A General Family of Fibonacci-Type Squences

Suriya Nanhongkai ${ }^{1}$ \& Utsanee Leerawat ${ }^{1}$
${ }^{1}$ Department of Mathematics, Facuty of Science, Kasetsart University, Bangkok, Thailand
Correspondence: Utsanee Leerawat, Department of Mathematics, Facuty of Science, Kasetsart University, Bangkok, Thailand. E-mail: fsciutl@ku.ac.th

Received: May 28, 2016 Accepted: June 15, 2016 Online Published: July 26, 2016
doi:10.5539/jmr.v8n4p172
URL: http://dx.doi.org/10.5539/jmr.v8n4p172

Abstract

In this work, we introduce a further generalization of the Fibonacci-type sequence, namely, generalized Fibonacci-type sequence. We also provide the general solution of nonhomogeneous generalized Fibonacci-type sequence, which can be expressed in terms of the Fibonacci-type numbers.

Keywords: Fibonacci, sequences

1. Introduction

The Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ is a sequence of numbers, starting with the integer pair 0 and 1 , where the value of each element is calculated as the sum of two preceding it. That is $F_{n}=F_{n-1}+F_{n-2}$ for all $n \geq 2$.
The recurrence relation $G_{n}=G_{n-1}+G_{n-2}+\sum_{i=0}^{k} \alpha_{i} n^{i}$ with initial conditions $G_{0}=G_{1}=1$ was introduced by Peter R.J. Asveld (Asveld, 1987). The main result of (Asveld, 1987) consists of an expression of G_{n} in terms of Fibonacci number F_{n} and F_{n-1} and in the parameters $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$.
Later several authors like G. B. Djordjević and H. M. Srivastava introduced generalization of the Fibonacci numbers (see Djordjević \& Srivastava, 2005 and 2006).
The Betanacci sequence, $\left\{B_{n}\right\}_{n=0}^{\infty}$, is defined recursively by

$$
B_{n}=B_{n-1}+2 B_{n-2} \text { for all } n \geq 2
$$

with initial conditions $B_{0}=B_{1}=1$.
The general solution of $\left\{B_{n}\right\}_{n=0}^{\infty}$ is

$$
B_{n}=\frac{2^{n+1}+(-1)^{n}}{3}
$$

In (Ratanavongsawad, 2009), K. Ratanavongsawad gave a generalization of the Fibonacci and Betanacci sequences, $\left\{T_{n}\right\}_{n=0}^{\infty}$, defined as follows:

$$
T_{n}=T_{n-1}+2^{r} T_{n-2} \text { for all } n \geq 2 \text { and non-negative integer } r,
$$

with initial conditions $T_{0}=T_{1}=1$.

For any non-negative integers r, k and any real numbers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$, the recurrence relation

$$
R_{n}=R_{n-1}+2^{r} R_{n-2}+\sum_{i=0}^{k} \alpha_{i} n^{i} \text { for all } n \geq 2,
$$

with initial conditions $R_{0}=R_{1}=1$.

The main result of (Ratanavongsawad, 2009) consists of an expression for R_{n} in terms of Beta-Fibonacci numbers.
In this work, we now introduce a further generalization of the Fibonacci-type sequence and then present the general solution in term of Fibonacci-type numbers.

2. A General Family of Fibonacci-Type Sequences

Definition 2.1. Let α be a positive integer such that $\alpha \geq 2$.
Define a sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ as follows:

$$
S_{n}=(\alpha-1) S_{n-1}+\alpha S_{n-2} \text { for all } n \geq 2
$$

with initial conditions $S_{0}=S_{1}=1$.
We call $\left\{S_{n}\right\}_{n=0}^{\infty}$ a generalized Fibonacci-type sequence.
Note that if $\alpha=2$, then the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is reduced to the Betanacci sequence $\left\{B_{n}\right\}_{n=0}^{\infty}$.

The general term of the generalized Fibonacci-type sequence is

$$
S_{n}=\left(\frac{\alpha-1}{\alpha+1}\right)(-1)^{n}+\left(\frac{2}{\alpha+1}\right) \alpha^{n}
$$

for all non-negative integer n.

Theorem 2.2. Let α be a positive integer such that $\alpha \geq 2$.
For any non-negative integer k and any real numbers $a_{0}, a_{1}, \ldots, a_{k}$, a nonhomogeneous generalized Fibonacci-type sequence $\left\{G_{n}\right\}_{n=0}^{\infty}$ is defined recursively by

$$
\begin{equation*}
G_{n}=(\alpha-1) G_{n-1}+\alpha G_{n-2}+\sum_{i=0}^{k} a_{i} n^{i} \tag{1}
\end{equation*}
$$

for all $n \geq 2$, with initial conditions $G_{0}=G_{1}=1$.
Then the solution of (1) can be express as

$$
G_{n}=\left(1-D_{k}\right) S_{n}+E_{k} \sum_{i=1}^{n}(-1)^{i} \alpha^{n-i}+\sum_{j=0}^{k} p_{j}(n) a_{j}
$$

where
(i) D_{k} is a linear combination of $a_{0}, a_{1}, \ldots, a_{k}$
(ii) E_{k} is a linear combination of $a_{1}, a_{2}, \ldots, a_{k}$ and
(iii) $p_{j}(n)$ is a polynomial of degree j for $j=0,1, \ldots, k$.

