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Abstract

A parallel algorithm is presented to solve three-dimensional slightly compressible seepage displacement where domain
decomposition and characteristics-mixed finite element are combined. Decomposing the computational domain into sev-
eral subdomains, we define a special function to approximate the derivative at interior boundary explicitly and obtain
numerical solutions of the saturation implicitly on subdomains in parallel. The method of characteristics can confirm
strong stability at the fronts, and can avoid numerical dispersion and nonphysical oscillation. It can adopt large-time step
but can obtain small time truncation error. So a characteristic domain decomposition finite element scheme is put forward
to compute the saturation. The flow equation is computed by the method of mixed finite element and numerical accuracy
of Darcy velocity is improved one order. For a model problem we apply some techniques such as variation form, domain
decomposition, the method of characteristics, the principle of energy, negative norm estimates, induction hypothesis, and
the theory of priori estimates of differential equations to derive optimal error estimate in l2 norm. Numerical example is
given to testify theoretical analysis and numerical data show that this method is effective in solving actual applications.
Then it can solve the well-known problem.

Keywords: slightly compressible oil-water seepage displacement, domain decomposition parallel computation,
characteristics-mixed finite element, optimal error estimate in l2 norm, numerical computation and analysis

1. Mathematical Model and Physical Background

High-pressure pump injects water into oil storage and displaces crude oil out from production wells. This technique
is popular and important in modern oil exploration. The displacement of two phase describes the physical phenomena
how injected water displaces crude oil in reservoir and crude oil is produced. In modern oil recovery we try to make
remaining crude oil out by adopting a third-recovery technique (chemical displacement). It is necessary to consider the
compressibility in numerical simulation to avoid numerical distortion. Douglas and other scholars put forward a miscible
mathematical model with slight-compressibility and discuss the methods of characteristic finite element and characteristic
mixed element, then they give the outline of modern numerical simulation in oil recovery (Douglas, & Roberts, 1983;
Ewing, 1983; Yuan, 1992,1993,2013).

The mathematical model is stated by the following nonlinear system of partial differential equations with initial-boundary
value conditions (Douglas, & Roberts, 1983; Ewing, 1983; Yuan, 1992,1993,2013):

d(c)
∂p
∂t
+ ∇ · u = d(c)

∂p
∂t
− ∇ · (a(c)∇p

)
= q(X, t), X = (x, y, z)T ∈ Ω, t ∈ J = (0,T ], (1a)

u = −a(c)∇p, X ∈ Ω, t ∈ J, (1b)

ϕ
∂c
∂t
+ b(c)

∂p
∂t
+ u · ∇c − ∇ · (D∇c) = (c̃ − c)q̃, X ∈ Ω, t ∈ J, (2)

where Ω is a bounded domain in R3. d(c) = ϕ(X)
2∑

j=1
z jc j, b(c) = ϕ(X)ci{z1 −

2∑
j=1

z jc j}, where c1, c2 denote two different

components of the saturation, and z1, z2 denote the compressibility. Let c = c1 = 1 − c2 denote the first component of the
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saturation at production well. The given function c̄ denotes the saturation of injection well. k(X) denotes the permeability
and µ(c) is the viscosity, then a(c) = k(X)µ−1(c). The porosity, the pressure and the production rate are denoted by
ϕ = ϕ(X), p(X, t) and q(X, t), respectively. q̃ = max{q, 0}. u = u(X, t) is Darcy velocity and D = ϕ(X)dmI, where dm is
diffusion coefficient and I is a unit matrix.

Suppose that the fluid is not permeable at the boundary, that is to say that the following conditions hold

u · ν = 0, X ∈ ∂Ω, t ∈ J, (D∇c − cu) · ν = 0, X ∈ ∂Ω, t ∈ J, (3)

where ν is the normal vector of ∂Ω, the boundary surface of Ω.

Initial conditions are defined by

p(X, 0) = p0(X), X ∈ Ω, c(X, 0) = c0(X), X ∈ Ω. (4)

For two-dimensional incompressible two-phase seepage displacement, Douglas and Ewing et. al. put forward charac-
teristic finite difference and characteristic finite element for periodic problems and give rigorous convergence analysis
(Douglas, & Russell, 1982; Douglas, & Yuan, 1986; Ewing, & Russell, 1983; Ewing, Yuan, & Li,1989; Russell, 1985).
Combining normal finite difference or finite element with the method of characteristics, they present two different com-
posite schemes. These schemes can reflect the first-order hyperbolic nature of convection-diffusion equation, decrease
truncation error, overcome numerical oscillation and dispersion and they can improve the stability and accuracy greatly.
The compressibility must be considered in new numerical simulation of modern enhanced oil displacement (Douglas,
& Roberts, 1983; Yuan, 1992,2013). Under periodic assumption Douglas and Yuan firstly discuss characteristic finite
element and characteristic mixed finite element, obtain optimal order error estimate in L2 norm and give a powerful tool
to solve the well-known problem (Douglas, & Roberts, 1983; Yuan, 1999,2003).

In numerical simulation of modern oil field exploration and development (special for enhanced chemical recovery), the
computation is large-scaled, and it runs not only on a three-dimensional domain but also on a long time interval. Its
nodes amount up to tens of thousands or millions, therefore traditional methods can not solve this problem well. So
new modern parallel computation methods should be introduced (Ewing, 1983; Shen, Liu, & Tang, 2002). Dawson,
Dupont and Du firstly present Galerkin domain decomposition procedure and give convergence analysis (Dawson, &
Du, 1990; Dawson, Du, & Dupont, 1991; Daswon, & Dupont, 1992,1994) for a simple parabolic equation. For heat
conductor transient problem we have published many research results (Yuan, Chang, Li, & Sun, 2015) about domain
decomposition modified by characteristic finite element and characteristic mixed finite element. We have considered the
enhanced oil recovery simulation with incompressible condition and give the primary study (Yuan, Chang, Li, & Sun,
2015). Since computational task of the saturation is dominated and large-scaled in the whole numerical simulation, so
parallel computation of the saturation is considered mainly in this paper. Based on the above research we put forward a
modified characteristic domain decomposition method to solve three-dimensional compressible seepage displacement in
this paper. Decomposing computational domain into several subdomains, we define a special function to approximate the
value at interior boundary explicitly and obtain numerical solution implicitly in parallel in subdomains. The flow equation
is discretized by the method of mixed finite element and the saturation is approximated by a domain decomposition
scheme of modified characteristic finite element. For the model problem we use variation form, domain decomposition,
the characteristics, the principle of energy, induction hypothesis, the theory and technique of priori estimates of partial
differential equations to get optimal order error estimate in L2 norm. Numerical experiment is consistent with theoretical
analysis and confirms that the method is efficient and feasible in actual computation. It is an important and powerful
tool in model analysis, numerical method, principle research and engineering applicable software design of modern oil
reservoir exploration and development and it can solve the well-known problem (Douglas, & Roberts, 1983; Ewing, 1983;
Shen, Liu, & Tang, 2002).

