Even Star Decomposition of Complete Bipartite Graphs

E. Ebin Raja Merly ${ }^{1}$ \& J. Suthiesh Goldy ${ }^{2}$
${ }^{1}$ Nesamony Memorial Christian college, Marthandam, KanyakumarI District, Tamilnadu-629165, India
${ }^{2}$ Research scholar, Nesamony Memorial Christian college, Marthandam, Kanyakumari District, Tamilnadu-629165, India
Correspondence: J. Suthiesh Goldy, Research Scholar, Nesamony Memorial Christian college, Marthandam, KanyakumarI District, Tamilnadu-629165, India. Email: suthieshdan@gmail.com
Received: August 24, 2016 Accepted: September 5, 2016 Online Published: September 27, 2016
doi:10.5539/jmr.v8n5p101
URL: http://dx.doi.org/10.5539/jmr.v8n5p101

Abstract

A decomposition $\left(G_{1}, G_{2}, G_{3}, \cdots, G_{n}\right)$ of a graph G is an Arithmetic Decomposition $(A D)$ if $\left|E\left(G_{i}\right)\right|=a+(i-1) d$ for all i $=1,2, \cdots, n$ and $a, d \in Z^{+}$. Clearly $q=\frac{n}{2}[2 a+(n-1) d]$. The $A D$ is a CMD if $a=1$ and $d=1$. In this paper we introduced the new concept Even Decomposition of graphs. If $a=2$ and $d=2$ in $A D$, then $q=n(n+1)$. That is, the number of edges of G is the sum of first n even numbers $2,4,6, \cdots, 2 n$. Thus we call the $A D$ with $a=2$ and $d=2$ as Even Decomposition. Since the number of edges of each subgraph of G is even, we denote the Even Decomposition as $\left(G_{2}, G_{4}\right.$, $\cdots, G_{2 n}$).

Keywords: Continuous Monotonic Decomposition, Decomposition of graph, Even Decomposition, Even Star Decomposition (ESD)

1. Introduction

All basic terminologies from Graph Theory are used in this paper in the sense of Frank Harary. Gnanadhas. N and Paulraj Joseph. J discussed on Continuous Monotonic Decomposition (CMD) of graphs. Ebin Raja Merly. E and Gnanadhas. N introduced Arithmetic Odd Decomposition (AOD). In this paper we investigate Even Star decomposition (ESD) of Complete Bipartite Graphs. Throughout this paper Sn denotes the star graph of size n .
The definitions which are useful for the present investigation are given below.

1.1 Definition (Gnanadhas \& Joseph, 2000)

A graph $G=(V, E)$ be a simple connected graph with p vertices and q edges. If $G_{1}, G_{2}, \cdots, G_{n}$ are connected edge-disjoint subgraphs of G with $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \ldots \cup E\left(G_{n}\right)$, then $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ is a Decomposition of G.

1.2 Definition (Harary, 1969)

A bigraph or bipartite graph G is a graph whose vertex set V can be partitioned into two subsets V_{1} and V_{2} such that every edge of G joins V_{1} and V_{2}. If G contains every edge joining V_{1} and V_{2} then G is a complete bigraph. If V_{1} and V_{2} have m and n vertices, we write $G=K_{m, n}=K(m, n)$. A star is a complete bipartite graph of the form $K_{1, n}$ and is denoted by S_{n}. Clearly $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ has mn edges.

2. Even Decomposition of Graphs

2.1 Definition (Merly \& Gnanadhas, 2011)

A decomposition $\left(G_{1}, G_{2}, G_{3}, \cdots, G_{n}\right)$ of G is said to be an Arithmetic Decomposition $(A D)$ if $\left|E\left(G_{i}\right)\right|=a+(i-1) d$ for all i $=1,2, \cdots, n$ and $a, d \in Z^{+}$. Clearly $q=\frac{n}{2}[2 a+(n-1) d]$. If $a=1$ and $d=1$, then $A D$ is a CMD. If $a=1$ and $d=2$, then AD is an Arithmetic Odd Decomposition (AOD).

If $\mathrm{a}=2$ and $\mathrm{d}=2$, then $\mathrm{q}=\mathrm{n}(\mathrm{n}+1)$. Clearly $\mathrm{n}(\mathrm{n}+1)$ is the sum of first n even numbers $2,4,6, \cdots, 2 \mathrm{n}$. Thus we call this Decomposition as an Even Decomposition denoted by $\left(G_{2}, G_{4}, G_{6}, \cdots, G_{2 n}\right)$.
The following theorem is a necessary and sufficient condition for a graph G admits Even Decomposition.

