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Abstract

The aim of this paper is to determine the optimal locations where Fish Aggregating Devices (F.A.D) or artificial traps must
be placed in a given place of the sea and to preverse resources. Our work focuses on two parts: the first one is the study of
static optimization problem with a functional taking into account the distance between the sites or F.A.D and the second
one is devoted to solving an optimization problem with constraints expressed in classical model of fishery: Lagrange’s
method and Pontryagin’s maximum principle the main mathematical tools to get characterization results of the location
of artificial traps.

Keywords: Dynamical systems; fishery; optimization; Lagrange’s problem; Pontryagin’s maximum principle; numerical
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1. Introduction

In this paper one supposes to follow one type of fish in a given place to capture it by using artificial traps or Artificial
Habitats called Fish Aggregating Devices (FADS) see for example (Moussaoui, 2011) and references therein for more
details. Let us recall that fishery activities involve costs (such as salaries of workers, equipment, the fuel logisties..)
But it is important to note that if the resource of fishes is not preserved then the economic activities will no longer be
profitable in this sector. That’s why even there are tools, means and techniques to capture a lot of fishes, it is very
important to preserve the fisheries resources. To take into account the economic profitability and the preserving resource,
we propose to study geometrical optimization problems linking these two concerns. And we are going to use mainly the
Lagrange’s method, the Pontryagin’s Maximum Principle and the basic tools of the control theory of system of Ordinary
Differential Equations. A good understanding of the location of obstacles by geometrical optimization could give a good
approximation on the number of artificial habitats to be placed and there locations in order to contribute significautly to
the preservation of the fisheries resources.

The main concern is to find and to characterize a network, a shape of unknown domains with constraints of ordinary differ-
ential equations translating the population dynamics. For this we shall to introduce a criteria to be optimized, depending
on the position of the obstacles (traps) and minimizing both economics costs and distances between the obstacles.

Our contribution can be summed up as follows:

Comparing to pioneering the work due to Auger et al, (Auger; Moussaoui, 2011) for a given number of obstacles, we
introduce geometrical functionals to get sufficient conditions describing the optimal location of the obstacles or traps.
And from these sufficient conditions, several geometric configurations are obtained.

Another intersting is a geometrc controllability.In fact, introducing control variables depending implicitly or explicitly on
the obstacles. We get an optimal necessary and sufficient condition to get stable evolution of the resource during a given
time interval [0; T ], T > 0. The optimal control results, that is the main result is given. And finally, it is followed by
numerical simulations.

In the sequel of this work, we will consider the expression FADS if necessary to mean traps or obstacles or sites and the
work is organized as follows:

In section 1, we study the proposed optimization without constraints . For these problems, we use a functional which
takes into account the distance between FADS.

The section 2 is devoted to the optimization problem with constraints that are described by ordinary differentiel equations.

211



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 8, No. 4; 2016

They derived from a classical fisheries model which is giving by the following system:{ dn
dt =

(
rn

(
1 − n

K

)
− QnE

)
dE
dt = (−c + aQn) E

where n(t) and E(t) are respectively fish biomass and fishing effort.The other parameters q, c and a are as follows:

q the fish catchability parameter on the FADS,

c is the cost per unit of fishing effort on the FADS,

a is the price per unit of fish on the sites.

Let us point out that two methods shall be explored: the Lagrange’s and Pontryagin’s methods.

2. Optimization without Constraints

The aim in this section is to study the location of FADs so as to minimize the distances between traps. Now let us introduce
the following functionnal:

G1(M1, · · · ,ML) =

L−1∑
i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0


2

where Mi = (xi ; yi) ∈ R2 , M j =
(
x j ; y j

)
∈ R2 are the positions of the FADS to be determined, L is the number of

FADS,
∥∥∥MiM j

∥∥∥2
= (xi − x j)2 + (yi − y j)2 is the square euclidian distance of the points Mi and M j. This functional is

introduced in order to minimize the distance in a given region that is assimilated to the disc D(O,R0). Our aim is to solve
the above minimization problem in D(0,R0) centered at the origin O with radius R0. We have the following first order
necessary optimality conditions for the functional G1.

