions of ancient Greek mathematics. It concerns the
construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge,
and a compass. The problem as stated is generally impossible to solve, as shown by Pierre Wantzel in (Arnaudiès J. M.
& Fraysse H., 1990). Note that the fact that there is no way to trisect an angle in general with just a compass and a
straightedge does not mean that there is no trisecting angle: for example, it is relatively straightforward to trisect a right
angle, that is, to construct an angle of measure 30 degrees. It is, however, possible to trisect an arbitrary angle by using
tools other than straightedge and compass. We can also prove using trigonometry and algebraic tools that it is possible to
trisect an angle; see solution of Morley problem in (Jean Fresnel, 1996). In plane geometry, Morley’s trisector theorem
states that in any triangle, the three points of intersection of the adjacent angle trisector form an equilateral triangle, called
the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Frank Morley. It has
various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles.
A simple proof of the problem is given in (Jean Fresn, 1996) but it remains difficult to define a construction programme
associated to an arbitrary triangle.

Our aim is to propose a new geometrical tool and use it to prove that there are angles which cannot be trisected. Of
course, we also need the Poncelet result to prove the existence of our main tool called the Poncelet-Morley point for a
given configuration.

We recall that it was in 1813 during his captivity as war prisoner that J. V. Poncelet discovered that if C1 and C2 are non
degenerate conics in general position which neither meet nor intersect, if there is an n-sided polygon inscribed in C1 and
circumscribed about C2, then for any point P of C1 there exist an n-sided polygon also inscribed in C1 and circumscribed
about C2 which has P as one of its vertices. We can then define our main tool. Let (El) be a non degenerate ellipse
with focus F and F′, X an external point of (El), T1 and T2 tangents on (El) respectively at M1 and M2. X is called a
Poncelet-Morley point if M̂1XF′ � M̂1XF′ � F̂′XF � F̂XM2. We prove the existence of a Poncelet-Morley point for a
given configuration. We also prove that for any elliptic configuration, there are two symmetric Poncelet-Morley points.
We use the Poncelet-Morley point to prove that it is not possible to trisect all angles.

1J. D Was partially supported by IHES and MINESUP

68



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 3; 2017

2. Morley Point Associated to an Ellipse Configuration

Let (El) be a non degenerate ellipse with focus F and F′ and let X be an external point of (El). X is called a Morley point
associated to (El) if there exist two points M and N on (El) such that M̂XF′ = F̂′XF = F̂XN.

×
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×

F

×

M

×
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× N

has Morley points.

Proposition 1. Each non degenerate ellipse (El) has Morley points.

Proof. If (El) is a non degenerate ellipse of focus F and F′ then FF′ , 0. Therefore the circle (C) with center F′ and

radius FF′ is non degenerate and it intersects (El). Let M ∈ C ∩ El; then MF′ = FF′ and
̂−−−→

F′M;
−−−→
F′F , 0. Let (∆)

be the bisector of
̂−−−→

F′M;
−−−→
F′F and let X ∈ (∆) such that X is not in the domain bounded by El. The triangle ∆FF′M is

isosceles at F′. Therefore, (∆) is the mediator of segment [FM]. Moreover, X ∈ (∆) and ∆XFM is an isosceles triangle

in X. Then
̂−−→

XM;
−−−→
XF′ =

̂−−−→
XF′;

−−→
XF. Let (∆′) be the symmetric of (∆) with respect to (FX). If A is a point of (∆′) then

̂−−→
XM;
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XF′ =
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XF′;

−−→
XF =

−̂−→
XF;
−−→
XA and ∆′ ∩ El , ∅. Indeed, if (T1) and (T2) are tangents to (El) respectively at M1 and M2

passing through X and (XM) ∩ (El) , ∅, then (XM) is in interior region bounded by (T1) and (T2). We shall prove that
(∆′) is interior with (T1) and (T2). Since M1 = T1 ∩ El and M2 = T2 ∩ El then, according to the second Poncelet theorem,

we have
̂−−→

XF;
−−−→
XM2 =

̂−−−→
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−−−→
XF′. Therefore,

−̂−→
XF;
−−→
XA +

̂−−→
XA;
−−−→
XM2 =

̂−−−→
XM1;

−−→
XM +

̂−−→
XM;

−−−→
XF′ and then

̂−−→
XA;
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XM.

