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Abstract 
A Geometrical model for the global Cauchy problem, generalizing the traditional Cauchy problem is considered .The 
complete correspondence between the known analytical formulation and the geometrical interpretation is described, 
we have utilized the generalized Green's function and the open mapping theorem appropriate to the problem. 
Keywords: Cauchy problem, Green's function, Globally Hyperbolic space time, Open mapping theorem, 
semi-Riemannian metric. 
1. Introduction 
In this paper we discuss the global formulation of the Cauchy problem(Bar, Ginoux, & Pfaffe, 2007; Minguzzi & 
Sánchez, 2008), and its solution for globally hyperbolic space time(Beem, Ehrlich, & Easley, 1996; O'neill, 1983). 
Also we discuss the role of open mapping theorem(Bär & Ginoux, 2012; Kreyszig, 1989), in our solution, because of 
its various properties. The open mapping theorem seems to be a good tool for investigating that for general maps 
between topological spaces. For the formulation of the global Cauchy problem we need to know two kinds of 
structure, the first is a time orientation which separates future from past(Bär & Fredenhagen, 2009), the second 
ingredient is that of a hyper surface Σ  in which we can specify the initial values. In order to approach the global 
existence of solutions we assume that M  is globally hyperbolic with a smooth spacelike Cauchy hyper surface Σ . 
For every Mp∈  we have a unique time tpwitht Σ∈ ,on each tΣ (Mühlhoff, 2011), we also have a Riemannian 
metric tg  such that tgdtg −= 2β ,  
2. Preliminaries  
2.1 Cauchy Problem in the (n-1)-dimensional Subspace 1−nE (Stakgold & Holst, 2011), 
Let G be a domain in the (n-1)-dimensional subspace 1−nE  of the variable, 121 ,....,, −nxxx  . then the following is 
a Cauchy problem : 
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Satisfying the conditions  
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For ( ) Gxxxx n ∈= −121 ,....,, and f , g are sufficiently smooth functions defined in G. Conditions (2),(3) are called 
Cauchy conditions or initial conditions f , g are called Cauchy data and the system (1), (2) and (3) is called a Cauchy 
problem, G is called the initial manifold. In the IVP G is the hypersurface obtained by the intersection of the 
n-dimensional region T and the hyperplane 0=nx . An initial domain may not be a proper subset of the boundary, 
for example in 2E  consisting of point (x ,t) , the initial domain may be 0=t  or a subset of it. In general elliptic 
equations are associated with boundary conditions and hyperbolic and parabolic equations with initial conditions. 
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2.2 (Example) : take the PDE 
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The D’ Alembert’s solution to the Cauchy problem is  
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The solution exists, is unique and depends continuously on the data ( )xf and ( )xg . Hence the Cauchy 
problem for the wave equation is well-posed. 
2.3 Semi-Riemannian Metric 

A section )( *2 MTSg ∞Γ∈  is called semi-Riemannian metric if the bilinear form MTonMTSg ppp
*2∈  is 

non-degenerate for all Mp∈  . If in addition pg  is positive definite for all Mp∈ then g  is called Riemannian 

metric. If pg  has signature ( )−−+ ,,...,  then g  is called Lorentz metric. 

2.4 Causal Subsets  
Let MU ⊆  be an open subset. Then U  is called causal if there is a geodesically convex open subset MU ⊆′  
such that UU c ′⊆1  and for any two points 1, cUqp ∈  ,the diamond ( )qpJU ,′  is compact and contained in 1cU  

. 

2.5 A Causal and Achronal Subsets  

Let MA ⊆ be a subset of a time-oriented Lorentz manifold. Then A
 

is called 

i.) a chronal if every timelike curve intersects A in at most one point. 

ii.) a causal if every causal curve intersects A
 

in at most one point 

2.6 (Theorem) A Chronal Hyper Surfaces  
Let ( )gM ,  be a time-oriented Lorentz manifold and MA ⊆  a chronal. Then A  is a topological hyper surface in 
M  if and only if A  does not contain any of its edge points. 
2.7 Cauchy Hyper Surface  
Let ( )gM ,  be a time-oriented Lorentz manifold. A subset M⊆Σ  is called a Cauchy hyper surface if every 
inextensible timelike curve meets Σ  in exactly one point.  