Theorem 1 Let us consider the functional G1 defined as above. Then a first order necessary optimality condition for
location of FADS is given by:

L−1∑
i=1

∥MiMi+1∥2 +
L−2∑
i=1

∥MiMi+2∥2 + · · · +
2∑

i=1

∥MiMi+L−2∥2 + ∥M1ML∥2 − R2
0 = 0

Before proving this first result, let us remark that:

G1 =

L−1∑
i=1

∥MiMi+1∥2 +
L−2∑
i=1

∥MiMi+2∥2 + · · · +
2∑

i=1

∥MiMi+L−2∥2 + ∥M1ML∥2 − R2
0


2

Proof. Expanding the functional G1, we have

G1 =

L−1∑
i=1

∥MiMi+1∥2 +
L−2∑
i=1

∥MiMi+2∥2 + · · · +
2∑

i=1

∥MiMi+L−2∥2 + ∥M1ML∥2 − R2
0


2

For Mi = (xi ; yi) and M j =
(
x j ; y j

)
i; j ∈ {1...L} then we have

G1 =

L−1∑
i=1

(xi − xi+1)2 + (yi − yi+1)2 + · · · + (x1 − xL)2 + (y1 − yL)2 − R2
0


2

Let us set

A =

L−1∑
i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

=

L−1∑
i=1

∥MiMi+1∥2 +
L−2∑
i=1

∥MiMi+2∥2 + · · · +
2∑

i=1

∥MiMi+L−2∥2 + ∥M1ML∥2 − R2
0

A necessary optimality condition for location the obstacles is given by ∇G1 = 0. This is translated by:
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Lx1 −
L∑

i=1

xi

 A = 0

...LxL −
L∑

i=1

xi

 A = 0

Ly1 −
L∑

i=1

yi

 A = 0

...LyL −
L∑

i=1

xi

 A = 0

(1)

The solving of the system (1) is equivalent to solve 4L systems. And each system corresponds to positions of FADS.
Among there several possibilities of positions, we consider a particular case that is:

A =
L−1∑
i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0 = 0.

That prove the theorem.

Now let us proceed to some geometrical representations of FADS. For this we shall consider the cases given by theorem
1 i.e the case where A = 0 for different values of the number of sites L. Here we plot the positions for L = 3, 4, 5, 6 and
L = 7. For all representations M1 is supposed to be given and fixed. We can assume that M1 = O. The figures are obtained
by solving equation A = 0 with additional data.

For example Figure1 is obtained by assuming that, ∥M1M2∥ = ∥M1M3∥ = ∥M2M1∥ = 1 and x2 = 0.5.

(a) (b)

Figure 1. Representations of FADS for L = 3.

For the cases of Figure2 and Figure3, we suppose that for i = 1 . . . 3 and for i = 1 . . . 4, ∥MiMi+1∥ = 1, x2 = 1 and x3 = 0.5.

Figure4 is obtained by supposing for = 1 . . . 5, ∥MiMi+1∥ = 1, x2 = 1, x3 = 0.5, x4 = 0.8 and x5 = 0.3.

The last one is obtained by taking for = 1 . . . 6, ∥MiMi+1∥ = 1, x2 = 1, x3 = 0.5, x4 = 0.8,x5 = 0.3 and x5 = 0.2.
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(a) (b)

Figure 2. Representation of FADS for L = 4.

(a) (b) (c)

Figure 3. Representation of FADS for L = 5.

(a) (b) (c)

Figure 4. Representation of FADS for L = 6.
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(a) (b) (c)

Figure 5. Representation of FADS for L = 7.