Suppose that exact solutions of (1)-(4) are sufficiently smooth and the coefficients are positive definite

(C) 0 < ϕ∗ ≤ ϕ(X) ≤ ϕ∗, 0 < a∗ ≤ a(c) ≤ a∗, 0 < d∗ ≤ d(c) ≤ d∗, 0 < D∗ ≤ D(X) ≤ D∗,

where ϕ∗, ϕ∗, a∗, a∗, d∗, d∗, D∗ and D∗ are positive constants.

For simplicity we suppose that (1)-(4) is Ω-periodic (Douglas, & Yuan, 1986; Ewing, & Russell, 1982; Ewing, Yuan,
& Li, 1989; Russell, 1985), that is, all the functions are supposed to be Ω-periodic. This assumption is reasonable in
physical science and boundary condition is usually used. In numerical simulation of oil reservoir, boundary condition
affects the interior flow slightly, therefore the condition (3) can be dropped (Douglas, & Yuan, 1986; Ewing, & Russell,
1982; Ewing, Yuan, & Li, 1989; Russell, 1985).
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In the following discussion the symbols K and ε denote a generic positive constant and a generic small positive number,
respectively. They have different definitions at different places.

2. Some Preliminary Notations

For simplicity, decomposeΩ = {(x1, x2, x3)|0 < x1 < 1, 0 < x2 < 1, 0 < x3 < 1} into two subdomainsΩ1 = {(x1, x2, x3)|0 <
x1 < 1/2, 0 < x2 < 1, 0 < x3 < 1}, Ω2 = {(x1, x2, x3)|1/2 < x1 < 1, 0 < x2 < 1, 0 < x3 < 1}, Γ = {(x1, x2, x3)|x1 = 1/2, 0 <
x2 < 1, 0 < x3 < 1} (see Figure. 1).

x2 2

  0     (1/2,0,0)                      x1

(1/2,1,1)

x3

Figure 1. Partition of domain decomposition Ω1,Ω2,Γ

To approximate the normal derivative at Γ, we define two special functions Φ2 and Φ4 as follows (Dawson, & Du, 1990;
Dawson, & Dupont, 1992),

Φ2(x1) =


1 − x1, 0 ≤ x1 ≤ 1,
x1 + 1, −1 ≤ x1 ≤ 0,
0, otherwise.

(5a)

Φ4(x1) =


(x1 − 2)/12, 1 ≤ x1 ≤ 2,
−5x1/4 + 7/6, 0 ≤ x1 ≤ 1,
5x1/4 + 7/6, −1 ≤ x1 ≤ 0,
−(x1 + 2)/12, −2 ≤ x1 ≤ −1,
0, otherwise.

(5b)

Note that if p(x1) is a polynomial of degree at most one, then∫ ∞

−∞
p(x1)Φ2(x1)dx1 = p(0), (6a)

and if p(x1) is a polynomial of degree at most three, then∫ ∞

−∞
p(x1)Φ4(x1)dx1 = p(0). (6b)

Definition 1: For H ∈ (0, 1
2 ), define

Φ(x1) = Φm((x1 − 1/2)/H)/H, m = 2, 4. (7)

Let Nh, j denote a finite-dimensional finite element space of H1(Ω j)( j = 1, 2), and let Nh(Ω) be an l-dimensional subspace
of L2(Ω). Moreover, for a function v ∈ Nh, then v|Ω j ∈ Nh, j. [v], the jump of v ∈ Nh(Ω) at interior boundary Γ, is defined
by

[v]( 1
2 ,x2,x3) = v(

1
2
+ 0, x2, x3) − v(

1
2
− 0, x2, x3). (8)

Definition 2: A bilinear function D̄(u, v) is defined by

D̄(u, v) =
∫
Ω1∪Ω2

D(X)∇u · ∇vdx1dx2dx3 + λ

∫
Ω1∪Ω2

uvdx1dx2dx3, (9)

where u, v ∈ H1(Ω j), j = 1, 2. D(X) is a positive definite function, DT = 1 and λs is a positive constant.
Definition 3: An integral operator is defined to approximate normal derivative at interior boundary,

B(ψ)(
1
2
, x2, x3) = −

∫ 1

0
Φ′(x1)ψ(x1, x2, x3)dx1, (10)
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where Φ(x1) is defined by (7).

Let (·, ·) denote inner product in L2(Ω1 ∪ Ω2), and omit the subscript (ψ, ρ) = (ψ, ρ)Ω on Ω = Ω1 ∪ Ω2. For a function ψ
in H1(Ω1) and H1(Ω2), define

|||ψ|||2 = D̄(ψ, ψ) + H−1||D[ψ]||2L2(Γ). (11)

Noting that

(D(x1, x2, x3)B(ψ), [ψ])Γ = −
∫ 1

0

∫ 1

0
D(

1
2
, x2, x3)

∫ 1

0
Φ′(x1)ψ(x1, x2, x3)dx1[ψ](

1
2
, x2, x3)dx2dx3,∫ 1

0
Φ′(x1)ψ(x1, x2, x3)dx1 = ψ(x1, x2, x3)Φ(x1)

∣∣∣∣1
0
−

∫ 1

0
Φ(x1)ψx1 (x1, x2, x3)dx1

= − 1
H

[ψ](
1
2
, x2, x3) −

∫ 1

0
Φ(x1)ψx1 (x1, x2, x3)dx1,

then, we have

(D(x1, x2, x3)B(ψ), [ψ])Γ =
1
H

∫ 1

0

∫ 1

0
D(

1
2
, x2, x3)[ψ]2(

1
2
, x2, x3)dx2dx3

+

∫ 1

0

∫ 1

0
D(

1
2
, x2, x3)

∫ 1

0
Φ(x1)ψx1 (x1, x2, x3)dx1[ψ](

1
2
, x2, x3)dx2dx3.

(12)

Rewrite the second term of the above expression as follows,∫ 1

0

∫ 1

0
D1/2(

1
2
, x2, x3)

∫ 1
2+H

1
2−H

D1/2(
1
2
, x2, x3)Φ(x1)ψx1 (x1, x2, x3)dx1[ψ](

1
2
, x2, x3)dx2dx3

≤
∫ 1

0

∫ 1

0
D1/2(

1
2
, x2, x3)

( ∫ 1

0
Φ2(x1)dx1

)1/2( ∫ 1
2+H

1
2−H

D(
1
2
, x2, x3)ψ2

x1
(x1, x2, x3)dx1

)1/2

· [ψ](
1
2
, x2, x3)dx2dx3

≤
(

2
3H

)1/2 (∫ 1

0

∫ 1

0
D(

1
2
, x2, x3)[ψ]2(

1
2
, x2, x3)dx2dx3

)1/2

·
∫ 1

0

∫ 1

0

∫ 1
2+H

1
2−H

D(
1
2
, x2, x3)ψ2

x1
(x1, x2, x3)dx1dx2dx3

1/2

.