2.2 Theorem

Any graph G admits Even Decomposition $\left(G_{2}, G_{4}, G_{6}, \ldots, G_{2 \mathrm{n}}\right)$, where $G_{2 \mathrm{i}}=\left(V_{2 \mathrm{i}}, E_{2 \mathrm{i}}\right)$ and $\left|E\left(G_{2 i}\right)\right|=2 \mathrm{i}$, $(\mathrm{i}=1,2,3,4 \ldots, \mathrm{n})$ if and only if $\mathrm{q}=\mathrm{n}(\mathrm{n}+1)$ for each $\mathrm{n} \in \mathrm{Z}^{+}$.
Proof:
Suppose $\mathrm{q}=\mathrm{n}(\mathrm{n}+1)$ for each $\mathrm{n} \in \mathrm{Z}^{+}$. Applying induction on ' n '. The result is obvious when $\mathrm{n}=1$ and $\mathrm{n}=2$.
Suppose the result is true when $\mathrm{n}=\mathrm{k}$. Let G be any connected graph with $\mathrm{q}=\mathrm{k}(\mathrm{k}+1)$, then G can be decomposed into $\left(G_{2}\right.$, $G_{4}, G_{6}, \ldots, G_{2 \mathrm{k}}$).
We prove that the result is true for $\mathrm{n}=\mathrm{k}+1$. Let G^{\prime} be any connected graph with $(\mathrm{k}+1)[(\mathrm{k}+1)+1]$ edges. We prove that G^{\prime} admits $\left(G_{2}, G_{4}, G_{6}, \ldots, G_{2 \mathrm{k}}, G_{2(\mathrm{k}+1)}\right)$. Now $(\mathrm{k}+1)(\mathrm{k}+2)=\mathrm{k}(\mathrm{k}+1)+2(\mathrm{k}+1)$. Thus $\mathrm{q}\left(\mathrm{G}^{\prime}\right)=\mathrm{k}(\mathrm{k}+1)+2(\mathrm{k}+1)$.
Let G^{*} and $\mathrm{G}_{2(\mathrm{k}+1)}$ be two subgraphs of G^{\prime} with $\mathrm{k}(\mathrm{k}+1)$ and $2(\mathrm{k}+1)$ edges respectively.
By our induction hypothesis G^{*} can be decomposed into k subgraphs ($G_{2}, G_{4}, G_{6}, \ldots G_{2 \mathrm{k}}$).
Therefore G^{\prime} can be decomposed into $\left(G_{2}, G_{4}, G_{6}, \ldots, G_{2 \mathrm{k}}\right)$ and $G_{2(\mathrm{k}+1)}$. Hence G admits Even Decomposition. Conversely, suppose G admits Even Decomposition ($G_{2}, G_{4}, G_{6}, \ldots, G_{2 \mathrm{n}}$).

Then obviously $\mathrm{q}(G)=2+4+6+\ldots+2 \mathrm{n}=\mathrm{n}(\mathrm{n}+1), \mathrm{n} \in \mathrm{Z}^{+}$. Hence the proof is finished.

2.3 Example

Figure 1. G with Even Decomposition $\left(G_{2}, G_{4}, G_{6}\right)$

3. Even Star Decomposition of Complete Bipartite Graph

3.1 Definition (Merly \& Gnanadhas, 2012)

An Even Decomposition $\left(\mathrm{S}_{2}, S_{4}, S_{6}, \ldots, S_{2 \mathrm{n}}\right)$ of G is called an Even Star Decomposition(ESD).
A graph G with $\mathrm{q}=12$ having an $\operatorname{ESD}\left(S_{2}, S_{4}, S_{6}\right)$ is shown in Figure 2.

Figure 2. Even Decomposition $\left(\mathrm{S}_{2}, S_{4}, S_{6}\right)$ of G

3.2 Remark

1. $\mathrm{K}_{2,1}$ admits ESD
2. $\mathrm{K}_{2,3}$ admits AED, but not ESD. It is shown in the Figure 3.

G_{2}

G_{4}

Figure 3. Even Decomposition of $K_{2,3}$
3. ESD $\left(S_{2}, S_{4}, S_{6}\right)$ of $\mathrm{K}_{2,6}$ is shown in Figure 4.

S_{2}

S_{4}

S_{6}

Figure 4. ESD (S_{2}, S_{4}, S_{6}) of $\mathrm{K}_{2,6}$
4. $\operatorname{ESD}\left(S_{2}, S_{4}, S_{6}, S_{8}\right)$ of $\mathrm{K}_{2,10}$ is shown in Figure 5.

