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Abstract A discrete dynamical system is considered in this paper. There are L contours, which have a common point.
There are Ni cells and Mi particles located in cells. Each particle moves on its contour in accordance with a given rule.
Velocities of particles and other characteristics of the system are investigated.
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1. Introduction

A dynamical system is considered in the paper. The system contains a finite set of cells. Particles are located in cells.
Contours (cycles) are elementary supporters. A contour is a closed nonself-intersecting sequence of cells, which deter-
mines the direction of particles movement. A cell is a place of location of a particle. A particle is a unit of mass. The
supporter is an oriented graph. Cells are vertices of the graph. An arc (oriented edge) connects two vertices if particles
can move from one of these vertices to the other vertex. There is just one common point of contours. Contours have
either just one common cell (node) or just one common point located between neighboring cells (alternating node). A
feature of the considered system is that there is only one common point of contours. This supporter is called a flower.
The traffic model with ”flower” supporter has been introduced in (Buslaev, & Yashina, 2009), (Buslaev, 2010), where an
infinitesimal version of the system was considered.

A graph with alternating node is considered in the present paper, Figure 1. The common node is located between some
pairs of cells on contours. In Figure 1, the node is shown as a square, and cells are shown as circles. The graph of the
considered system is a bouquet graph. Therefore the considered system is called BAN (Bouquet Alternance Node). We
discuss in what way the obtained results change in the case of a flower with the common cell if this cell is joined with the
node.

Figure 1. Bouquet with alternating node

Two types of traffic participants are considered. These types are individual movement and total-connected movement.
In the case of individual movement, the particle shall be at the next time moment (T + 1) in the next cell if the next
cell is vacant at the moment T. In the case of total-connected movement, Figure 2, the particle will be at the next time
moment (T + 1) in the next cell if the next cell is vacant at the moment T + 1. Hence, in the case of the total-connected
movement the particle comes to the next cell at the next moment if this cell is released. In the case of total-connected
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movement neighboring particles form clusters. A cluster is the maximum subset of particles without vacant cells between
these particles. Cluster moves synchronously if the next cell in the direction of movement is vacant. In Figure 2, cells
are shown as circles, and the node is shown as rectangle. Occupied cells are highlighted in black. Dotted outlines show
clusters.

Figure 2. Total-connected movement

More than one cluster cannot move through the node simultaneously. The FIFO (First Input First Output) discipline acts
at the node. Consider a cluster which has come to the node first. In accordance with the FIFO discipline, this cluster
moves through the node first when the node releases. If leaders of some clusters come to the node simultaneously, then
one of these clusters moves in accordance with the given conflict resolution rule. For example each of these clusters is
chosen equiprobably (the egalitarian rule).

A traffic model was introduced in (Nagel, & Schreckenberg, 1992). In this model, individual movement of a finite set
of particles on a closed contour takes place. A hypothesis has been formulated in (Schadschneider, & Schreckenberg,
1993). This hypothesis gives a formula that determines dependence of the particles velocity on the particles flow density.
This formula has been proved in (Blank, 2000). The limit version of the model, considered in the present paper, is the
continuous cluster model, considered in (Buslaev, & Yashina, 2009), (Buslaev, 2010) (incompressible clusters). Discrete
traffic models with total-connected movement were considered in (Bugaev, Buslaev, Kozlov, Tatashev, & Yashina, 2013).
In the case of the stochastic conflict resolution rule, considered in the present paper, the behavior of the system is s-
tochastic. However, in present paper, we show that it is possible that the system behavior can come, after time with a
finite expectation, to the state such that there will be no delays of particles movement in future. So, if the total number
of particles is not greater than a critical number, then there are no conflicts after a finite moment. We say that the syn-
ergy state (self-organization) takes place. If the behavior of the system becomes deterministic, then the same sequence
of states repeats periodically. These states form an orbit (in terms of dynamical systems theory (Halmos, 1956)), or a
communicating class of states (in terms of Markov processes theory, (Feller, 1970), (Kemeny, & Snell, 1976), (Borovkov,
1986)). This self-organization is also characteristic for dynamical systems with regular periodic structures, which have
been introduced and investigated in (Kozlov, Buslaev, & Tatashev, 2014), (Kozlov, Buslaev, Tatashev, & Yashina, 2014),
(Kozlov, Buslaev, & Tatashev, 2015), (Kozlov, Buslaev, Tatashev, & Yashina, 2015).