Note an equivalent formulation of D( 1
2 , x2, x3),

D(
1
2
, x2, x3) = D(x1, x2, x3) + (x1 −

1
2

)
∂D
∂x1

(ξ1(x1), x2, x3),

where (x1 − 1
2 ) ∂p

∂x1
(ξ1(X), x2, x3) is the value of Taylor remainder and ξ1(X) is a point between 1

2 and x1. Then∫ 1

0

∫ 1

0

∫ 1
2+H

1
2−H

D(
1
2
, x2, x3)ψ2

x1
(x1, x2, x3)dx1dx2dx3

=

∫ 1

0

∫ 1

0

∫ 1
2+H

1
2−H

[
D(x1, x2, x3) + (x1 −

1
2

)
∂D
∂x1

(ξ1(x1), x2, x3)
]
ψ2

x1
(x1, x2, x3)dx1dx2dx3

≤ (1 + M∗H)
∫ 1

0

∫ 1

0

∫ 1
2+H

1
2−H

D(x1, x2, x3)ψ2
x1

(x1, x2, x3)dx1dx2dx3,

where M∗ = max
x1 ∈ ( 1

2 − H, 1
2 + H)

(x2, x3) ∈ (0, 1) × (0, 1)

∣∣∣∣ ∂D
∂x1

(ξ(x1),x2,x3)
∣∣∣∣

D(x1,x2,x3) .

Therefore, there exists a positive constant M0 such that

D̄(ψ, ψ) + (DB(ψ), [ψ])Γ ≥
1

M0
|||ψ|||2, (13a)

146



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 1; 2017

i.e.,
|||ψ|||2 ≤ M0

{
D̄(ψ, ψ) + (DB(ψ), [ψ])Γ

}
. (13b)

Similarly, we have the following estimates for 0 ≤ t ≤ T

||B(ψ)||2L2(Γ) ≤ M1H−3||ψ||20, (14a)

||B(ψ)||L2(Γ) ≤ M2H−1||ψ||0,∞, (14b)∣∣∣∣∣∣∣∣∣∣∂u(·, t)
∂γ

− B(u)(·, t)
∣∣∣∣∣∣∣∣∣∣

L2(Γ)
≤ M3Hm, (14c)

where M1,M2,M3 are positive constants, m = 2, 4, and ∂u
∂γ

denotes the normal derivative of u across interior boundary Γ.

3. Modified Characteristic Mixed Finite Element Domain Decomposition Procedure

The variation of (2) is defined by(
ϕ
∂c
∂t
, v

)
+ (u · ∇c, v) + (D∇c,∇v) +

(
b(c)

∂p
∂t
, v

)
+

(
D
∂c
∂n
, [v]

)
Γ

= (g(c), v) , v ∈ N(Ω), (15a)

c(X, 0) = c0(X), X ∈ Ω, (15b)

where (ψ, v) =
∫
Ω1∪Ω2

ψvdx1dx2dx3, (ψ, v)Γ =
∫
Γ
ψvdx2dx3, g(c) = (c̃ − c)q.

The pressure is solved by the method of mixed finite element. For a vector f = ( f1, f2, f3)T , define two spaces H̃(div,Ω) =
{ f : f1, f2, f3,∇ · f ∈ L2(Ω), periodic} and L̃2(Ω) = {g : g ∈ L2(Ω), periodic}. For convenience we omit the symbol ”∼” and
let V = H(div;Ω), W = L2(Ω). Considering the equations on Ω1, Ω2, we introduce the following compatibility condition

p1 = p2, u1 · n1 + u2 · n2 = 0, X ∈ Γ, (16)

where n1, n2 are unit normal directions of Ω1,Ω2 at Γ. Let Wi = L2(Ωi), Vi = H(div;Ωi) and Λ = {v : v|Γ ∈ L2(Γ),Γ , Ø},
then we get the following variation of (1) on subdomains Ωi(i = 1, 2)(

d(c)
∂p
∂t
,w

)
Ωi

+ (∇ · u,w)Ωi
= (q,w)Ωi

, ∀w ∈ Wi, (17a)(
a−1(c)u, z

)
Ωi
− (∇ · z, p)Ωi

+ (p, z · ni)Γ = 0, ∀z ∈ Vi, (17b)

(β, u1 · n1 + u2 · n2)Γ = 0, ∀β ∈ Λ, (17c)

Making summation of (17a) and (17b) on i = 1, 2, we get the variation of (1) on the whole domain Ω(
d(c)

∂p
∂t
,w

)
+ (∇ · u,w) = (q,w) , ∀w ∈ W, (18a)

(
a−1(c)u, z

)
− (∇ · z, p) +

2∑
i=1

(
p, z(i) · ni

)
Γ
= 0, ∀z ∈ V, (18b)

(β,u1 · n1 + u2 · n2)Γ = 0, ∀β ∈ Λ, (18c)

where z(i) = z|Γi and Γi = Γ ∩ ∂Ωi.

The elliptic projections of the saturation, Darcy velocity and the pressure are defined as follows.

Definition 4: The elliptic projection of c(X, t) is defined by c̃(X, t) : J → Nh

(D(X)(c̃ − c),∇vh) + λ (c̃ − c, vh) = 0, ∀vh ∈ Nh, (19)

where λ is a positive constant.

Definition 5: The projections of u(X, t) and p(X, t) are defined by {ũ, p̃} : J → Wh × Vh(
d(c)

∂p
∂t
,wh

)
+ (∇ · ũ,wh) = (q,wh) , ∀wh ∈ Wh, (20a)(

a−1(c)ũ, vh

)
− (∇ · vh, p̃) = 0, ∀vh ∈ Vh, (20b)

( p̃, 1) = (p, 1) , (20c)
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where Wh × Vh is Raviart-Thomas space with the index k and the mesh step hp. The approximations are stated as follows
(Ewing, Russell, & Wheeler, 1984; Raviart, & Thomas, 1977)

inf
vh∈Vh
||v − vh||L2(Ω) ≤ K ||v||k+2 hk+1

p , (21a)

inf
vh∈Vh
||∇ · (v − vh)||0 ≤ K {||v||k+1 + ||∇ · v||k+1} hk+1

p , (21b)

inf
wh∈Wh

||w − wh||0 ≤ K ||w||k+1 hk+1
p . (21c)

Lemma 1. By using Galerkin method we get error estimate of elliptic projection for the saturation (Ewing, & Wheeler,
1981; Wheeler, 1973) in the finite element space Nh with the index l and the mesh step hc,

||c − c̃||0 + hc ||c − c̃||1 ≤ K ||c||l+1 hl+1
c , (22a)∣∣∣∣∣∣∣∣∣∣∂(c − c̃)