Proof

The solution $G_{n}^{(h)}$ of the homogeneous recurrence relation corresponding to (1) is

$$
G_{n}^{(h)}=c_{1}(-1)^{n}+c_{2} \alpha^{n}
$$

Next, to find the particular solution of (1), we set $G_{n}^{(p)}=\sum_{i=0}^{k} A_{i} n^{i}$.

We substitute $G_{n}^{(p)}=\sum_{i=0}^{k} A_{i} n^{i}$ in (1), we get

$$
\sum_{i=0}^{k} A_{i} n^{i}=(\alpha-1) \sum_{i=0}^{k} A_{i}(n-1)^{i}+\alpha \sum_{i=0}^{k} A_{i}(n-2)^{i}+\sum_{i=0}^{k} a_{i} n^{i} .
$$

Thus, for each $i=0,1, \ldots, k-1$, we have

$$
\begin{equation*}
2(\alpha-1) A_{i}+\sum_{m=i+1}^{k} C_{i m} A_{m}+a_{i}=0 \tag{2}
\end{equation*}
$$

where $C_{i m}=(-1)^{m-i}\binom{m}{i}\left(\alpha\left(1+2^{m-i}\right)-1\right)$ for $i \leq m$, and

$$
\begin{equation*}
2(\alpha-1) A_{k}+a_{k}=0 \tag{3}
\end{equation*}
$$

From (2) and (3), A_{i} is a linear combination of $a_{i}, a_{i+1}, \ldots, a_{k}$, for $i=0,1, \ldots, k$.
Hence $A_{i}=\sum_{j=i}^{k} d_{i j} a_{j}$,
where

$$
d_{i j}=\left\{\begin{array}{ll}
-\frac{1}{2(\alpha-1)} & \text { for } i=j, \\
-\frac{1}{2(\alpha-1)} \sum_{m=i+1}^{j} C_{i m} d_{m j} & \text { for } i<j
\end{array} .\right.
$$

Therefore the particular solution $G_{n}^{(p)}$ of (1) is

$$
\begin{aligned}
G_{n}^{(p)} & =\sum_{i=0}^{k}\left(\sum_{j=i}^{k} d_{i j} a_{j}\right) n^{i} \\
& =\sum_{j=0}^{k}\left(\sum_{i=0}^{j} d_{i j} n^{i}\right) a_{j} .
\end{aligned}
$$

Finally, the recurrence relation (1) has the solution

$$
\begin{aligned}
G_{n} & =G_{n}^{(h)}+G_{n}^{(p)} \\
& =c_{1}(-1)^{n}+c_{2} \alpha^{n}+\sum_{j=0}^{k}\left(\sum_{i=0}^{j} d_{i j} n^{i}\right) a_{j} .
\end{aligned}
$$

The initial conditions: $G_{0}=G_{1}=1$, give

$$
\begin{aligned}
& c_{1}=\frac{\alpha-1}{\alpha+1}\left(1-D_{k}\right)+\frac{1}{\alpha+1} E_{k} \\
& c_{2}=\frac{2}{\alpha+1}\left(1-D_{k}\right)-\frac{1}{\alpha+1} E_{k},
\end{aligned}
$$

where

$$
\begin{aligned}
D_{k} & =\sum_{j=0}^{k} d_{0 j} a_{j} \\
E_{k} & =\sum_{j=1}^{k} \sum_{i=1}^{j} d_{i j} a_{j},
\end{aligned}
$$

and

Since $S_{n}=\left(\frac{\alpha-1}{\alpha+1}\right)(-1)^{n}+\left(\frac{2}{\alpha+1}\right) \alpha^{n}, G_{n}$ can be written as

$$
G_{n}=\left(1-D_{k}\right) S_{n}+E_{k} \sum_{i=1}^{n}(-1)^{i} \alpha^{n-i}+\sum_{j=0}^{k} p_{j}(n) a_{j}
$$

where $p_{j}(n)=\sum_{i=0}^{j} d_{i j} n^{i}$.

Acknowledgements

The authors are grateful to the anonymous referees for useful comments and suggestions.

References

Asveld, P. R. (1987). A family of fibonacci-like squences. The Fibonacci Quarterly 25(1), 81-83.
Djordjević, G. B. \& Srivastava, H. M. (2005). Some generalizations of the incomplete Fibonacci and the incomplete Lucas polynomials. Advanced Studies in Contemporary Mathematics, 11(1), 11-32.
Djordjević, G. B. \& Srivastava, H. M. (2006). Some generalizations of certain sequences associated with the Fibonacci numbers. J. Indones. Math. Soc. (MIHMI), 12(1), 99-112.

Ratanavongsawad, K. (2009). A family of beta-fibonacci squences. Scientia Magna 5(3), 6-12.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