If (Γ) denotes the bisector of
̂−−−→

XM1;
−−−→
XM2, then (XM1) and (XM2) are symmetric relatively to (Γ). If −→u is a direction of (Γ),

then
−̂−−→
XM1;−→u = −̂→u ;

−−−→
XM2 and then

̂−−→
XA;
−−−→
XM2 =

̂−−−→
XM1;

−−→
XM i.e;

−̂−→
XA;−→u + −̂→u ;

−−−→
XM2 =

−̂−−→
XM1;−→u + −̂→u ;

−−→
XM i.e;

−̂−→
XA;−→u = −̂→u ;

−−→
XM

Therefore (Γ) is a bisector of
−̂−→
XA;
−−→
XM i.e; (XA) and (XM) are symmetric relatively to Γ.

Since (XM) is in the interior region bounded by (T1) and (T2) and (XA) is the symmetric of XM relatively to (Γ) then
(XA) = (∆′) is in the interior bounded by (T1) and (T2). Therefore (∆′) ∩ (El) , ∅.
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Taking N(∆′) ∩ (El) we have
−̂−→
XN;
−−→
XF =

̂−−→
XF;
−−−→
XF′ =

̂−−−→
XF′;

−−→
XM. Therefore X is a Morley point associated to (El). �

3. Poncelet-Morley Points

Let (El) be an ellipse with focus F and F′, X an external point of (El), T1 and T2 tangent to (El) respectively at M1 and
M2. X is called Poncelet-Morley point if M̂1XF′ � F̂′XF′ � F̂XM2.

Let us note that a Poncelet-Morley point of the ellipse El is the intersection of two tangents to El. Given any tangent T1 to
an ellipse El, determining a Poncelet-Morley point associated to a giving configuration is equivalent to construct another
tangent T2 to El such that X = T1 ∩ T2 is a Morley point associated to El.

Proposition 2. Let (El) be an ellipse with focus F and F′; M a point of (El). There exist a Poncelet-Morley point
associated to M.

Proof. The proof includes a construction programme of Poncelet-Morney.

Let (El) be an ellipse with focus F and F′. M a point of (El). Let (Tl) be the tangent at M to (T1). Consider A , M a point
of (T1) such that AF′ = FF′ and MA is minimal.

(T1)

(T2)

(∆)
 

F′
 

F

 

M
 

A
 

X

 

N

is on the median line of the segment [AF]. Let X be the intersection of the bisector of angle

Therefore F′ is on the median line of the segment [AF]. Let X be the intersection of the bisector of angle F̂F′A and
(T1). As AF′ = FF′, the triangle ∆AFF′ is isosceles in F′ thus (F′X) is the bisector of angle ÂF′F and median of the
segment [AF]. Therefore the triangle ∆XAF is isosceles in X and then mesM̂XF′ = mesÂXF′ = mesF̂′XF. Let (T2)
be another tangent at N to (El) passing through X and different from (T1). According to the second Poncelet theorem,
mesM̂XF′ = mesF̂′XF = mesF̂XN. Then X is the Poncelet-Morley point of (El) associated M. �

3.1 Number of Poncelet-Morley points associated with a given point of an ellipse

In this section, (El) denotes a non degenerate ellipse of focus F′ and F; (T1) is a tangent at M to (El) and A is an arbitrary
point of (T1) different to M.We denote by [MA) the half-line of (T1) containing A.

Proposition 3. Let (El) be an ellipse of focus F and F′ and M ∈ (El). There exist at most two Poncelet-Morley points
associated to M.

Proof. The proof also gives a construction programme.

The existence of a Poncelet-Morley point associated with M is given by the above proposition. We remark that there is
no Poncelet-Morley point if the bisector of the angle ÂF′F is parallel to (T1).
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The proof also gives a construction programme.
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Let B ∈ (T1) − [MA) such that FB = F′F. As in the proof of the above proposition, the bisector of B̂FF′ intersect
(T1) at a Poncelet-Morley point X2.

 

 

 

 

 

 

 

 

 

As in the proof
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I To place the point B such as FB = F′F.

