Super Lehmer-3 Mean Labeling

S. Somasundaram ${ }^{1}$, S. S. Sandhya ${ }^{2}$ \& T. S. Pavithra ${ }^{3}$
${ }^{1}$ Professor in Mathematics, Manonmaniam Sundaranar University,Tirunelveli-627012
${ }^{2}$ Assistant Professor in Mathematics, Sree Ayyappa College for Women Chunkankadai- 629003,Kanyakumari
${ }^{3}$ Assistant Professor in Mathematics, St.John's College of arts and Science Ammandivilai-629204, Kanyakumari
Correspondence: T. S. Pavithra, Assistant Professor in Mathematics, St.John's College of arts and Science Ammandivilai-629204, Kanyakumari. E-mail: tspavithra11@gmail.com

Received: July 6, 2016 Accepted: July 19, 2016 Online Published: September 14, 2016
doi:10.5539/jmr.v8n5p29 URL: http://dx.doi.org/10.5539/jmr.v8n5p29

Abstract

Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots \mathrm{p}+\mathrm{q}\}$ be an injective function.The induced edge labeling $\mathrm{f}^{*}(\mathrm{e}=\mathrm{uv})$ is defined by, $\mathrm{f} *(\mathrm{e})=\left\lceil\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rceil$ (or) $\left\lfloor\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rfloor$, then f is called Super Lehmer-3 mean labeling, if $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \mathrm{U}\{\mathrm{f}(\mathrm{e}) / \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2,3, \ldots . \mathrm{p}+\mathrm{q}\}, \mathrm{A}$ graph which admits Super Lehmer-3 Mean labeling is called Super Lehmer-3 Mean graph.

In this paper we prove that Path, Comb, Ladder, Crown are Super Lehmer-3 mean graphs. Keywords: graph, Lehmer-3 mean graph, Super Lehmer-3 mean graph, Path, Comb, Ladder, Kite, Crown.

\section*{1. Introduction}

A graph considered here are finite, undirected and simple. The vertex set and the edge set of a graph is denoted by $\mathrm{V}(\mathrm{G})$ and $E(G)$ respectively. Lehmer mean is another type of generalized mean. A path of length n is denoted by P_{n}. For standard terminology and notations we follow Harary (1988) and for the detailed survey of graph labeling we follow J.A. Gallian (2010). S.Somasundaram, S.S Sandhya and R.Ponraj introduced the concept of Harmonic Mean Labeling of Graphs in (Somasundaram, Ponraj, \& Sandhya) and its basic results was proved in (Somasundaram, Ponraj, \& Sandhya). We will provide a brief summary of other in formations which are necessary for our present investigation.

Definition 1.1

A graph $G=(V, E)$ with p vertices and q edges is called Lehmer-3 mean graph. If it is possible to label vertices $x \in V$ with distinct labels $\mathrm{f}(\mathrm{x})$ from $1,2,3, \ldots \ldots \mathrm{q}+1$ in such a way that when each edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\mathrm{f}(\mathrm{e}=\mathrm{uv})=\left\lceil\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rceil$ (or) $\left\lfloor\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rfloor$, then the edge labels are distinct. In this case " f " is called Lehmer-3 mean labeling of G.

Definition 1.2

A Path P_{n} is obtained by joining u_{i} to the consecutive vertices u_{i+1} for $1 \leq i \leq n$

Definition 1.3

A graph obtained by joining a single pendant edge to each vertex of a path is called a comb

Definition 1.4

A product graph $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$ is called a planar grid $\mathrm{P}_{2} \times \mathrm{P}_{\mathrm{n}}$ is called a Ladder.

Definition 1.5

Crown is a graph obtained by joining a single pendant edge to each vertex of a cycle.

Definition 1.6

The corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where the $\mathrm{i}^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $\mathrm{i}^{\text {th }}$ copy of G_{2}.

2. Main Results

Theorem:2.1

A Path P_{n} is a Super Lehmer-3 mean graph.

Proof:

Let P_{n} be a Path $v_{1}, v_{2}, \ldots . v_{n}$ with edge set $E=\left\{v_{i} \mathrm{~V}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots . \mathrm{p}+\mathrm{q}\}$ by

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n} .
$$

Then the induced edge labels are

$$
f^{*}\left(v_{i} v_{i+1}\right)=2 i ; 1 \leq i \leq n-1
$$

Therefore $f\left(V\left(P_{n}\right) U f(e)\right)=\{1,2,3, \ldots . . p+q\}$
Hence P_{n} is a Super Lehmer-3 mean graph

Example:2.2

A Super Lehmer- 3 mean labeling of P_{6} is given below.