∂t

∣∣∣∣∣∣∣∣∣∣
0
+ hc

∣∣∣∣∣∣∣∣∣∣∂(c − c̃)
∂t

∣∣∣∣∣∣∣∣∣∣
1
≤ K

{
||c||l+1 +

∣∣∣∣∣∣∣∣∣∣∂c
∂t

∣∣∣∣∣∣∣∣∣∣
l+1

}
hl+1

c . (22b)

Lemma 2. By Brezzi theory (Brezzi, 1974; Ciarlet, 1978) we get error estimates of mixed finite element elliptic projec-
tions for Darcy and the pressure

||u − ũ||V + ||p − p̃||W ≤ K ||p||k+3 hk+1
p , (23a)∣∣∣∣∣∣∣∣∣∣∂(u − ũ)

∂t

∣∣∣∣∣∣∣∣∣∣
V
+

∣∣∣∣∣∣∣∣∣∣∂(p − p̃)
∂t

∣∣∣∣∣∣∣∣∣∣
W
≤ K

{
||p||k+3 +

∣∣∣∣∣∣∣∣∣∣∂p
∂t

∣∣∣∣∣∣∣∣∣∣
k+3

}
hk+1

p . (23b)

Considering that the fluid flows along the characteristics ϕρ ∂c
∂t + u · ∇c, so we introduce the method of characteristics.

Define ψ = [ϕ2 + |u|2]1/2 and ∂
∂τ
= ψ−1{ϕ ∂

∂t + u · ∇}. The characteristics depends on c, p and Darcy velocity u. Then (2) is
expressed by

ψ
∂c
∂τ
+ b

∂p
∂t
− ∇ · (D∇c) = g(c), (X, t) ∈ Ω × J. (24)

Let Nh ⊂ N denote an l-dimensional subspace with mesh step hc, Wh × Vh denote a k-order Raviart-Thomas mixed finite
element space with hp, and let Λh = {β : β|Γ ∈ Pk(Γ)} denote a subspace of Λ.

The parallel procedures of characteristic mixed element are stated as follows. Given numerical solutions {Pn
h,U

n
h,C

n
h} ∈

Wh × Vh × Nh at tn, we find numerical solutions at tn+1, {Pn+1
h ,Un+1

h } ∈ Wh × Vh, Cn+1
h ∈ Nh, n = 0, 1, 2, · · · , by

U0
h = ũ0, P0

h = p̃0, (25a)d(Cn
h)

Pn+1
h − Pn

h

∆t
,wh

 + (
∇ · Un+1

h ,wh

)
= (q,wh) , wh ∈ Wh, n ≥ 0, (25b)

(
a−1(Cn

h)Un
h, zh

)
−

(
∇ · zh, Pn+1

h

)
+

2∑
i=1

(
Pn+1

h , z(i)
h · ni

)
Γ
= 0, ∀zh ∈ Vh, (25c)(

β,Un+1
1 · n1 + Un+1

2 · n2

)
Γ
= 0, ∀β ∈ Λh, (25d)

where Un+1
i = Un+1|Γi , z(i)

h = zh|Γi , Γi = Γ ∩ ∂Ωi, i = 1, 2.

C0
h = c̃0, (26a)ϕCn+1

h − Ĉn
h

∆t
, vh

 + (
D∇Cn+1

h ,∇vh

)
+

b(Cn
h)

Pn+1
h − Pn

h

∆t
, vh

 + (
DB(Cn

h), [vh]
)
Γ

=
(
g(Cn

h), vh

)
, vh ∈ Nh, (26b)

where Ĉn
h = Cn

h(X̂n), X̂n = X − ϕ−1Un+1
h ∆t.

The program runs as follows to obtain numerical solutions U0
h, P

0
h,C

0
h,U

1
h, P

1
h,C

1
h, · · · . If {Un

h, P
n
h,C

n
h} is given at t = tn,

then we get {Un+1
h , Pn+1

h } by (25b)-(25d). Then we get X̂n and Ĉn
h. It continues to compute B(Cn

h) by (10). By the definition
of Nh = Nh,1 ∪ Nh,2, the problem is decomposed into two independent subproblems on subdomains, then the saturation is
solved in parallel. The solutions exist and are sole according to (C).
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4. Numerical Analysis of a Model Problem

In this section, we show how to finish the convergence analysis and error estimate of the composite method. For conve-
nience, we only discuss a model problem by simplifying the coefficients and descriptions. Suppose that the problem is
incompressible, a(c) = k(X)µ−1(c) ≈ k(X)µ−1

0 = a(X), i.e. the viscosity µ(c) is approximately taken as a constant such as
the displacement of lower seepage (Douglas, & Roberts, 1983; Yuan, 2001). Then (1) and (2) are degraded into

d(c)
∂p
∂t
+ ∇ · u = q, (X, t) ∈ Ω × J, (27a)

u = −a(X)∇p, (X, t) ∈ Ω × J, (27b)

ϕ(X)
∂c
∂t
+ b(c)

∂p
∂t
+ u · ∇c − ∇ · (D∇c) = g(c), (X, t) ∈ Ω × J. (28)

The variation of (27) at saddle point is formulated as follows(
d(c)

∂p
∂t
,w

)
+ (∇ · u,w) = (q,w) , ∀w ∈ W, (29a)(

a−1u, z
)
− (∇ · z, p) = 0, ∀z ∈ V. (29b)

The parallel algorithm of characteristic mixed element is defined as follows. If {Pn
h,U

n
h,C

n
h} ∈ Wh × Vh × Nh is given at

t = tn, then we find {Pn+1
h ,Un+1

h ,Cn+1
h } ∈ Wh × Vh × Nh at t = tn+1 by the following proceduresd(Cn

h)
Pn+1

h − Pn
h

∆t
,wh

 + (
∇ · Un+1

h ,wh

)
=

(
qn+1,wh

)
, ∀wh ∈ Wh, (30a)(

a−1Un+1
h , zh

)
−

(
∇ · zh, Pn+1

h

)
= 0, ∀zh ∈ Vh, (30b)ϕCn+1

h − Ĉn
h

∆t
, vh

 + (
D∇Cn+1

h ,∇vh

)
+

b(Cn
h)

Pn+1
h − Pn

h

∆t
, vh

 + (
DB(Cn

h), [vh]
)

=
(
g(Cn

h), vh

)
, ∀vh ∈ Nh.