Analysis of the system is related to the theory of linear diophantine equations with two variables, (Buchstab, 1972). If
there are no solutions of the appropriate diophantine equation, then there will be no conflict of a considered pair of particle
if no other conflicts take place. If there is a solution of the equation, then a conflict will be in future. Thus analysis of
diophantine equations gives a criterion of synergy.

The system with individual movement is considered in Section 2. We formulate the necessary and sufficient condition for
a state of the system to be a state of synergy. We formulate necessary conditions and sufficient conditions for a state of
synergy to exist.

Individual movement of particles on BAN with contours of the same length is considered in Section 3. We find the
necessary and sufficient condition for a state of synergy to exist.

The system with total-connected movement is investigated in Sections 4 and 5. We have considered the system with two
contours of the same length and a single cluster on each contour. We have found a necessary and sufficient condition
for this system to come to the state of synergy after a finite time. We describe an approach to calculation of particles
velocities on contours of this system. In the case of BAN with contours of the same length and any number of clusters,
finally statements have been obtained.
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2. Individual Movement on BAN

2.1 Formulation of Problem

We consider a system (BAN) with L contours. There are Ni cells (i, 0), . . . , (i,Ni − 1) and Mi particles on the contour i,
Mi < Ni, i = 1, . . . , L. Each particle is in one of the cells at any time moment T = 0, 1, 2, . . . No more than one particle is
in the cell. There is a common alternating node. The node is located such that a particle of the ith contour moves through
the node when this particle moves from the cell (i, 0) to the cell (i,Ni − 1), i = 1, . . . , L. If a particle of the contour i is
in the cell (i, j) at moment T, the cell (i, j − 1) (substraction modulo Ni) is vacant, and the node is not located between
cells (i, j), (i, j − 1) or no particle attempts to move through the node, then this particle of the contour i will be in the cell
(i, j − 1) at the moment T + 1, j = 1, 2, . . . ,Ni − 1, i = 1, . . . , L. Hence the node is ahead of the cell (i, 0), and the particle,
occupying the cell (i, j), will be in the cell (i, 0) after time j. Suppose the cell, located ahead a particle, is occupied, at the
moment T. Then this particle will continue occupy the same cell at time T + 1 (T = 0, 1, 2, . . . ). If more than one particle
attempt to move through the node simultaneously, then a conflict takes place. One of these particles wins the conflict in
accordance with a given conflict resolution rule. For example, the particles wins the conflict equiprobably (egalitarian
rule) or the particle with the least index wins with probability 1 (priority rule). The particle, winning conflict, moves, and
particles, losing the conflict, do not move at present moment.

Denote by Hi(T ) the expectation of the total number of transitions of particles on the contour i in time interval (0, T ). The
limit

vi = lim
T→∞

Hi(T )
T Mi

, i = 1, . . . , L, (1)

is called the velocity of the ith contour particles if this limit exists.

The value

v =
M1v1 + · · · + MLvL

M1 + · · · + ML
.

is called the average velocity of particles.

The velocity of particles is a random value. The considered system is a finite Markov chain (Feller, 1970), (Kemeny,
& Snell, 1976), (Borovkov, 1986). If the system comes from the state i to the state j after a finite time with positive
probability, and the system cannot come from the state j to the state i after a finite time, then the state i is called inessential.
If a state is not inessential, then this state is called essential. If the system can come from the state i to the state j after
a finite time, and the system can come from the state j to the state i after a finite time, then the states i and j are called
communicated with each other. The set of essential states is divided into communicating classes. If there is only one
communicating class, then there exist steady state probabilities, and the value of particles velocity is the same with
probability 1. Suppose there are more than one communicating class. If the initial state belongs to one of communicating
classes, then the value of particles velocity depends on the class. If the initial state is inessential, then the chain comes
to one of communicating class after time with a finite expectation. The chain comes, with positive probabilities, to
different communicating classes, and values of velocities depend on the communicating class. Thus the limit (1) exists
with probability 1, this limit is a random value, and the distribution of this value depends on the initial state of the system.

2.2 Conditions of Synergy (Self-organization) on BAN

The system is in the state of synergy after a moment T if, after this moment, all particles move at every moment.

Suppose
(k11, . . . , k1M1 ; . . . ; kL1, . . . , kLML )

is a vector such that ki1, . . . , kiMi , 0 ≤ ki1 < · · · < kiMi ≤ Ni − 1, are indexes of cells, where particles of the ith contour are
located, i = 1, . . . , L. Then this vector is called a state of the system.