Figure 5. ESD $\left(S_{2}, S_{4}, S_{6}, S_{8}\right)$ of $\mathrm{K}_{2,10}$

3.3 Theorem

A complete bipartite graph $K_{2^{t}, S_{t}}$ admits Even Star Decomposition $\left(S_{2}, S_{4}, \ldots, S_{k 2^{t+2}-2}\right)$ if and only if

$$
\mathrm{s}_{\mathrm{t}}=2 \mathrm{k}\left(\mathrm{k} 2^{\mathrm{t}+1}-1\right) \text {, where } \mathrm{n}=\mathrm{k} 2^{\mathrm{t}+1}-1, \mathrm{t}, \mathrm{k}(\neq 1) \in \mathrm{N} .
$$

Proof:
Assume $K_{2^{t}, s_{t}}$ admits ESD $\left(S_{2}, S_{4}, \ldots, S_{k 2^{t+2}-2}\right)$, we know that $\mathrm{q}\left(K_{2^{t}, s_{t}}\right)=2^{\mathrm{t}} \mathrm{s}_{\mathrm{t}}$
Therefore, $2^{\mathrm{t}} \mathrm{s}_{\mathrm{t}}=\mathrm{n}(\mathrm{n}+1)$. This implies $\mathrm{s}_{\mathrm{t}}=2 \mathrm{k}\left(\mathrm{k} 2^{\mathrm{t}+1}-1\right)$, where $\mathrm{n}=\mathrm{k} 2^{\mathrm{t}+1}-1, \mathrm{k} \neq 1$
Conversely, assume $\mathrm{s}_{\mathrm{t}}=2 \mathrm{k}\left(\mathrm{k} 2^{t+1}-1\right)$, to prove $K_{2^{t}, s_{t}}$ admits $\operatorname{ESD}\left(S_{2}, S_{4}, \ldots, S_{k 2^{t+2}-2}\right)$, applying induction on ' t ' the result is obvious when $\mathrm{t}=1$.

Suppose the result is true when $\mathrm{t}=\mathrm{g}$. That is $K_{2^{g}, s_{g}}$ admits ESD $\left(S_{2}, S_{4}, \ldots, S_{k 2^{g+2}-2}\right)$.
We prove that the result is true for $\mathrm{t}=\mathrm{g}+1$, that is to prove $K_{2}{ }^{g+1, s_{g+1}}$ admits ESD.
We have

$$
\mathrm{q}\left(K_{2^{g+1}, s_{g+1}}\right)=2^{\mathrm{g}+1} \mathrm{~s}_{\mathrm{g}+1}=2^{\mathrm{g}+1}\left(\mathrm{k}^{2} 2^{\mathrm{g}+3}-2 \mathrm{k}\right)=\mathrm{k}^{2} 2^{2 \mathrm{~g}+4}-\mathrm{k} 2^{\mathrm{g}+2}
$$

Also,

$$
\mathrm{q}\left(K_{2} g_{, s_{g}}\right)=2^{\mathrm{g}} \mathrm{~S}_{\mathrm{g}}=2^{\mathrm{g}}\left(\mathrm{k}^{2} 2^{\mathrm{g}+2}-2 \mathrm{k}\right)=\mathrm{k}^{2} 2^{2 \mathrm{~g}+2}-\mathrm{k} 2^{\mathrm{g}+1}
$$

Therefore,

$$
\begin{equation*}
\mathrm{q}\left(K_{2} g+1, s_{g+1}\right)-\mathrm{q}\left(K_{2} g_{, s_{g}}\right)=3 \mathrm{k}^{2} 2^{2 \mathrm{~g}+2}-\mathrm{k} 2^{\mathrm{g}+1} \tag{1}
\end{equation*}
$$

Now,

$$
\mathrm{q}\left(S_{k 2^{g+2}}\right)+\mathrm{q}\left(S_{k 2^{g+2}+2}\right)+\cdots+\mathrm{q}\left(S_{k 2^{g+2}-2}\right)
$$

Equal to

$$
\begin{equation*}
\mathrm{q}\left(\mathrm{~S}_{2 \mathrm{n}+2}\right)+\mathrm{q}\left(\mathrm{~S}_{2 \mathrm{n}+4}\right)+\ldots+\mathrm{q}\left(\mathrm{~S}_{4 \mathrm{n}+2}\right)=3 \mathrm{n}^{2}+5 \mathrm{n}+2,=3 \mathrm{k}^{2} 2^{2 \mathrm{~g}+2}-\mathrm{k} 2^{\mathrm{g}+1} \tag{2}
\end{equation*}
$$