(31)

An elliptic projection of the flow is defined to find {ũ, p̃} : J → Wh × Vh for t ∈ J = (0,T ] satisfying the following
equations (

d(c)
∂p
∂t
,wh

)
+ (∇ · ũ,wh) =

(
qn+1,wh

)
, ∀wh ∈ Wh, (32a)(

a−1ũ, zh

)
− (∇ · zh, p̃) = 0, ∀zh ∈ Vh, (32b)

(p̃, 1) = (p, 1) . (32c)

In this section we pay more attention on convergence discussion of the scheme (30), (31) of the model (27), (28). For
convenience to discuss error estimate, we denote error functions by ζ = c − C̃, ξ = C̃ − Ch, η = P − P̃, π = P̃ − Ph,
α = u − ũ and σ = ũ − Uh. From theoretical results of mixed element (Ciarlet, 1978; Ewing, & Wheeler, 1981; Wheeler,
1973), we get

||α||H(div;Ω) + ||η||0 ≤ K ||p||k+3 hk+1
p , (33a)∣∣∣∣∣∣∣∣∣∣∂α∂t

∣∣∣∣∣∣∣∣∣∣
H(div;Ω)

+

∣∣∣∣∣∣∣∣∣∣∂η∂t

∣∣∣∣∣∣∣∣∣∣
0
≤ K

{
||p||k+3 +

∣∣∣∣∣∣∣∣∣∣∂p
∂t

∣∣∣∣∣∣∣∣∣∣
k+3

}
hk+1

p . (33b)

Subtracting (30a) (t = tn+1) from (32a), defining test function by dtπ
n = {πn+1 − πn}/∆t, we have(

d(Cn
h)dtπ

n, dtπ
n
)
+

(
∇ · σn+1, dtπ

n
)

=

(
(d(Cn

h) − d(cn+1))
∂ p̃n+1

∂t
, dtπ

n
)
−

(
d(Cn

h)
[ p̃n+1 − p̃n

∆t
− ∂p̃n+1

∂t

]
, dtπ

n
)
−

(
d(cn+1)

[∂pn+1

∂t
− ∂ p̃n+1

∂t

]
, dtπ

n
)
.

(34)

Combining (32b) (t = tn+1) and (30b), and taking zh = σ
n+1, we have(

dt(a−1σn), σn+1
)
−

(
∇ · σn+1, dtπ

n
)
= 0. (35a)
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Noting that
dt

(
a−1σn, σn

)
= 2

(
dt(a−1σn), σn+1

)
− 1
∆t

(
a−1(σn+1 − σn), (σn+1 − σn)

)
, (35b)

and 1
∆t

(
a−1(σn+1 − σn), (σn+1 − σn)

)
≥ 0, we have

1
2

dt

(
a−1σn, σn

)
−

(
∇ · σn+1, dtπ

n
)
≤ 0. (36)

Adding (34) and (36), (
d(Cn

h)dtπ
n, dtπ

n
)
+

1
2

dt

(
a−1σn, σn

)
≤

(
(d(Cn

h) − d(cn+1))
∂ p̃n+1

∂t
, dtπ

n
)
−

(
d(Cn

h)
[ p̃n+1 − p̃n

∆t
− ∂ p̃n+1

∂t

]
, dtπ

n
)

−
(
d(cn+1)

[∂pn+1

∂t
− ∂ p̃n+1

∂t

]
, dtπ

n
)
.

(37)

Now each term on the right-hand side of (37) is estimated.∣∣∣∣∣∣
(
(d(Cn

h) − d(cn+1))
∂ p̃n+1

∂t
, dtπ

n
)∣∣∣∣∣∣ ≤ ε ||dtπ

n||2 + K
{
||ξn||2 + h2(l+1)

c + (∆t)2
}
, (38a)∣∣∣∣∣∣

(
d(Cn

h)
[ p̃n+1 − p̃n

∆t
− ∂ p̃n+1

∂t

]
, dtπ

n
)∣∣∣∣∣∣ ≤ ε ||dtπ

n||2 + K(∆t)2, (38b)∣∣∣∣∣∣
(
d(cn+1)

[∂pn+1

∂t
− ∂ p̃n+1

∂t

]
, dtπ

n
)∣∣∣∣∣∣ ≤ ε ||dtπ

n||2 + Kh2(k+1)
p . (38c)

Applying (38a)-(38c) and the positive definite condition (C) in (37), we have

||dtπ
n||2 + dt

(
a−1σn, σn

)
≤ K

{
||ξn||2 + h2(l+1)

c + h2(k+1)
p + (∆t)2

}
. (39)

Multiplying both sides of (39) by ∆t, and summing them on t (1 ≤ n ≤ L − 1), we obtain

L−1∑
n=0

||dtπ
n||2 ∆t +

(
a−1σL, σL

)
≤ K

 L∑
n=0

||ξn||2 ∆t + h2(l+1)
c + h2(k+1)

p + (∆t)2

 . (40)

The saturation equation is considered later. Subtracting (31) from (15) (t = tn+1) and using (19) (t = tn+1), we have(
ϕ
∂cn+1

∂t
+ un+1 · ∇cn+1, vh

)
−

ϕCn+1
h − Ĉn

h

∆t
, vh

 + (
D∇cn+1,∇vh

)
−

(
D∇Cn+1

h ,∇vh

)
+

(
b(cn+1)

∂pn+1

∂t
, vh

)
−

b(Cn
h)

Pn+1
h − Pn

h

∆t
, vh

 + (
D
∂cn+1

∂γ
, [vh]

)
Γ

−
(
DB(Cn

h), [vh]
)
Γ

=
(
g(cn+1) − g(Cn

h), vh

)
.

(41)

Substituting the following results in (41),(
ϕ
∂cn+1

∂t
+ un+1 · ∇cn+1, vh

)
−

ϕCn+1
h − Ĉn

h

∆t
, vh


=

([
ϕ
∂cn+1

∂t
+ un+1 · ∇cn+1 − ϕcn+1 − ĉn

∆t

]
, vh

)
+

ϕ cn+1 − ĉn

∆t
−

Cn+1
h − Ĉn

h

∆t

 , vh


+

(
(un+1 − Un

h) · ∇cn+1, vh

)
, (42a)(

D
∂cn+1

∂γ
, [vh]

)
Γ

−
(
DB(Cn

h), [vh]
)
Γ
=

(
D

[
∂cn+1

∂γ
− ∂cn

∂γ

]
, [vh]

)
Γ

+

(
D

[
∂cn

∂γ
− B(Cn

h)
]
, [vh]

)
Γ

+ (DB(ζn), [vh])Γ + (DB(ξn), [vh])Γ , (42b)
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and taking vh = ξ
n+1, using the elliptic projection (19), we have

(
ϕ
ξn+1 − ξn

∆t
, ξn+1

)
+

(
D∇ξn+1,∇ξn+1

)
+ λ

(
ξn+1, ξn+1

)
+

(
DB(ξn+1), [ξn+1]

)
Γ

=

([
ϕ
∂cn+1

∂t
+ un+1

h · ∇cn+1
]
− ϕcn+1 − ĉn

∆t
, ξn+1

)
+

(
ϕ
ξ̂n − ξn

∆t
, ξn+1

)
−

(
ϕ
ζn+1 − ζ̂n

∆t
, ξn+1

)
−

(
(un+1 − Un

h) · ∇cn+1, ξn+1
)
+

(
g(cn+1) − g(Cn

h), ξn+1
)
−

(
D

[
∂cn+1

∂γ
− ∂cn

∂γ

]
, [ξn+1]

)
Γ

+

(
D

[
∂cn

∂γ
− B(Cn

h)
]
, [ξn+1]

)
Γ

−
(
DB(ζn), [ξn+1]

)
Γ
+

(
DB(ξn+1 − ξn), [ξn+1]

)
Γ

−
b(cn+1)

∂pn+1

∂t
− b(Cn

h)
Pn+1

h − Pn
h

∆t
, ξn+1

 + λ (
ξn+1, ξn+1

)
+ λ

(
ζn+1, ξn+1

)
.