Figure 1.

Theorem: 2.3

$\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$ is a Super Lehmer-3 mean graph.

Proof:

Let G be a Comb obtained from a path $P_{n}=v_{1}, v_{2}, \ldots . v_{n}$ by joining the vertex v_{i} to u_{i} where $1 \leq i \leq n$ and hence the edge set is

$$
\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \mathrm{U}\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}
$$

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}-3 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Thus the edges are labeled with

$$
\begin{gathered}
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-2 ; 1 \leq \mathrm{i} \leq \mathrm{n}
\end{gathered}
$$

Therefore $\mathrm{f}(\mathrm{V}(\mathrm{G})) \mathrm{U}\{\mathrm{f}(\mathrm{e}) / \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2,3, \ldots . . \mathrm{p}+\mathrm{q}\}$
Thus f is a Super Lehmer-3 mean graph

Example: 2.4

Figure 2.
A Super Lehmer- 3 mean labeling of $\mathrm{P}_{6} \odot \mathrm{~K}_{1}$ is drawn above

Theorem: 2.5

A Ladder is a Super Lehmer-3 mean graph.

Proof:

Let G be a ladder L_{n} obtained from a path $P_{n}=v_{1}, v_{2}, \ldots \ldots v_{n}$ and $u_{1}, u_{2}, \ldots \ldots u_{n}$ joining u_{i} to v_{i} and u_{i} to u_{i+1}, v_{i} to v_{i+1}.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{v}_{1}\right)=\mathrm{u}_{\mathrm{n}}+2
\end{gathered}
$$

here u_{n} denote the last vertex label of path u_{i}

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{v}_{1}+(3 \mathrm{i}-3) ; 2 \leq \mathrm{i} \leq \mathrm{n},
$$

where v_{1} denote the first vertex label of path v_{i}
Thus we get distinct edge labels.
Therefore $\mathrm{f}(\mathrm{V}(\mathrm{G}) \mathrm{U}\{\mathrm{f}(\mathrm{e}) / \mathrm{e} \in \mathrm{E}(\mathrm{G}))=\{1,2,3, \ldots . . \mathrm{p}+\mathrm{q}\}$
Hence f is a Super Lehmer-3 mean graph.

Example: 2.6

L_{5} is a Super Lehmer- 3 mean graph

Figure 3.

Theorem: 2.7

Let G be a graph obtained by identifying a pendant vertex P_{n} and an end vertex C_{3}. Then G admits a Super Lehmer- 3 mean labeling.

Proof:

Let P_{n} be a path $u_{1}, u_{2}, \ldots . u_{n}$ and uvw be a cycle C_{3}. Identify u with u_{n}. Then the resultant graph is G.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}(\mathrm{v})=2 \mathrm{n}+1 \\
\mathrm{f}(\mathrm{w})=2 \mathrm{n}+4
\end{gathered}
$$

Thus the edges are labeled with

$$
\begin{gathered}
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}\right)=2 \mathrm{n} \\
\mathrm{f}^{*} *\left(\mathrm{u}_{\mathrm{n}} \mathrm{w}\right)=2 \mathrm{n}+2 \\
\mathrm{f}^{*}(\mathrm{vw})=2 \mathrm{n}+3
\end{gathered}
$$

hence by the above labeling pattern $\{\mathrm{fV}(\mathrm{G}) \mathrm{Uf}(\mathrm{e}) / \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2,3, \ldots . \mathrm{p}+\mathrm{q}\}$
Thus G admits a Super Lehmer-3 mean labeling.

Example: 2.8

A Super Lehmer- 3 mean labeling of G when $\mathrm{n}=6$ is given below

Figure 4.
Theorem: 2.9
$\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is a Super Lehmer- 3 mean graph
Proof:
Let $u_{1}, u_{2}, u_{3}, \ldots . . u_{n}, u_{1}$ be a cycle of n vertices. Add a new vertices v_{i} such that v_{i} is adjacent to $u_{i}, 1 \leq i \leq n$. Then define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \rightarrow\{1,2, \ldots \ldots \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{u}_{1}\right)=3 \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}-3 ; 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=4 \mathrm{n}-2 \\
\mathrm{f}\left(\mathrm{v}_{1}\right)=1 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=4 \mathrm{n}
\end{gathered}
$$

Then the edges are labeled with

$$
\begin{gathered}
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right)=4 \mathrm{n}-3 \\
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-2 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)=4 \mathrm{n}-1
\end{gathered}
$$

Thus vertices and edges together get distinct labels from $\{1,2,3, \ldots . \mathrm{p}+\mathrm{q}\}$
Hence $\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is a Super Lehmer-3 mean graph

Example: 2.10

The labeling pattern of $\mathrm{C}_{6} \odot \mathrm{~K}_{1}$ is

Figure 5.