3. Optimization with Constraints

3.1 Lagrange’s Method

In this part we shall introduce constraints and the economical dimension is translated by the payoff or the benefice related
to fisheries activities. Let us introduce the functional defined by:

H (t,M1; · · · ; ML) = catch - costs = (anQ − c) E. Our aim is to maximize H and to minimize G1 under the constraints
described by the aggregated model over a time interval [0,T ] where T is a given and fixed positive real. Let us consider
the following dynamical optimization problem:

(P) : min
∫ T

0

[
−H (t,M1; · · · ; ML) +

1
T

G1 (M1; · · · ; ML)
]

under the constraints of aggregated model:


dn
dt = rn

(
1 − n

K

)
− QnE

dE
dt = (−c + aQn) E

n (0) = n0
E (0) = E0 where Mi ∈ D (0; R0) design the position of FAD i

(2)

(P) is nothing but a Lagrange’s problem.

Remark 1 From the following inequality:

min
∫ T

0

[
−H +

1
T

G
]

dt ≥ min
∫ T

0
−Hdt + minG

it is easy to see that another interesting optimization is
max

∫ T
0 H+minG1. It should be interesting too to consider a multicriteria problem as follows: minG1 and max

∫ T
0 H under

the constraints (2). It can be formulated in the following sense

min
∫ T

0
γ [−H (t,M1; · · · ; ML)] dt + (1 − γ)

∫ T

0

[
1
T

G1 (M1; · · · ; ML)
]

dt

where γ is an arbitrary constant, γ ∈ [0; 1] under the constraints of aggregated model:


dn
dt = rn

(
1 − n

K

)
− QnE

dE
dt = (−c + aQn) E

n (0) = n0
E (0) = E0 where Mi ∈ D (0; R0) is the position of FAD i
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Theorem 2 The optimal conditions of Lagrange’s problem is given by

Lx1 −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

...LxL −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

Ly1 −
L∑

i=1

yi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

...LyL −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

where n(t), E(t), p1(t) and p2(t) satisfy the following system:
ṅ = rn(1 − n

K ) − QnE
Ė = (−c + aQn)E
ṗ1 = −aQE − p1

[
r
(
1 − 2n

K

)
− QE

]
− p2aQE

ṗ2 = (c − aQn) + p1Qn − p2 (−c + aQn)

(3)

p1(t) and p2(t) be Lagrange multipliers.

Proof. Let’s set X = (n ; E) and the control vector

U



u1
...

uL

uL+1
...

u2L


with

u1 = x1 . . . uL = xL

uL+1 = y1 . . . u2L = yL

and

f0 (t ; X; U) = (c − aQn) E +
1
T

L−1∑
i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0


2

φ (t ; X; u) =
(

rn
(
1 − n

K

)
− QnE

(−c + aQn) E

)
.

Then, we can introduce the Lagrange’s function defined by:

L (t ; X; u; p; λ) =
∫ T

0

(
λ0 f0 (t ; X; u) + p(t)

(
Ẋ − φ (t ; X; u)

))
dt + λ1n(0) + λ2E(0)

=

∫ T

0

λ0

(c − aQn) E +
1
T

L−1∑
i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0


2 + p1(ṅ − φ1) + p2(Ė − φ2)

 dt

+λ1n(0) + λ2E(0).
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• The Euler-Lagrange conditions are expressed as follows{
− d

dt Fṅ + Fn = 0
− d

dt FĖ + FE = 0

Where Fṅ =
∂F
∂ṅ , FĖ =

∂F
∂Ė , Fn =

∂F
∂n , FE =

∂F
∂E FẊ = ( ∂F

∂n ,
∂F
∂E ) and F = λ0 f0 + p1 (ṅ − φ1) + p2

(
Ė − φ2

)
.{

ṗ1 = −λ0aQE − p1

[
r
(
1 − 2n

K

)
− QE

]
− p2aQE

ṗ2 = λ0 (c − aQn) + p1Qn − p2 (−c + aQn) .