(43)

The terms on the left-hand side of (43) are discussed as follows

(
ϕ
ξn+1 − ξn

∆t
, ξn+1

)
=

1
2∆t

{∣∣∣∣∣∣ϕ1/2ξn+1
∣∣∣∣∣∣2 − ∣∣∣∣∣∣ϕ1/2ξn

∣∣∣∣∣∣2} + 1
2∆t

∣∣∣∣∣∣ϕ1/2(ξn+1 − ξn)
∣∣∣∣∣∣2 , (44a)(

D∇ξn+1,∇ξn+1
)
+ λ

(
ξn+1, ξn+1

)
+

(
DB(ξn+1), [ξn+1]

)
Γ
≥ M−1

0

∣∣∣∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣∣∣∣2 , (44b)

where M0 is a positive constant.

Then the right-hand terms of (43) are discussed. Using (14), we have

(
DB(ξn+1 − ξn), [ξn+1]

)
Γ
≤ M1

∣∣∣∣∣∣B(ξn+1 − ξn)
∣∣∣∣∣∣

L2(Γ) ·
∣∣∣∣∣∣[ξn+1]

∣∣∣∣∣∣
L2(Γ)

≤ M1H−3/2
∣∣∣∣∣∣ξn+1 − ξn

∣∣∣∣∣∣ · H1/2
∣∣∣∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣∣∣∣ ≤ M1H−2
∣∣∣∣∣∣ξn+1 − ξn

∣∣∣∣∣∣2 + ε ∣∣∣∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣∣∣∣2 , (45a)(

D
[
∂cn+1

∂γ
− ∂cn

∂γ

]
, [ξn+1]

)
Γ

≤ M2

∣∣∣∣∣∣
∣∣∣∣∣∣∂cn+1

∂γ
− ∂cn

∂γ

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(Γ)
·
∣∣∣∣∣∣[ξn+1]

∣∣∣∣∣∣
L2(Γ)

≤ M2∆tH1/2ε
∣∣∣∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣∣∣∣ ≤ M2(∆t)2H + ε
∣∣∣∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣∣∣∣2 , (45b)(
D

[
∂cn

∂γ
− B(Cn

h)
]
, [ξn+1]

)
Γ

≤ M3H2m−1 + ε
∣∣∣∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣∣∣∣2 , (45c)(
DB(ζn), [ξn+1]

)
Γ
≤ M4H−2 ||ζn||2 + ε

∣∣∣∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣∣∣∣ ≤ M4H−2h2(l+1)

c + ε
∣∣∣∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣∣∣∣2 , (45d)

where Mi(i = 1, 2, 3, 4) are positive constants.

If the following constraint condition holds for sufficiently small ∆t

∆t ≤ M−1
1 H2, hl+1

c = o(H), (46)

then

1
2∆t

∣∣∣∣∣∣ϕ1/2(ξn+1 − ξn)
∣∣∣∣∣∣2 ≥ M1H−2

∣∣∣∣∣∣ξn+1 − ξn
∣∣∣∣∣∣2 . (47)

An induction hypothesis is introduced

sup
0≤n≤L

||σn||0,∞ → 0, sup
0≤n≤L

||ξn||0,∞ → 0, (hp, hc)→ 0. (48)
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By using (48) we get estimates of the other terms on the right-hand side of (43) as follows∣∣∣∣∣∣
([
ϕ
∂cn+1

∂t
+ un+1

h · ∇cn+1
]
− ϕcn+1 − ĉn

∆t
, ξn+1

)∣∣∣∣∣∣ ≤ K

∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2c
∂τ2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(tn,tn+1;L2(Ω))

+
∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2 , (49a)∣∣∣∣∣∣
(
ϕ
ξ̂n − ξn

∆t
, ξn+1

)∣∣∣∣∣∣ ≤ K ||ξn||2 + ε
∣∣∣∣∣∣∇ξn+1

∣∣∣∣∣∣2 , (49b)∣∣∣∣∣∣
(
ϕ
ζn+1 − ζ̂n

∆t
, ξn+1

)∣∣∣∣∣∣ ≤ K

(∆t)−1

∣∣∣∣∣∣
∣∣∣∣∣∣∂2ζ

∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(tn,tn+1;L2(Ω))

+
∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2 + ||ξn||2
 + ε ∣∣∣∣∣∣∇ξn+1

∣∣∣∣∣∣2 , (49c)∣∣∣∣∣∣
b(cn+1)

∂pn+1

∂t
− b(Cn

h)
Pn+1

h − Pn
h

∆t
, ξn+1

∣∣∣∣∣∣
≤ ε ||dtπ

n||2 + K
{∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2 + ||ξn||2 + (∆t)2 + h2(l+1)
c + h2(k+1)

p

}
, (49d)∣∣∣∣λ (

ξn+1, ξn+1
)
+ λ

(
ζn+1, ξn+1

)∣∣∣∣ ≤ K
{
h2(l+1)

c +
∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2} , (49e)∣∣∣∣((un+1 − Un
h) · ∇cn+1, ξn+1

)∣∣∣∣ ≤ K
{∣∣∣∣∣∣σn+1

∣∣∣∣∣∣2 + h2(k+1)
p +

∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣2} , (49f)∣∣∣∣(g(cn+1) − g(Cn

h), ξn+1
)∣∣∣∣ ≤ K

{
(∆t)2 + h2(l+1)

c + ||ξn||2 +
∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2} . (49g)

Collecting all the estimates (44)-(49) for (43), we have

1
2∆t

{∣∣∣∣∣∣ϕ1/2ξn+1
∣∣∣∣∣∣2 − ∣∣∣∣∣∣ϕ1/2ξn

∣∣∣∣∣∣2} + 1
M0

∣∣∣∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣∣∣∣2

≤ ε
∣∣∣∣∣∣∇ξn+1

∣∣∣∣∣∣2 + ε ||dtπ
n||2 + K

{
(∆t)−1

∣∣∣∣∣∣
∣∣∣∣∣∣∂2ζ

∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(tn,tn+1;L2(Ω))

+ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣∂2c
∂τ2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(tn,tn+1;L2(Ω))

+ h2(k+1)
p + h2(l+1)

c + (∆t)2 + (∆t)2H + H−2h2(l+1)
c + H2m+1 +

∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣2 + ||ξn||2 +

∣∣∣∣∣∣σn+1
∣∣∣∣∣∣2 }

.