I To build the bisectrix of the angle B̂FF′.

While reasoning like above, this bisectrix cuts (T1) in another point of Poncelet-Morney.

From where the existence (if possible) of the second point of Poncelet-Morney associated with M.

Suppose that there are three Poncelet-Morley points (X1, X2 ,X3) associated to M. Then two of them are on the
same ray of (T1) with endpoint M. Suppose that X1 and X2 are two such points, then (mesM̂X1F′ = mesF̂′X1F
and mesM̂X2F′ = mesF̂′X2F.) Therefore M′ is symmetric to F relatively to (F′X1) then (FM′)⊥(F′X1). If M”
is symmetric to F relatively to F′X2 then (FM”)⊥(F′X2).This implies that FF′ = M′F′ and FF′ = M”F′ i.e;
FF′ = M”F′ (1).
Since X3 is a Poncelet-Morley point associated to M, M” ∈ (T1). But M′ and M” are on (T1). According to (1), we
conclude that M′ = M”. Therefore X1 = X2.
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One can thus conclude that to each point of (El) we can associate at most two Poncelet-Morley points.

Theorem 4. If X is a Poncelet-Morley point associated with M ∈ (El) and if M′ and X′ are respective images of M and
X relatively to a symmetrical line of (El), then X′ is a Poncelet-Morley point associated with M′.

Proof. Since the orthogonal symmetry preserves the length and the measure of non oriented angle, the image of a tangent
to (El) is another tangent and the image of the bisector of an angle is the bisector of the image of the angle. �

Corollary 1. Given a non degenerated ellipse (El) with focus F and F′, there is an infinity Poncelet-Morley point associ-
ated to (El).

4. Poncelet-morley Point and Angle Trisection Problem

Angle trisection is a classic problem of compass and straightedge constructions of ancient Greek mathematics. It concerns
the construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge,
and a compass. The problem as stated is generally impossible to solve, as shown by Pierre-Laurent Wantzel in 1837;
in (Pierre-LaurentWantzel, 1837). However, although there is no way to trisect an angle in general with just a compass
and a straightedge, some special angles can be trisected; that is the case of a right angle. It is also possible to trisect an
arbitrary angle by using tools other than straightedge and compass; that is the case of neusis construction; which is due to
Archimedes.

Wantzel published his proof earlier in 1837 than Galois’s, whose work was published in 1846. Therefore, his proof did
not use the connection between field extensions and groups that is the subject of Galois theory itself.

According to Andrew M. Gleason in (Andrew M Gleason, 1988), the origin of this problem come from Gauss who
discovered in (Carl Friedrich Gauss, 1966) how to construct a regular 17-gon using only ruler and compass. Gauss
showed (Carl Friedrich Gauss, 1966) that regular polygons with 257 or 65537 sides can be constructed. He also stated
without proof that no other regular polygons are constructible.

In what follows, we use the Poncelet-Morley point associated to any trisection problem of a given angle a cubic equation
and use Galois theory to prove that the problem as stated is generally impossible to solve. If θ is a constructible angle, 3θ
is also (it is the multiplication of the angles by three ). Conversely if 3θ is constructible is it always possible to construct
θ?

Our aim is to see if we can use the Poncelet-Morley point and give a solution to the problem of the trisection. In other
words if ÂBC is an angle is there any ellipse (El) such as B is a Poncelet-Morley point associated with A? The answer to
this question consists in the construction of the focus F and F′ of (El). I Let ÂBC be an acute angle such that AB = BC. I
Let D be a point of segment [BC] and (C) the circle of center A passing through B.The parallel line (∆) with (AB) passing
through D intersect (C) in two points. Indeed if H is the orthogonal projection of B on (∆) then BH < BD < BC = AB
but ÂBC is not a right angle. Consequently d(A, (∆)) = BH < AB = r the radius of the circle (C). Then (∆) meet (C).

I Let F′ be the intersection point of (∆) and (C) such that DF′ is maximal and we note β the angular measure ÂBF′.