Denote by GCD(N1, . . . ,NL) the greatest common divisor of the numbers N1, . . . ,NL; GCD(Ni1 ,Ni2 ) is the GCD− divisor
of the numbers Ni1 and Ni2 , i1 , i2, 1 ≤ i1, i2 ≤ L.

Consider the equation
ax + by + c = 0, (2)

where a and b are any integer numbers not equal to 0, and c is any integer number. Suppose the numbers a and b are
coprime. Indeed, if a and b are not coprime, then we divide both parts of (2) by the GCD of the numbers a and b. Then we
obtain a similar equation, and a, b are coprime. There exist integer solutions of (2) if and only if GCD(a, b) is the divisor
of the number c (Buchstab, 1972). Suppose that this condition is fulfilled.
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Suppose x = x0, y = y0 is an integer solution of Equation (2). Then the formulas

x = x0 − bt, y = y0 + at

give all solutions of Equation (2), t = 0,±1,±2, . . .

Theorem 1 (Criterion of Synergy). A necessary and sufficient condition for the state

(k11, . . . , k1,M1 ; . . . ; kL1, . . . , kL,ML )

of BAN with individual movement to be a state of synergy is that the following conditions be fulfilled

(1) ∀l, 1 ≤ l ≤ L, ∀i, 1 ≤ i ≤ Ml,

kl,i+1 − kli > 1;

(2) ∀i1, i2, 1 ≤ i1, i2 ≤ L, i1 , i2, ∀ j1, j2, 1 ≤ j1 ≤ Mi1 , 1 ≤ j2 ≤ Mi2 ,

GCD(Ni1 ,Ni2 ) is not a divisor of the number (ki1 j1 − ki2 j2 ).

Proof. If there are particles in neighboring cells of a contour, then one of these particles does not move at the present
moment. Therefore the system is not in the state of synergy. Suppose there are no particles in neighboring cells on any
contour. Let us show that the considered state is a state of synergy if and only if, for any i1, i2, j1, j2 (i1 , i2, 1 ≤ j1 ≤ Mi1 ,
1 ≤ j2 ≤ Mi2 ), there exist no nonnegative integer solutions x, y,

Ni1 x − Ni2 y = ki1 j1 − ki2 j2 . (3)

Indeed, suppose the system is in the state

(k11, . . . , k1M1 , . . . , k11, . . . , kLML ).

If, for some i1 , i2, j1, j2 (1 ≤ j1 ≤ Mi1 , 1 ≤ j2 ≤ Mi2 ), there exists a solution (x0, y0) of Equation (3), then there will
be a conflict after a finite time. If for any i1, i2, j1, j2 (1 ≤ j1 ≤ Mi1 , 1 ≤ j2 ≤ Mi2 ), there exists no integer solution of
Equation (3), then there will be no delays, i,e. the system is in the state of synergy. There exists an integer solution of
Equation (3) if and only if GCD(Ni1 ,Ni2 ) is a divisor of ki1 j1 − ki2 j2 . Thus we obtain the statement of Theorem 1.

We shall formulate a necessary condition for at least one state of synergy to exist. The ratio of the particles of the contour
i to the number of cells of this contour is called the density of particles of the contour i and is denoted by ri,

ri =
Mi

Ni
, i = 1, . . . , L.

Denote by
A = LCM(N1, . . . ,NL)

the least common multiple of N1, . . . ,NL.

Theorem 2. Suppose movement on BAN is individual. Then a necessary condition for at least one state of synergy to
exist is that (1) ∀i, j, 1 ≤ i , j ≤ L

GCD(Ni,N j) > 1; (4)

(2) ∀i, 1 ≤ i ≤ L

ri ≤
1
2

; (5)

(3)
r1 + r2 + · · · + rL ≤ 1. (6)

Proof

(1) Consider the system state
(k11, . . . , k1M1 ; . . . ; kL1, . . . , kL,ML ).

If (4) is not true, i.e., numbers Ni1 , Ni2 are coprime, then there exists a solution of Equation (3) for any ki1 j1 , ki2 j2 . From
this, taking into account Theorem 1, we obtain the first statement of Theorem 2.
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(2) If (5) is not true, then, at any time, the number of vacant cells of the contour is less than the number of particles.
Therefore there exist particles such that these particles cannot move at present time. From this we obtain the second
statement of Theorem 2.