Theorem: 2.11
nP_{m} is a Super Lehmer-3 mean graph

Proof:

Let $\mathrm{v}_{\mathrm{ij}}, 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{m}$ be the vertices of nP_{m}
Then the edge set is $E=\left\{\mathrm{v}_{\mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{i}, \mathrm{j}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{m}-1\right\}$
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{nP}_{\mathrm{m}}\right) \rightarrow\{1,2, \ldots . . \mathrm{p}+\mathrm{q}\}$ by

$$
\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}\right)=(2 \mathrm{~m}-1)(\mathrm{i}-1)+(2 \mathrm{j}-1) ; 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{m}
$$

Thus the induced edge labels are

$$
f\left(v_{i, j} v_{i, j+1}\right)=(2 m-1)(i-1)+(2 j) ; 1 \leq i \leq n, 1 \leq j \leq m-1
$$

Thus f provides a Super Lehmer-3 mean labeling of nP_{m}
Example: 2.12
A Super Lehmer-3 mean labeling of $5 \mathrm{P}_{6}$ is given below

Figure 6.
Theorem: 2.13
$\left(P_{n} \odot K_{1}\right) \cup P_{m}$ is a Super Lehmer- 3 mean graph.

Proof:-

Let G be a graph obtained by the union of $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$ and P_{m}
Let $\left(P_{n} \odot K_{1}\right)$ be a graph with n vertices $u_{1}, u_{2}, \ldots . . u_{n}$ and $v_{1}, v_{2}, \ldots . v_{n}$ respectively.
Let the vertices of P_{m} be $w_{1}, w_{2}, \ldots w_{m}$
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}-3 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{n}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{v}_{\mathrm{n}}+(2 \mathrm{j}-1) ; 1 \leq \mathrm{j} \leq \mathrm{m}
\end{gathered}
$$

Then the induced edge labels are

$$
\begin{gathered}
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right) ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-2 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}^{*}\left(\mathrm{w}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}+1}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)+(2 \mathrm{j}+1) ; 1 \leq \mathrm{j} \leq \mathrm{m}-1
\end{gathered}
$$

Thus the vertices and edges together get distinct labels from $\{1,2, \ldots . . \mathrm{p}+\mathrm{q}\}$.
This provides a Super Lehmer- 3 mean labeling for $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup \mathrm{P}_{\mathrm{m}}$
Example: 2.14
The Super Lehmer-3 mean labeling of $\left(\mathrm{P}_{6} \odot \mathrm{~K}_{1}\right) \cup \mathrm{P}_{5}$ is

Figure 7.
Theorem: 2.15
$($ Kite $) \cup P_{m}$ is a Super Lehmer-3 mean graph.
Proof:-
Let G be a graph obtained from the union of kite and path
The vertices of kite be $u_{1}, u_{2}, \ldots \ldots . u_{n}$ and uvw. Identify u with u_{n}, uvw be a cycle
Let P_{m} be a graph with m vertices. Then the resultant graph is G
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots \mathrm{p}+\mathrm{q}\}$ by

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}(\mathrm{v})=2 \mathrm{n}+1 \\
\mathrm{f}(\mathrm{w})=2 \mathrm{n}+4 \\
\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{f}(\mathrm{w})+(2 \mathrm{j}-1) ; 1 \leq \mathrm{j} \leq \mathrm{m}
\end{gathered}
$$

Thus the edges are labeled with

$$
\begin{gathered}
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f} *\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}\right)=2 \mathrm{n} \\
\mathrm{f} *\left(\mathrm{u}_{\mathrm{n}} \mathrm{w}\right)=2 \mathrm{n}+2 \\
\mathrm{f}^{*}(\mathrm{vw})=2 \mathrm{n}+3 \\
\mathrm{f} *\left(\mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}+1}\right)=\mathrm{f}(\mathrm{vw})+(2 \mathrm{j}-1) ; 1 \leq \mathrm{j} \leq \mathrm{n}
\end{gathered}
$$

By the above labeling pattern $\{\mathrm{f} V(\mathrm{G}) \mathrm{U} \mathrm{f}(\mathrm{e}) / \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2,3, \ldots . \mathrm{p}+\mathrm{q}\}$
Hence G admits a Super Lehmer-3 mean labeling.