From (1) and (2) we have proved that

$$
\mathrm{q}\left(S_{2^{g+1}, s_{g+1}}\right)-\mathrm{q}\left(K_{2^{g}, S_{g}}\right)=\mathrm{q}\left(S_{k 2^{g+2}}\right)+\mathrm{q}\left(S_{k 2^{g+2}+2}\right)+\cdots+\mathrm{q}\left(S_{k 2^{g+2}-2}\right)
$$

Therefore,

$$
\mathrm{q}\left(S_{2^{g+1}, s_{g+1}}\right)=\mathrm{q}\left(K_{2},_{, s_{g}}\right)+\mathrm{q}\left(S_{k 2^{g+2}}\right)+\mathrm{q}\left(S_{k 2^{g+2}+2}\right)+\cdots+\mathrm{q}\left(S_{k 2^{g+2}-2}\right)
$$

Therefore, $K_{2^{g+1}, s_{g+1}}$ admits ESD $\left(S_{2}, S_{4}, \ldots, S_{k 2}{ }^{g+3}-2\right)$.
Therefore the result is true for $\mathrm{t}=\mathrm{g}+1$.
Hence, $K_{2^{t}, S_{t}}$ admits ESD $\left(S_{2}, S_{4}, \ldots, S_{k 2^{t+2}-2}\right)$, where $\mathrm{n}=\mathrm{k} 2^{\mathrm{t}+1}-1, \mathrm{t}, \mathrm{k}(\neq 1) \in \mathrm{N}$.

3.4 Example

$\mathrm{K}_{2,28}$ admits ESD $\left(\mathrm{S}_{2}, \mathrm{~S}_{4}, \mathrm{~S}_{6}, \mathrm{~S}_{8}, \mathrm{~S}_{10}, \mathrm{~S}_{12}, \mathrm{~S}_{14}\right)$

$$
\mathrm{K}_{2,28}
$$

Figure 6. $\mathrm{ESD}\left(\mathrm{S}_{2}, \mathrm{~S}_{4}, \mathrm{~S}_{6}, \mathrm{~S}_{8}, \mathrm{~S}_{10}, \mathrm{~S}_{12}, \mathrm{~S}_{14}\right)$ of $\mathrm{K}_{2,28}$

3.5 Theorem

A complete bipartite graph $K_{2}{ }^{t}, s_{t}$ admits Even Star Decomposition $\left(S_{2}, S_{4}, \ldots, S_{k 2^{t+2}}\right)$ if and only if $\mathrm{s}_{\mathrm{t}}=2 \mathrm{k}\left(\mathrm{k} 2^{t+1}+1\right)$, where $\mathrm{n}=\mathrm{k} 2^{\mathrm{t}+1}, \mathrm{t}, \mathrm{k} \in \mathrm{N}$
Proof:
Assume $K_{2^{t}, S_{t}}$ admits ESD $\left(S_{2}, S_{4}, \ldots, S_{k 2^{t+2}}\right)$. We know that $\mathrm{q}\left(K_{2^{t}, S_{t}}\right)=2^{\mathrm{t}} \mathrm{s}_{\mathrm{t}}$.
Therefore $2^{t} s_{t}=n(n+1)$. Implies $s_{t}=2 k\left(k 2^{t+1}+1\right)$, where $n=k 2^{t+1}$.
Conversely, Assume $\mathrm{s}_{\mathrm{t}}=2 \mathrm{k}\left(\mathrm{k}^{\mathrm{t}+1}+1\right)$, to prove $K_{2}{ }^{t}, s_{t}$ admits ESD $\left(S_{2}, S_{4}, \ldots, S_{k 2^{t+2}}\right)$.
Applying induction on ' t ' the result is obvious when $t=1$.
Suppose the result is true when $\mathrm{t}=\mathrm{g}$. That is $K_{2^{g}, s_{g}}$ admits $\operatorname{ESD}\left(S_{2}, S_{4}, \ldots, S_{k 2}{ }^{g+2}\right)$.
To prove the result is true for $\mathrm{t}=\mathrm{g}+1$, That is to prove $K_{2^{g+1}, s_{g+1}}$ admits ESD.
We have

$$
\mathrm{q}\left(K_{2^{g+1}, s_{g+1}}\right)=2^{\mathrm{g}+1} \mathrm{~s}_{\mathrm{g}+1},=2^{\mathrm{g}+1}\left(\mathrm{k}^{2} 2^{\mathrm{g}+3}+2 \mathrm{k}\right)=\mathrm{k}^{2} 2^{2 \mathrm{~g}+4}+\mathrm{k} 2^{\mathrm{g}+2}
$$