(50)

Applying (22) in (50), multiplying the resulting expression by 2∆t, summing them on n (0 ≤ n ≤ L − 1), and noting that
ξ0 = 0, we have

∣∣∣∣∣∣ξL
∣∣∣∣∣∣2 + L−1∑

n=0

∣∣∣∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣∣∣∣2 ∆t

≤ ε
L−1∑
n=0

||dtπ
n||2 ∆t + K

{ L∑
n=0

{ ||ξn||2 + ||σn||2 }
∆t + (∆t)2 + h2(k+1)

p + h2(l+1)
c + H−2h2(l+1)

c + H2m+1
}
.

(51)

Then it follows from (40) and (51),

L−1∑
n=0

||dtπ
n||2 ∆t +

L∑
n=0

|||ξn|||2 ∆t +
∣∣∣∣∣∣σL

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξL
∣∣∣∣∣∣2

≤ K
{ L∑

n=0

{ ||ξn||2 + ||σn||2 }
∆t + (∆t)2 + h2(k+1)

p + h2(l+1)
c + H−2h2(l+1)

c + H2m+1
}
.

(52)

Using Gronwall Lemma, we have

L−1∑
n=0

||dtπ
n||2 ∆t +

L∑
n=0

|||ξn|||2 ∆t +
∣∣∣∣∣∣σL

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξL
∣∣∣∣∣∣2

≤ K
{
(∆t)2 + h2(k+1)

p + h2(l+1)
c + H−2h2(l+1)

c + H2m+1
}
. (53)

It remains to testify the hypothesis (48). As n = 0, it is true because of ξ0 = 0 and σ0 = 0. If (48) holds for 0 ≤ n ≤ L− 1.
For n = L and k, l ≥ 1, we get the conclusion from (53) and the following constraint

∆t = o(h3/2
c ), hc ∼ hp, H−1hl+1

c = o(h3/2
c ), Hm+1/2 = o(h3/2

c ). (54)
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From (53), (22) and (33), we obtain the following convergence theorem.

Theorem 1 Suppose that (27) and (28) are positive definite (C), and suppose that exact solutions are suitably regular,
p ∈ L∞(J; Wk+3(Ω)), c ∈ L∞(J; W l+1(Ω)), ∂2c

∂τ2 ∈ L∞(J; L∞(Ω)). Numerical solutions are obtained in parallel by using
the procedures (30) and (31) on Ω1,Ω2. If the constraints (46) and (54) hold, then we have the following estimates for
k, l ≥ 1,

||p − Ph||L̄∞(J;W) + ||dt(p − Ph)||L̄∞(J;L2(Ω)) + ||u − Uh||L̄∞(J;V) + ||c −Ch||L̄∞(J;L2(Ω))

+ |||c −Ch|||L̄2(J;W̄)

≤ K∗
{
∆t + Hm+1/2 + hk+1

p + hl+1
c + H−1hl+1

c

}
,

(55)

where ||g||L̄∞(J;X) = sup
n∆t≤T

||gn||X , ||g||L̄2(J;L2(Ω)) = sup
N∆t≤T

{
N∑

n=0
||gn||2 ∆t

}1/2

, ||g||L̄2(J;W̄) = sup
N∆t≤T

{
N∑

n=0
|||gn|||2 ∆t

}1/2

, the constant

K∗ depends on p, c and their derivatives. Note. The method discussed above can be used by decomposing the whole

domain Ω into several subdomains such as four subdomains in Fig. 2, Ω =
4∪

i=1
Ωi. Therefore, it is important in solving

actual problems numerically.

 

 

Figure 2. Subdomains decomposition of a 3-D domain, Ω =
4∪

i=1
Ωi

4. Numerical Experiment

In this section we give a numerical example to testify the parallel scheme. Consider the following model

∂p
∂t
+
∂

∂x

(
(1 + p)

∂p
∂x

)
= g(x, t), 0 < x < 1, 0 < t ≤ T, (56a)

u = −(1 + p)
∂p
∂x
, 0 < x < 1, 0 < t ≤ T, (56b)

(1 + p)
∂c
∂t
+ u

∂c
∂x
− ∂

∂x

(
D(x, t)

∂c
∂x

)
= f (c, x, t), 0 < x < 1, 0 < t ≤ T, (57)

p(x, 0) = x2, 0 ≤ x ≤ 1, (58a)
c(x, 0) = cos(2π), 0 ≤ x ≤ 1, (58b)

∂p
∂x

(0, t) = 0,
∂p
∂x

(1, t) = 2et, 0 ≤ t ≤ T, (59a)

∂c
∂x

(0, t) =
∂c
∂x

(1, t) = 0, 0 ≤ t ≤ T. (59b)

Take D(x, t) = 0.01x2e2t, c = et cos(2πx), p = x2et, f = (1+x2et)et cos(2πx)+4πxe2t(1+x2et) sin(2πx)+0.04πxe3t sin(2πx)+
0.04π2x2e3t cos(2πx), H = 4h, ∆tc = 1

12 h2, ∆tp = 4∆tc, T = 0.25. Consider a simple test space with m = 2, k = 1 and
l = 1. The spacial interval [0, 1] is divided into two subdomians [0, 1

2 ] and [ 1
2 , 1]. Absolute errors of the saturation c and

the pressure p at different nodes are shown in Table 1 and Table 2.

Table 1. Error of c, ||c −Ch||
x = 0.05 x = 0.25 x = 0.45 x = 0.55 x = 0.75 x = 0.95

h = 1/40 64.3205e − 3 1.1178e − 3 64.1035e − 3 64.3205e − 3 1.1178e − 3 64.3205e − 3
h = 1/80 14.9841e − 3 0.0773e − 3 14.6352e − 3 14.9841e − 3 0.0773e − 4 14.6351e − 3
h = 1/160 3.6547e − 3 0.0048e − 3 3.6588e − 3 3.6547e − 3 0.0051e − 3 3.6588e − 3
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Table 2. Error of p, ||p − Ph||
x = 0.05 x = 0.25 x = 0.45 x = 0.55 x = 0.75 x = 0.95

h = 1/40 51.0082e − 3 11.2156e − 3 51.3174e − 3 51.0882e − 3 11.2156e − 3 51.3174e − 3
h = 1/80 12.1448e − 3 0.8011e − 3 12.2184e − 3 12.1448e − 3 0.8010e − 4 12.2184e − 3

h = 1/160 2.9622e − 3 0.0499e − 3 2.9801e − 3 2.9622e − 3 0.0499e − 3 2.9801e − 3

From Table 1 and Table 2 we conclude that numerical data are consistent with theoretical result, i.e., numerical errors are
measured about by O(∆t + h2).