(3) Suppose that the system is in the state of synergy. Then, in any time interval of length A, there are riA moments
such that a particles of ith contour moves through the node. Since more one particle cannot move through the node
simultaneously, then r1A + · · · + rLA ≤ A, i.e., (6) is true. Theorem 2 has been proved.

Theorem 3. Let L be the number of contours, Ni be the number of cells of the contour i, Mi be the number of particles of
the contour i, i = 1, · · · , L. Suppose the movement on BAN is individual. Then a sufficient condition for at least one state
of synergy to exist is that at least one of the following conditions be fulfilled.

(1) There is only one particle on each contour, M1 = · · · = ML = 1, and

GCD(N1, . . . ,NL) ≥ L. (7)

(2) L is divider of numbers N1, N2, . . . ,NL and ri ≤ 1
L for all i = 1, . . . , L.

Proof. (1) Suppose (7) is true and, at time T0, the system is in the state such that the particle of the contour i is in the cell
(i, ki), and the remainder of the division of ki by GCD(N1, . . . ,NL) equals i, i = 1, . . . , L. Such state exists in accordance
with (7). Suppose a conflict of particles of contours i and j takes place at moment T ≥ T0. Then there exist integer
non-negative solutions x = x0, y = x0 of the equation

Nix − N jy = k j − ki.

If such solution x0, y0 exists, then GCD(Ni,N j) is a divisor of k j − ki, and therefore GCD(N1, . . . ,Nk) is also a divisor
of k j − ki. However the remainders of the division of numbers ki and k j by GCD(N1, . . . ,NL) are not equal to each other.
Therefore GCD(N1, . . . ,Nk) is not a divisor of ki − k j. This contradiction proves the first statement of the theorem.

(2) Suppose L is a divisor of the numbers N1, N2, . . . ,NL, and ri ≤ 1
L for all i = 1, . . . , L. Assume that particles of the

contour i are in cells such that remainders of the division of cells indexes by L are equal to i (i = 1, . . . , L).We shall prove
that this state is a state of synergy. Suppose a conflict of the contours i and j takes place at the moment T ≥ T0. Then
there exist integer non-negative solutions x = x0, y = x0 of the equation

Nix − N jy = k j − ki.

If such solution x0, y0 exists, then GCD(Ni,N j) is a divisor of ki − k j. Since L is a divisor of Ni and N j, we see that L is
also a divisor of k j − ki. However remainders of the division of ki, k j by L are not equal to each other. This contradiction
proves the second statement of the theorem. Theorem 3 has been proved.

Remark 1. Parameters of BAN with individual movement can be chosen such that both necessary conditions of Theorem 2
are fulfilled, and there is no state of synergy.

We give an example. Suppose L = 2, N1 = 6, N2 = 3, M1 = 3, M2 = 1. Then we have r1 + r2 =
M1
N1
+ M2

N2
= 5

6 < 1,
i.e. both conditions of Theorem 2 are fulfilled. However we shall prove that there exists no state of synergy. Without loss
of generality, we assume that the cell (1, 1) is occupied. If (k11, k12, k13; k2) is the state of synergy, then k11 = 1, k12 = 3,
k13 = 5. In accordance of Theorem 1, in the case of state of synergy, GCD(3, 6) = 3 is not a divisor of k11 − k2, k12 − k2,
k13 − k2. However this condition is not fulfilled for none of states (1, 3, 5; 0), (1, 3, 5; 1), (1, 3, 5; 2). Thus there is no state
of synergy.

3. BAN with Contours of the Same Length Necessary and Sufficient Condition for Self-organization of Individual
Movement

Let L is the number of contours, Ni is the number of cells of the contour i, Mi is the number of particles of the contour i,
i = 1, · · · , L. Assume that the number of cells on each contour is the same, N1 = · · · = NL = N.

Theorem 4. Let movement be individual. A necessary and sufficient condition for at least one state of synergy to exist is
that

(1) ∀i, 1 ≤ i ≤ L

ri ≤
1
2

;

(2)
M1 + M2 + · · · + ML ≤ N.
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Proof. In accordance with statements 2, 3 of Theorem 2, we have that the condition is necessary.

Let us show that the condition is sufficient. Assume that M1 ≥ Mi, i = 2, . . . , L. Put particles of the contour 1 into cells
with indexes 0, 2, 4, . . . , 2(M1−1), put particles of the contour 2 into cells with indexes 2M1, 2M1+2, . . . , 2(M1+M2)−1,
etc. If all cells with even indexes are already occupied, then we put remaining particles into cells with odd indexes. In
accordance with the second condition of the theorem all particles will be located in cells with different indexes, and there
will be no particles in neighboring cells of any contour. Thus there exists a state of synergy. Theorem 4 has been proved.