2.8. Cauchy development 
Let MA ⊆  be a subset. The future Cauchy development MADM ⊆+ )(  of A is the set of all those points Mp∈  
for which every past-inextensible causal curve through p  also meets A  Alogously, one defines the past Cauchy 
development )(ADM

−  and we call 

)()()( ADADAD MMM
−+ ∩=                                

  (5) 
the Cauchy development of A . 
2.9 Globally Hyperbolic Spacetime 
A time-oriented Lorentz manifold ( )gM ,  is called globally hyperbolic if 

i.) ( )gM ,
 

is causal, 
ii.) all diamonds ( )qpJM ,  are compact for Mqp ∈,  . 

2.10. Time Function(Baer & Strohmaier, 2015) 
Let ( )gM ,  be a time-oriented Lorentz manifold and RMt →:  a continuous function. Then t is called a 

i.) time function if t  is strictly increasing along all future directed causal curves. 
ii.) temporal function if t  is smooth and grad t  is future directed and timelike. 
i.) Cauchy time function if t is a time function whose level sets are Cauchy hypersurfaces. 
v.) Cauchy temporal function if t  is a temporal function such that all level sets are Cauchy hyper surfaces. 
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2.11. Theorem(Baer & Strohmaier, 2015), 
Let ( )gM , be a connected time-oriented Lorentz manifold. Then the following statements are equivalent: 
i.) ( )gM ,  is globally hyperbolic. 
ii.) There exists a topological Cauchy hypersurface. 
iii.) There exists a smooth spacelike Cauchy hypersurface. 
In this case there even exists a Cauchy temporal function t and ( )gM ,  is isometrically diffeomorphic to the product 
manifold 

                       tgtdgmetricwithR −=Σ× 2β  ,                                 (6) 
where )( Σ×∈ ∞ Rβ  is positive and )( *2 ΣΓ∈ ∞ TSgt is a Riemannian metric on Σ  depending smoothly on t . 
Moreover, each level set 

( ){ } MRtt ⊆Σ×∈=Σ σ,  
                                    (7) 

of the temporal function t  is a smooth spacelike Cauchy hypersurface.  
3. Existence of Global Solutions to the Cauchy Problem 
3.1 Proposition 
Let

 ( )gM ,  be a time-oriented Lorentz manifold with a smooth spacelike hyper surface MΣ:ι  with future 
directed normal vector field n . Moreover, let UUU c ′⊆⊆ 1 be a sufficiently small causal open subset of Μ  such 
that UU ∩Σ  is a Cauchy hyper surface for U . Then there exists a unique solution )( |UEu ∞Γ∈  for given initial 

values )(, |#
00

.

0 U
Euu ι∞Γ∈  and given inhomogeneity )( |0 U

E∞Γ∈υ  of the inhomogeneous wave equation  

υ=Du                                               (8) 
with  0

#
0

# , uuanduu E
n =∇= ιι . in addition we have  

( )vuuJu M suppsuppsuppsupp 00 


⊆                                    (9) 
3.2 Theorem  
Let

 
( )gM ,  be a globally hyperbolic and let MΣ:ι  be a smooth spacelike Cauchy hypersurface with future 

directed normal vector field )( |#

U
En ι∞Γ∈ . Assume that is a solution to the wave equation 0=Du with initial 

conditions 
00 0 uu ==                                         (10) 

then 
0=u                                            (11) 

Moreover to develop our constructing we assume that Μ  is globally hyperbolic with Σ  is smooth spacelike. For 
every Μ∈p  we have a unique time  with tp Σ∈ .we have a Riemannian metric tg  such that tgtdg −= 2β  on 

each tΣ .and open Ball tr pB )( such tr pB Σ⊆)(  is open n tΣ  but not in Μ .Then  

{ },)(,)(,)(|))(),((inf),( ∫ Σ∈===
b

a tgt qbpadgtqpd tgggttgtg 

                 
(12) 

where γ is an at least piecewise  curve joining  inside .consider its Cauchy development 

))(())(())(( pBDpDpBD rMMrM
−+ ∪=  in according to Definition.Now we want to find r  small enough that

))(( pBD rM  is a nice open neighbourhood of p allowing a local fundamental solution[4]. 