Also,

$$
\mathrm{q}\left(K_{2} g_{, s_{g}}\right)=2^{\mathrm{g}} \mathrm{~s}_{\mathrm{g}}=2^{\mathrm{g}}\left(\mathrm{k}^{2} 2^{\mathrm{g}+2}+2 \mathrm{k}\right)=\mathrm{k}^{2} 2^{2 \mathrm{~g}+2}+\mathrm{k} 2^{\mathrm{g}+1} .
$$

Therefore,

$$
\begin{equation*}
\mathrm{q}\left(K_{2^{g+1}, s_{g+1}}\right)-\mathrm{q}\left(K_{2}{ }^{g}, s_{g}\right)=3 \mathrm{k}^{2} 2^{2 \mathrm{~g}+2}+\mathrm{k} 2^{\mathrm{g}+1} \tag{3}
\end{equation*}
$$

Now,

$$
\mathrm{q}\left(S_{k 2^{g+2}+2}\right)+\mathrm{q}\left(S_{k 2^{g+2}+4}\right)+\ldots+\mathrm{q}\left(S_{k 2^{g+3}}\right) .
$$

That is

$$
\begin{equation*}
\mathrm{q}\left(\mathrm{~S}_{2 \mathrm{n}+2}\right)+\mathrm{q}\left(\mathrm{~S}_{2 \mathrm{n}+4}\right)+\ldots+\mathrm{q}\left(\mathrm{~S}_{4 \mathrm{n}}\right)=3 \mathrm{n}^{2}+\mathrm{n}=3 \mathrm{k}^{2} 2^{2 \mathrm{~g}+2}+\mathrm{k} 2^{\mathrm{g}+1} \tag{4}
\end{equation*}
$$

From (3) and (4) We have proved that

$$
\mathrm{q}\left(K_{2^{g+1}, s_{g+1}}\right)-\mathrm{q}\left(K_{2} g_{,_{g}}\right)=\mathrm{q}\left(S_{k 2^{g+2}+2}\right)+\mathrm{q}\left(S_{k 2^{g+2}+4}\right)+\ldots \ldots \ldots .+\mathrm{q}\left(S_{k 2^{g+3}}\right) .
$$

Therefore,

$$
\mathrm{q}\left(K_{2^{g+1}, s_{g+1}}\right)=\mathrm{q}\left(K_{2^{g}, S_{g}}\right)+\mathrm{q}\left(S_{k 2^{g+2}+2}\right)+\mathrm{q}\left(S_{k 2^{g+2}+4}\right)+\ldots \ldots \ldots . .+\mathrm{q}\left(S_{k 2^{g+3}}\right) .
$$

Therefore $K_{2^{g+1}, s_{g+1}}$ admits ESD $\left(S_{2}, S_{4}, \ldots, S_{k 2} g+3\right)$.
Therefore the result is true for $\mathrm{t}=\mathrm{g}+1$.
Hence, $\mathrm{K}_{2}{ }^{\mathrm{t}}, \mathrm{s}_{\mathrm{t}}$ admits ESD $\left(S_{2}, S_{4}, \ldots, S_{k 2}{ }^{t+2}\right), \mathrm{n}=2^{\mathrm{t}+1} \mathrm{k}+1, \mathrm{t}, \mathrm{k} \in \mathrm{N}$.

3.6 Example

$\mathrm{K}_{4,18}$ admits ESD $\left(\mathrm{S}_{2}, \mathrm{~S}_{4}, \ldots, \mathrm{~S}_{16}\right)$.

Figure 7. $\mathrm{ESD}\left(\mathrm{S}_{2}, \mathrm{~S}_{4}, \ldots, \mathrm{~S}_{16}\right)$ of $\mathrm{K}_{4,18}$

3.7 Remark

Complete bipartite graph $\mathrm{K}_{3, \mathrm{~s}}, \mathrm{~K}_{6, \mathrm{~s}}, \ldots, \mathrm{~K}_{\mathrm{w}, \mathrm{s}}$ does not admit AESD where w is odd or odd multiples.

References

Merly, E. E. R., \& Gnanadhas, N. (2011). Linear Path Decomposition of Lobster. International Journal of Mathematics Research,3(5), 447-455.
Merly, E. E. R., \& Gnanadhas, N. (2012). Linear Star Decomposition of Lobster. Int. J. Contemp. Math. Sciences, 7(6), 251-261.

Frank, H. (1969). Graph Theory. Addison-Wesley Publishing Company.
Gnanadhas, N., \& Paulraj, J. J. (2000). Continuous Monotonic Decomposition of Graphs. International Journal of Management and Systems, 16(3), 333-344.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