4. Total-connected Movement on BAN

Let L be the number of contours, Ni be the number of cells of the contour i, Mi be the number of particles of the contour
i, i = 1, · · · , L.
4.1 Synergy of BAN with total-connected movement

Theorem 5. Let the movement be total-connected. Then a state (k11, . . . , k1M1 , . . . , kL1, . . . , kLML ) is a state of synergy if
and only if, ∀ i1, i2, j1, j2 (i1 , i2, 1 ≤ j1 ≤ Mi1 , 1 ≤ j2 ≤ Mi2 ), GCT (Ni1 ,Ni2 ) is not a divisor of (ki1 j1 − ki2 j2 ).

The proof of Theorem 5 is similar to the proof of Theorem 1.

Suppose there is an ordered set of clusters on each contour. There are li clusters on the contour i, and the sth cluster
contains Mis particles, s = 1, . . . , li, Mi1 + · · · + Mi,li = Mi, Mi < Ni, i = 1, . . . , L.

Theorem 6. Let the movement be total-connected. Then a necessary condition for at least one state of synergy to exist is
that

(1)
r1 + · · · + rL ≤ 1;

(2) ∀ i, j , {1, . . . , L}
max(Mi1, . . . ,MiNi ) +max(M j1, . . . ,M jN j ) ≤ GCD(Ni,N j).

The proof of the first statement of Theorem 6 is similar to the proof of the third statement of Theorem 2.

In accordance with Theorem 5, for the state of synergy, the sum of two clusters of different contours cannot be greater
than GCD(Ni,N j). From this, the second statement follows. Theorem 6 has been proved.

Theorem 7. Let the movement be total-connected. Then a sufficient condition for at least one state of synergy to exist is
that

M1 + · · · + ML ≤ GCD(N1, . . . ,NL).

The proof of Theorem 7 is similar to proof of the first statement of Theorem 3.

The behavior of BAN depends on the initial state and on the realization of the process if the initial state is fixed. Let us
give examples.

In the following example, the initial state is fixed, but, with positive probabilities, the velocities and limit numbers of
clusters on contours are different, and either the system behavior will be deterministic after a time interval with finite
expectation or the system will come to a set of states such that deterministic behavior is not possible.

Suppose L = 2, N1 = 7, N2 = 3, M1 = 2, M2 = 1. Each particle of the contour 1 wins every conflict with probability 2
3 .

Assume that the initial state is (0, 5; 0). There is a conflict in this state. If the particle of the contour 1 wins the conflict,
then particles of this contour form a cluster, the behavior of system will be deterministic, and the following sequence of
states repeats periodically

(5, 6; 0)→ (4, 5; 1)→ (3, 4; 0)→ (2, 3; 1)→
→ (1, 2; 0)→ (0, 1; 1)→ (6, 1; 0)→ (5, 6; 0) . . .

The values of velocities are
v1 = 1, v2 =

6
7
, v =

2v1 + v2

3
=

20
21
.

If the particle of the contour 2 wins the conflict in state (0, 5; 0), then particles of this contour do not form a cluster, the
behavior of system will never be deterministic, and, with probability 1, the values of velocities are

v1 =
35
36
, v2 =

8
9
, v =

17
18
.
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The following example shows that, in the case of total-connected movement on contours of the same length, it is possible
that the system will not come to the state of synergy, and the limit number of clusters on a contour is not equal to 1.

Suppose N1 = N2 = 25, M1 = M2 = 13 and the initial state is

(1, 2, 3, 4, 10, 11, 12, 13, 14, 18, 19, 20, 21; 4, 5, 6, 7, 8, 9, 15, 16, 17, 22, 23,

24, 25).

Then we have deterministic movement with period 26. Velocities of particles are

v1 = v2 =
25
26
.

The limit number of clusters on each contour equals 3.

4.2 Synergy and Velocity of Total-connected Movement on BAN with Contours of the Same Length

Suppose that the length of each contour is the same, N1 = · · · = NL = N. We give the definition of a group of clusters.
A set of clusters (these clusters can be located on different contours) is called a group of clusters if the set of indexes of
cells, where these clusters are located, is a connected set on the integer numbers segment [0, . . . ,N − 1]. Group of the
maximum length is called a maximum group (maximum cluster). If clusters of a maximum group do not contain any cells
with the same numbers, then this group is called a maximum simple group (maximum simple cluster). It is evident that the
length of the supporter of a maximum simple group is equal to the sum of lengths of all clusters such that these clusters
are contained in the maximum group.