• The transversality conditions are equivalent to the following systems:{
p1 (0) = λ1
p1 (T ) = 0 ;

{
p2 (0) = λ2
p2 (T ) = 0

• The optimality conditions are given by the equations:

Fxi = 0 ; Fyi = 0 for i = 1; . . . ; L

that are equivalent to:



Lx1 −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

...LxL −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

Ly1 −
L∑

i=1

yi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

...LyL −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

For λ0 = 1, taking into account the equations of constraints and the Euler-Lagrange equations we obtain the following
system: 

ṅ = rn(1 − n
K ) − QnE

Ė = (−c + aQn)E
ṗ1 = −aQE − p1

[
r
(
1 − 2n

K

)
− QE

]
− p2aQE

ṗ2 = (c − aQn) + p1Qn − p2 (c − aQn)

(4)
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The solution of the (4) is given by the figure 6.

Figure 6. Representation of solutions of system (4). Figure 6 is obtained for a = 1, r = 2, Q=1/2 c=1 and K=4 with initial
conditions given: n(0) = 20, E(0) = 5 p1(0) = 0.8 and p2(0) = 2

3.2 Pointryagin’s Method

In this subsection, we aim study the following problem by using Pointryagin’s method

(P) : min
∫ T

0

[
−H (t,M1; · · · ; ML) +

1
T

G1 (M1; · · · ; ML)
]

under the same constraints than those considered in Lagrange’s problem. that is translated by:

(P) : max
∫ T

0

[
H (t,M1; · · · ; ML) − 1

T
G1 (M1; · · · ; ML)

]

under the constraints of aggregated model:


dn
dt = rn

(
1 − n

K

)
− QnE

dE
dt = (−c + aQn) E

n (0) = n0
E (0) = E0

where

G1(M1, · · · ,ML) =

L−1∑
i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0


2

, Mi ∈ D (0; R0) , L number of FADS

Theorem 3 Assuming U∗ the optimal control of above problem and X the corresponding trajectory. Then there exists a
vector P(p1; p2) such that the couple of vectors (X; P) satisfies the following hamiltonian system:


ṅ = rn(1 − n

K ) − QnE
Ė = (−c + aQn)E
ṗ1 = −aQE − p1

[
r
(
1 − 2n

K

)
− QE

]
− p2aQE

ṗ2 = (c − aQn) + p1Qn − p2 (−c + aQn)

(5)
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and the maximization condition is given by



Lx1 −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

...LxL −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

Ly1 −
L∑

i=1

yi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

...LyL −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

Proof. Let U be the control defined in [−R0; R0]2L by

U



u1
...

uL

uL+1
...

u2L


with

u1 = x1 . . . uL = xL

uL+1 = y1 . . . u2L = yL

and X =
(

n
E

)
Then the hamiltonian is given by

H (X, p,U) =
(
rn

(
1 − n

K

)
− QnE

)
p1 + (−c + aQn) Ep2 + (−c + aQn) E

− 1
T

L−1∑
i=1

L∑
j=i+1

(
xi − x j

)2
+

(
yi − y j

)2 − R2
0


2

Then the equations Ẋ = ∂H
∂P and Ṗ = − ∂H

∂X imply that:


ṅ = ∂H

∂p1
= rn(1 − n

K ) − QnE
Ė = ∂H

∂p2
= (−c + aQn)E

ṗ1 = − ∂H∂n = −aQE − p1

[
r
(
1 − 2n

K

)
− QE

]
− p2aQE

ṗ2 = − ∂H∂p1
= (c − aQn) + p1Qn − p2 (−c + aQn)

The maximization condition is given by differentiating the hamiltonian with respect to each variable ui for i = 1, . . . , 2L,
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That is equivalent to 

Lx1 −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

...LxL −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

Ly1 −
L∑

i=1

yi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

...LyL −
L∑

i=1

xi


L−1∑

i=1

L∑
j=i+1

∥∥∥MiM j

∥∥∥2 − R2
0

 = 0

Remark 2 It is interesting to note that we find the same solution as in the Lagrange’s method. This means that we
have the same representations of solutions than in figure 6. The maximization condition corresponds to the geometrical
optimization problem without constraints, developed in first section. We can claim that optimal control is given by the
optimal location of FADS.
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