I When D covers [BC], β changes between 0 and
α

2
. It can then take the value

α

3
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(∆)

×

A ×

B

× C

×

D
×

H 

F′

Therefore, the map θ : [BC] −→ [0,
α

2
] which for each point D ∈ [BC] associate the measure of ÂBF′, is a bijection. We

can then conclude that for all
α

3
∈ [0,

α

2
] there exist one and only one point D ∈ [BC] such that mesÂBF′ =

α

3
. This

completes the algebraic proof of the existence of the trisection angle, but the trisection problem remains unsolved. That
will be the case if we give the construction programme of the point D.

I Since D ∈ [BC] there exist k ∈]0, 1[ such that D is an image of C by homothety with center B and the ratio k. The
trisection angle problem is then equivalent to the determination of ratio k.

I D is the image of C by the homothety of center B and ratio k;

I Let (∆) be the perpendicular line to (AB) passing through A and (∆1) the parallel line to (AB) passing through D. We
have (∆1)∩ (C) = F′ since DF′ is maximum. Let (∆2) be the perpendicular line to (BC) passing through D.We denote by
(∆′1) the image of (∆1) by the orthogonal symmetry relatively to (∆2). The image of the straight line (AF′) by orthogonal
symmetry relatively to (∆) intersects (∆′1) at F. If k is the solution of the problem, then F and F′ are focus of the ellipse
tangent to (AB) and (BC) respectively at A and D such that angles ÂBF′, F̂′BF; and F̂BC are congruent.

 

k = 0, 81428875

(∆)

(∆1)

(C)

(∆2)

(∆′1)
×

A
×

B

×

C

α = 80◦

×

D

×

F′

β = 26.66◦

×

F

γ = 26.69◦

δ = 26.66◦

If k is the solution of the problem then BD = kAB, since AB = BC. Therefore, in the isosceles triangle ∆ABF′ one
has: BF′ = 2AB cos θ. We deduce that BD2 = BF′2 + DF′2 − 2BF′.DF′ cos θ. This last equality implies that k2AB2 =
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4AB cos2 θ(AB − DF′) + DF′2 (1) Since

DF′2 = BD2 + BF′2 − 2BF′BD cos 2θ
= k2AB2 + 4AB2 cos2 θ − 4kAB2 cos θ cos 2θ (2)

Then, by replacing (2) in (1) we obtain

k2AB2 = 4AB cos2 θ(AB −
√

k2AB2 + 4AB2 cos2 θ − 4kAB2 cos θ cos 2θ)
+ k2AB2 + 4AB2 cos2 θ − 4kAB2 cos θ cos 2θ

i.e; 4AB cos2 θ(AB − AB
√

k2 + 4 cos2 θ − 4k cos θ cos 2θ)
+ 4AB2 cos2 θ − 4kAB2 cos θ cos 2θ = 0

i.e; 4AB2 cos θ[cos θ(1 −
√

k2 − 4k cos θ cos 2θ + 4 cos2 θ) + cos θ − k cos 2θ] = 0

i.e; 2 cos θ − cos θ
√

k2 − 4k cos θ cos 2θ + 4 cos2 θ − k cos 2θ = 0
i.e; 2 cos θ − k cos 2θ = cos θ

√
k2 − 4k cos θ cos 2θ + 4 cos2 θ

i.e; 4 cos2 θ − 4k cos θ cos 2θ + k2 cos2 2θ = cos2 θ(k2 − 4k cos θ cos 2θ + 4cos2θ)
i.e; 4 cos2 θ − 4k cos θ cos 2θ + k2 cos2 2θ = k2 cos2 θ − 4 cos3 θ cos 2θ + 4 cos4 θ

i.e; k2(cos2 2θ − cos2 θ) − 4k(cos θ cos 2θ − cos3 θ cos 2θ) + 4 cos2 θ(1 − cos2 θ) = 0 (E)

Let us denote a(θ) = 3 cos2 θ − 1, b(θ) = −4 cos 2θ(cos θ − cos3 θ) and c(θ) = 4 cos2 θ(1 − cos2 θ). The (E) becomes

a(θ)k2 + b(θ)k + c(θ) = 0

The solutions of this equation depend on cos θ. The trisection angle problem will be solved if we can construct the real
solutions of equation (E). But according to the Galois theory there are many real numbers which cannot be constructed
using only a compass and an unmarked straightedge. This allows us to conclude that The problem as stated is generally
impossible to solve.
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