Suppose values L, M1, . . . ,ML, N are given. We formulate the necessary and sufficient condition of synergy.

Theorem 8. A necessary and sufficient condition for BAN with total-connected movement to come to the state of synergy
after a time with a finite expectation is that

M1 + · · · + ML ≤ N. (8)

Lemma 1. Suppose the movement is total-connected and N1 = · · · = NL. Then any maximum group cannot become
thinner, i.e., this group cannot lose any clusters or their particles.

Proof. Suppose clusters of a maximum group G do not hinder the movement of clusters, not contained in the maximum
group, and clusters, not contained in the maximum group, do not hinder the movement of clusters of G. Then the set of
clusters of the group does not change. Suppose a cluster C does not belong to the group G, and this cluster delays the
movement of clusters of G, or clusters of G delays the movement of the cluster C. Then a group is formed such that this
group contains both the clusters of the group G and the cluster C. In all these cases, the maximum group does not lose
both clusters and particles. Lemma 1 has been proved.

Lemma 2. Let the movement be total-connected. Suppose N1 = · · · = NL. At any moment, the set of clusters on BAN is a
union of nonself-intersecting maximum clusters.

The statement of Lemma 2 is obvious.

Lemma 3. Assume that the movement is total-connected and N1 = · · · = NL = N. Suppose the velocity and configuration
of a maximum cluster do not change during N time units (indexes of cells, which are occupied by the cluster, shift onto 1
per time unit). Then this maximum cluster is simple.

Proof. Lemma 3 follows from the definition.

Lemma 4. Let the movement be total-connected. Suppose N1 = · · · = NL = N, the system is not in the state of synergy
and there is no maximum cluster, containing more than N − 1 particles. Then, for time interval of duration N, either some
maximum clusters merge or supporters of some clusters, which are not simple, increase.

Proof. Suppose N1 = · · · = NL = N, the system is not in the state of synergy and there is no maximum cluster, containing
more than N−1 particles. If no cluster is delayed during N time units, then a sequence of N states will repeat periodically.
If a delay takes place, then some groups, which are not simple, increase, and it is possible that some maximum clusters
merge. Lemma 4 has been proved.

Lemma 5. Suppose the movement is total-connected and N1 = · · · = NL = N. If inequality (8) is fulfilled, then, for all T1,
there exists a moment T2 such that no particle moves through the node at this moment, and T1 ≤ T2 < T1 + N.

Proof. Any particle cannot move through the node more than one time during a time interval of duration N. Since the
number of particles is less than N, we obtain Lemma 5.
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Lemma 6. Suppose N1 = · · · = NL = N, the movement is total-connected and (8) is true. Then all clusters will be maxi-
mum simple clusters after a finite time. We have the process of movement without conflicts, with minimum configuration,
and maximum velocity.

Proof Suppose (8) is true. Then, in accordance with Lemma 4, no delays of clusters will be in future or a maximum
cluster increases. However maximum cluster cannot increase more than a finite times. From this, Lemma 6 follows.

Proof of Theorem 8. The condition is necessary in accordance with Theorem 6. Let us show that the condition is sufficient.
In accordance with (8) and Lemma 4, after a finite moment, any cluster will be in a maximum group such that clusters of
other groups (if there are other groups) do not hinder clusters of the group. Theorem 8 has been proved.

Suppose
M1 + · · · + ML > N. (9)

Lemma 7. Suppose N1 = · · · = NL = N, the movement is total-connected and (9) is true. Then there exists a moment T0
such that after this moment just one particle moves through the node.

Proof. Assume that N1 = · · · = NL = N. Suppose there is a delay of a maximum group G cluster at the moment
T2 < T1 + N. Then either a group of greater length forms, and this group contains all clusters of the group G, or, there
exists a moment T0 such that, for all j ∈ {0, 1, . . . ,N − 1}, the cell j is occupied at least on one contour. Hence, ∀T1 > T0
the cell j is occupied at least one contour, j ∈ {0, 1, . . . ,N − 1}. Indeed, assume that it is not true. Then the cell j + 1
(addition modulo N) of any contour was not occupied at the preceding moment. At least one particle moves through the
node at each moment after the moment T0.However more than one particle cannot move through the node simultaneously.
Lemma 6 has been proved.