Numerical approximations of normal derivative at interior boundary ∂c
∂x (0.5) = eT sin(π) = 0 is shown in Table 3. The

approximation at interior boundary is quite well so that the parallel computations on subdomains have high order accuracy.

Table 3. Error estimates of B
B

h = 1/40 3.1746e − 15
h = 1/80 2.8594e − 14
h = 1/160 4.1065e − 13

Domain decomposition with two subdomains and whole domain scheme have similar discretizations and their compu-
tational efficiency are compared. Computational time cost of different schemes under the fixed error level are shown in
Table 4 (unit: second). We can see that the computational scale becomes large and domain decomposition is more efficient
as h→ 0. One reason is that domain decomposition can solve the problem in parallel and saves computational time. The
other is the computational scale of each subdomain becomes a half of the computation of whole domain. It is hoped that
domain decomposition is used in actual applications efficiently and can solve the complicated problem quickly as the
partition becomes refined and the number of subdomains becomes large.

Table 4. Time cost comparison (unit: second)
Domain decomposition Whole domain computation

h = 1/40 0.8532 1.7364
h = 1/80 1.8976 4.2377
h = 1/160 7.4303 31.2657
h = 1/320 166.9077 652.3577

5. The Parallel Algorithm and Analysis for Slightly Compressible SeepageDisplacement with Multicomponents

In numerical simulation of enhanced oil recovery (chemical recovery), we should consider multicomponent seepage dis-
placement and formulate its mathematical model by the following nonlinear system of partial differential equations with
initial-boundary value conditions (Douglas, & Roberts, 1983; Yuan, 2013)

d(c)
∂p
∂t
+ ∇ · u = q(X, t), X = (x1, x2, x3)T ∈ Ω, t ∈ J = (0,T ], (60a)

u = a(c)∇p, X ∈ Ω, t ∈ J, (60b)

ϕ(X)
∂cα
∂t
+ bα(c)

∂p
∂t
+ u · ∇cα − ∇ · (D∇cα) = g(X, t, cα), X ∈ Ω, t ∈ J, α = 1, 2, · · · , nc. (61)

The pressure and the saturation of α-th component are denoted by p(X, t) and cα(X, t), α = 1, 2, · · · , nc. nc is the number

of components. Since
nc∑
α=1

cα(X, t) = 1, so only nc − 1 component saturations are independent. In this section we aim to

find numerical solutions of the pressure p(X, t) and the saturations c(X, t) = cα(X, t), α = 1, 2, · · · , nc.

The parallel algorithm of characteristic mixed element is defined as follows. If numerical solutions at tn, {Pn
h,U

n
h, Cn

α,h, α =

1, 2, · · · , nc−1} ∈ Wh×Vh×Nnc−1
h , are given, then {Pn+1

h ,Un+1
h } ∈ Wh×Vh, Cn+1

α,h (α = 1, 2, · · · , nc−1) ∈ Nnc−1
h are computed
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by

U0
h = ũ0, P0

h = p̃0, (62a)d(Cn
h)

Pn+1
h − Pn

h

∆t
,wh

 + (
∇ · Un+1

h ,wh

)
= (q,wh) , ∀wh ∈ Wh, (62b)

(
a(Cn

h)Un+1
h , zh

)
−

(
∇ · zh, Pn+1

h

)
+

2∑
i=1

(
Pn+1

h , z(i)
h · ni

)
Γ
= 0, ∀zh ∈ Vh, (62c)(

β,Un+1
1 · n1 + Un+1

2 · n2

)
Γ
= 0, ∀β ∈ Λh, (62d)

C0
α,h = c̃0

α, (63a)ϕCn+1
α,h − Ĉn

α,h

∆t
, vh

 + (
D∇Cn+1

α,h ,∇vh

)
+

bα(Cn
α,h)

Pn+1
h − Pn

h

∆t
, vh

 + (
DB(Cn

α,h), [vh]
)
Γ

=
(
g(Cn

α,h), vh

)
, vh ∈ Nh, α = 1, 2, · · · , nc. (63b)

After a similar analysis, we derive the following convergence statement.

Theorem 2. Suppose that (60) and (61) are positive definite and exact solutions are suitably smooth, p ∈ L∞(J; Wk+3(Ω)), cα ∈
L∞(J; W l+1(Ω)), ∂2cα

∂τ2
α
∈ L∞(J; L∞(Ω)), α = 1, 2, · · · , nc. Numerical solutions are computed by the parallel procedures (62)

and (63) in parallel on Ω1,Ω2. If (46) and (54) hold, then we have the following error estimate for k, l ≥ 1,

||p − Ph||L̄∞(J;W) + ||dt(p − Ph)||L̄∞(J;L2(Ω)) + ||u − Uh||L̄∞(J;V) +

nc−1∑
α=1

∣∣∣∣∣∣cα −Cα,h

∣∣∣∣∣∣
L̄∞(J;L2(Ω)) +

nc−1∑
α=1

∣∣∣∣∣∣∣∣∣cα −Cα,h

∣∣∣∣∣∣∣∣∣
L̄2(J;W̄)

≤ K∗∗
{
∆t + Hm+1/2 + hk+1

p + hl+1
c + H−1hl+1

c

}
,

(64)

where the constant K∗∗ depends on p, cα(α = 1, 2, · · · , nc − 1) and their derivatives.

6. Conclusions and Discussions

A domain decomposition method of modified characteristic mixed finite element is discussed for slightly compressible oil-
water seepage displacement in this paper. In §1 Induction, the mathematical model, physical background and some related
research studies are stated. In §2 some preliminary work and elementary error estimates are given. In §3 we formulate
the parallel procedures of characteristic mixed finite element. Numerical analysis and optimal order l2 norm estimate are
shown in §4. Finally a numerical example is given to show the efficiency and application in §5. In §6 we construct the
domain decomposition algorithm of characteristic mixed element for multi-component seepage displacement and give
numerical analysis. In this paper some features are concluded as follows. (I) This method is suitable to solve oil reservoir
numerical simulation on three-dimensional irregular geometric region especial enhanced oil numerical computation. (II)
By using mixed finite element, the method improves an order accuracy to compute Darcy velocity. It is most important
in numerical simulation of oil reservoir. (III) The method of characteristics can confirm strong stability of numerical
simulation at the fronts, and can avoid numerical dispersion and nonphysical oscillation. It can adopt large-time step but
can obtain small time truncation error and can improve the computation accuracy. The parallel scheme is quite efficient
in computing the saturation because the whole computation on a large-scaled domain is decomposed into several small-
scaled computations on subdomains. (IV) It is easy to compute numerical simulation in parallel with high order accuracy
on modern parallel machine.
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