Example: 2.16

The Super Lehmer-3 mean labeling pattern is given below

Figure 8.
Theorem: 2.17
$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup \mathrm{P}_{\mathrm{m}}$ is a Super Lehmer-3 mean graph

Proof:

Let $u_{1}, u_{2}, u_{3}, \ldots . . u_{n}, u_{1}$ be the vertices of a cycle C_{n}. Add a new vertices v_{i} such that v_{i} is adjacent to $u_{i}, 1 \leq i \leq n$.
Let P_{m} be a path with m vertices
Define a function $\mathrm{f}: \mathrm{V}\left(\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup \mathrm{P}_{\mathrm{m}}\right) \rightarrow\{1,2, \ldots . . \mathrm{p}+\mathrm{q}\}$ by

$$
\mathrm{f}\left(\mathrm{u}_{1}\right)=3
$$

$$
f\left(u_{i}\right)=4 i-3 ; 2 \leq i \leq n-1
$$

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=4 \mathrm{n}-2 \\
\mathrm{f}\left(\mathrm{v}_{1}\right)=1 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=4 \mathrm{n} \\
\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)+(2 \mathrm{j}-1) ; 1 \leq \mathrm{j} \leq \mathrm{m}
\end{gathered}
$$

Thus vertices and edges together get distinct labels from $\{1,2,3 \ldots . . \mathrm{p}+\mathrm{q}\}$
Hence $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup \mathrm{P}_{\mathrm{m}}$ is a Super Lehmer-3 mean graph

Example: 2.18

A Super Lehmer- 3 mean labeling of $\left(\mathrm{C}_{6} \mathrm{OK}_{1}\right) \cup \mathrm{P}_{5}$ is

Figure 9.

Theorem: 2.19

$\left(C_{n} \odot K_{1}\right) \cup\left(P_{m} \odot K_{1}\right)$ is a Super Lehmer- 3 mean graph

Proof:

Let $u_{1}, u_{2}, u_{3}, \ldots . . u_{n}, u_{1}$ be a cycle C_{n}. Add a new vertices v_{i} such that v_{i} is adjacent to $u_{i}, 1 \leq i \leq n$.
Let $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1}\right)$ is a comb of m vertices $\mathrm{w}_{1}, \mathrm{w}_{2} \ldots . \mathrm{w}_{\mathrm{m}} ; \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{m}}$ respectively
The graph G is defined by a function $f: V(G) \rightarrow\{1,2, \ldots \ldots p+q\}$ by

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{u}_{1}\right)=3 \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}-3 ; 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=4 \mathrm{n}-2 \\
\mathrm{f}\left(\mathrm{v}_{1}\right)=1 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=4 \mathrm{n} \\
\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)+(4 \mathrm{j}-3) ; 1 \leq \mathrm{j} \leq \mathrm{m} \\
\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)+(4 \mathrm{j}-1) ; 1 \leq \mathrm{j} \leq \mathrm{m}
\end{gathered}
$$

Then the vertices and edges together get distinct labels from $\{1,2,3 \ldots \ldots \mathrm{p}+\mathrm{q}\}$
Hence $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1}\right)$ forms a Super Lehmer-3 mean graph
Example: 2.20
A Super Lehmer- 3 mean labeling of $\left(\mathrm{C}_{6} \odot \mathrm{~K}_{1}\right) \cup \mathrm{P}_{5}$ is

Figure 10.

3. Conclusion

Hence the union of two Super Lehmer-3 mean graph is again a Super Lehmer-3 mean graph.

References

Gallian, J. A. (2010). A dynamic survey of graph labeling. The electronic journal of combinatories, 17 \# DS6.
Harary, F. (1988). Graph theory. Narosa Publication House reading, New Delhi.
Somasndram, S., \& Ponraj, R. (2003). Mean labeling of Graphs. National Academy of Science Letter, 26(2013), p210-213.
Somasundaram, S., Ponraj, R., \& Sandhya, S. S. Harmonic mean labeling of graphs. Communicated to journal of combinatorial mathematics and combinatorial computing.
Somasundaram, S., Sandhya, S. S., \& Pavithra, T. S. (2016). Lehmer-3 Mean Labeling of Some New Disconnected Graphs. International Journal of Mathematics Trends and Technology, 35(1).

Somasundaram, S., Sandhya, S. S., \& Pavithra, T. S. (2016). Lehmer-3 Mean Labeling of Disconnected Graphs. Asia Pacific Journal of Research, 1(XL).

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