Suppose (9) is true. Let us consider the system behavior after moment T0 such that this moment satisfies condition of
Lemma 7.

Lemma 8. Let the movement be total-connected. Assume that N1 = · · · = NL = N. Suppose a particle P is the leader of a
cluster, and, at moment T1 > T0, this particle moves through the node to the cell N − 1 of the contour. Then this particle
moves at the moments T1 + 1 . . . , T1 + N − 1 and the particle will be in the cell before the node (cell 0) at the moment
T1 + N − 1.

Proof. Since a sequence of system states repeats periodically after the moment T0, we see that clusters cannot merge and
form clusters of greater length. Therefore a cluster cannot be delayed unless the leader of the cluster is before the node,
and the cluster moves N time units after crossing the node. From this, Lemma 8 follows.

Lemma 9. Assume that N1 = · · · = NL = N. Suppose the movement is total-connected, and a particle P moves through
the node at time moments T1 and T2, T0 < T1 < T2. Then T2 − T1 ≥ M1 + · · · + ML.

Proof. The particle P is located in the cell N − 1 at moment T1. No other particle can be in the cell N − 1 of the contour.
Indeed, if a particle occupies the cell N − 1 at the moment T1, then, in accordance with Lemma 8, this particle moves
through the node at this moment. However two particles cannot move through the node simultaneously. Therefore it is
true the following. Suppose a particle is not the particle P. Then, at the moment T1, either this particle is in the queue
before the node or, in accordance with Lemma 8, this particle comes to the node earlier than the particle P. Therefore any
particle (not the particle P) moves through the node between moments T1 and T2. From this, taking into account that more
one particle cannot move through the node simultaneously, we obtain Lemma 9.

Lemma 10. Assume that N1 = · · · = NL = N. Let the movement be total-connected. Suppose a particle P and moments
T1, T2 satisfy Lemma 9. Then the equality T2 − T1 = M1 + · · · + ML is true.

Proof. From Lemma 9, it follows that the inequality T2 − T1 ≥ M1 + · · · + ML is true.

Since just one particle moves through the node at each moment, we have see that the inequality T2 − T1 > M1 + · · · + ML

can be true only if at least one particle crosses the node more than one time during the time segment [T1,T2]. However
this is impossible. Suppose a particle moves through the node in this time segment. Then, in accordance with Lemma 8,
this particle returns to the node later than the particle P, and therefore the priority of the considered particle is lower than
priority of the particle P. This contradiction proves Lemma 10.

Lemma 11. Assume that N1 = · · · = NL = N. Let the movement be total-connected. Suppose (9) is true. Then time
intervals of particle movement and waiting alternate. Any particle moves for N time units and waits for M1+ · · ·+ML−N
times units.

Proof. If a particle is a leader of a cluster, then Lemma 11 is true for this particle in accordance with Lemmas 8, 10. Since
all particles of any cluster move simultaneously, we obtain Lemma 11.
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Theorem 9. Assume that N1 = · · · = NL = N. Suppose the movement is total-connected. Then velocities of particles on
all contours are the same, and

v1 = · · · = vL =

{
1, M1 + · · · + ML ≤ N,

N
M1+···+ML

, M1 + · · · + ML > N.

Proof. If (8) is true, then synergy takes place. Therefore,

v1 = · · · = vL = 1.

If (9) is true, then, in accordance of Lemma 10,

v1 = · · · = vL =
N

M1 + · · · + ML
.

Theorem 9 has been proved.

Corollary 1. Assume that N1 = · · · = NL and the movement is total-connected. Let values of L, N, M1, . . . ,ML be given.
Then velocities of particles on any contour do not depend on the initial state of the system.

5. Total-connected Movement on BAN with One Cluster on Every Contour

5.1 Synergy of Two Clusters

Assume that the number of contours equals 2, and there is only one cluster on each contour. We formulate a necessary
and sufficient condition of synergy.

Theorem 10. Suppose L = 2, and there is a cluster on each contour. Then a necessary and sufficient condition for the
system to come to the state of synergy after a finite time is that

M1 + M2 ≤ GCD(N1,N2). (10)

Proof. Suppose the system is in the state such that (k1, k2) are coordinates of leaders clusters, (0 ≤ k1 ≤ N1 − 1,
0 ≤ k2 ≤ N2 − 1). If (10) is not true, then GCD(N1,N2) is a divisor of numbers M1 + 2, . . . , k2 − k1, . . . , k2 − k1 + M2 − 2,
k2 − k1 + M2 − 1. Taking into account Theorem 7, we see that the condition is sufficient. If (10) is true, then either the
system is in the state of synergy, or a delay of a cluster takes place after a finite time. This cluster begins to move again
when the system is in the state (0,N2 −M2) or (N1 −M1, 0). From (10), it follows that these states satisfy the condition of
synergy (Theorem 5). From this, Theorem 10 follows.

5.2 Velocity of Particles on BAN with Two Contours and a Cluster on Each Contour

Assume that there are two contours and a cluster on each contour. We shall describe an approach to velocities calculation.
Suppose the condition of synergy (10) is not fulfilled. Denote by A a set of system states such that a state belongs to this
set if and only if one of clusters do not moves in this state. After being in the set A, the system comes either into the state
(0,N2 − M2), if there was a delay of the cluster 1, or into the state (N1 − M1, 0), if there was a delay of the cluster 2. For
each of these two states, analyzing the appropriate linear equation with two variables, we can calculate after what time
interval the system comes to a state of the set A and to what state of this set A the system comes. Taking into account
results of this analysis, we can calculate velocities v1, v2. Depending on values of system parameters, there is a pair of
values (v1, v2) such that these values are taken with probability 1, or there are two pairs of values (v1, v2) such that these
values are taken with positive probabilities. In the latter case, the velocities depend on the initial state, and there exist
initial states such that each pair of values is taken with positive probability.

6. Comments, and Further Research

(6.1) We have found a necessary and sufficient condition of synergy and formulas for velocities in the case of contours
of the same length and in the case of two contours of any length. We have found some necessary conditions and some
sufficient conditions of synergy on a flower with contours of different lengths. In general case, problems of formulation
of necessary and sufficient condition of synergy and calculation of velocities, in cases of total-connected or individual
condition have not been solved.

(6.2) For analysis of general characteristics of the behavior of dynamical systems on networks, it is interesting to investi-
gate systems with regular structures such that it is possible to find analytical characteristics of their behavior.

(6.3) An alternating flower (BAN) is considered in the present paper. Some results can be reformulated for the flower with
a common cell, which is also the common node. The condition of synergy (Theorem 1) changes. This condition takes
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into account that a delay of one particles takes place not only if particles come to the node simultaneously, but also if one
of the particles comes at next moment. In accordance with this, the inequality GCD(Ni,N j) > 3 substitutes (4), and the
inequality

r1 + r2 + · · · + rL ≤
1
2

substitutes (6).

(6.4) We intend to investigate generalizations of the system, considered in the present paper, e.g., the system with several
neighboring (Figure 3) or equidistant from each other joined nodes and cells.

(1,3)

(1,4)

(0)

(1)

(2,3)

(1,5)

(2,4)

(1,6)

(2)

(2,5)

Figure 3. Contours with three common cells joined with nodes

(6.5) There exist initial states such that particles velocities (in general case, probability distribution of velocities) are
different.

(6.6) As we mentioned in Section 1, in [1] – [2], a dynamical system has been introduced. In this system, clusters move
on a ”flower” (”bouquet”). The state space and time scale of this system are continuous. We can reformulate results of
the present paper for this continuous system. For example, consider a bouquet with two closed contours. They are the
contour 1 of length L1, and the contour 2 with length L2, where L1 and L2 are positive numbers. The cluster of length li
(li < Li) moves on the cluster i, i = 1, 2. The point (0, 0) is the node, i.e., common point of these contours. Each state of
the system is (x1, x2), where xi is the rear point of the cluster, 0 ≤ xi < Li, i = 1, 2. Two clusters cannot move through the
node simultaneously. In the state (0, 0), a conflict of clusters takes place. Denote by Ti the duration of time interval such
that, during this time interval, the cluster i passes the distance equal to the contour length if there are no delays: Ti = li/vi.
Consider a time interval such that, during this time interval, the cluster i passes through the node. The duration of this
interval is equal to li/vi, i = 1, 2. If the ratio T1/T2 is an irrational number, then the system cannot come to the state of
synergy. Suppose that the ratio T1/T2 is a rational number. Denote by GCD(T1,T2) the greatest divisor of T1 and T2. If
T1/T2 is rational, then a necessary and sufficient condition for the system to come to the system of synergy after a finite
time is that

l1
v1
+

l2
v2
≤ GCD(T1,T2). (11)

(11) is similar to (10).
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