3.3. Lemma,(Waldmann, 2012) 
The function ( ]∞+→ ,0:Mρ  defined by 

 
( ){ }isRCCSVpBDrp r )(0sup)( >=ρ     

                           
(13) 

Is well defined and lower semi-continuous. 
3.4. Lemma  
for every point Μ∈p  and 0>r  the exists a 0>t  such that 

                  
( ) [ ] ))((),()( 1

2

pBDttpBJ rM
c

rm ⊆Σ×+−∩ tt                              (14) 

Where Rt∈  is the uniqe time with tp Σ∈ . 
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3.5. Lemma  
The function ],0(: ∞→Μrθ is well-defined and lower semi-continuous,

 
where  

( ) [ ]












⊆Σ×+−∩>= ))((),()(0sup 1
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3.6. Lemma (Waldmann, 2012) 
let Μ⊆K  be compact then there is a 0>δ  such that for all times Rt∈  and all tttt onEuu ∑Γ∈ ∞ )(, #ι  with 
support KuSuppuSupp tt ⊆, , We have smooth solution u  of the homogeneous Wave Equation

 0=uD ,
 
on 

the time slice Σ×+− ),( δδ tt  , with the initial conditions t
E
nt uuanduu

tt
=∇= ΣΣ  Moreover for the support 

we have 
)( ttM uSuppuSuppJuSupp ∪⊆                                 (15) 

Proof: 
Since ρ is lower semi-continous according to lemma 2-1 and positive, it admits a minimum on the compact subset 
K . Thus we find 0>r  with 02)( rp >ρ for all kp∈ so for this radius the function 02rθ  is lower semi-continuous 
according lemma 3.3 and positive. And we can find Konwith r δθδ >> 020 , given Rt∈ , Κ∩Σt  is compact. 

We can cover it with open balls )(),.......,( 010 Nrr pBpB  of radius 0r . Also we can find nχχ ,....,1 subordinate to 
)(,........,)( 010 Nrr pBpB ∪∪  

Then we have 1,....,1 =Nχχ , and )(0 ααχ pBSupp r⊆ for all .,....1 N=α  
)(0 αpBinuandulet rtt 

by considering tt uu αα χχ , respectively ,with ( )Euu ttt
#

0, ιχχ αα
∞Γ∈ , and 

ttNtttNt uuuanduuu  =++=++ χχχχ ........ 11 ,Then )),(( 02 αpBD rM is still RCCSV. 

Then we can use the proposition 3.1 to obtain smooth solution , ( )( )( )
αα pBDM r

Eu
02

∞Γ∈ of the homogeneous wave 

equation 0=αuD ,on )),(( 02 αpBD rM  For the initial conditions, .t
E
nt uuanduu

tt

αααα
χχ =∇= ∑

∑
 and  

Then 

                          
)( ttM uSuppuSuppJuSupp ααα χχ ∪⊆                          (16) 

By the Definition of the function ro2θ and the choice of δ we see that 

[ ] ,))((),()(( 02
1

0 αα δδ pBDttpBJ rM
c

rM ⊆Σ×+−∩  
Since 

αu is difined on [ ] ,),()(( 1
0 Σ×+−∩ δδα ttpBJ c

rM and )((, 0 ααα χχ pBuSuppuSupp rtt ⊆  from (16) we find  

,))(( 1
0

c
rM pBJuSupp αα ⊆  

since ( ),)(02 αα pBDonsmoothisu rM we can extend αu  to [ ] ),( Σ×+− δδ tt   

Then  [ ]( )Σ×+−
∞Γ∈ δδα ttEu ,( satisfying [ ] ,),()(( 1

0 Σ×+−∩⊆ δδαα ttpBJSuppu c
rM  and 0=αDu as well as 

.t
E
nt uuanduu

tt

αααα
χχ =∇= ∑

∑

 

since αχ  is partition of unity , finally  
,.......1 NuSuppuSuppuSupp ∪∪⊆  

( ) ( ) ,........11 tNtNMttM uSuppuSuppJuSuppuSuppJ  χχχχ ∪∪∪∪⊆  

( ) ,11 tNtNttM uSuppuSuppuSuppuSuppJ  χχχχ ∪∪∪⊆  
( ) ,ttM uSuppuSuppJ ∪⊆                                    (17) 

Since )()()( BAJBJAJ MMM ∪⊆∪ and tttt uSuppuSuppanduSuppuSupp  ⊆⊆ αα χχ for all α . this completes 
the proof. 
3.7. Theorem (Waldmann, 2012), 
Let ( )gM ,  be a globally hyperbolic spacetime with smooth spacelike Cauchy hyper-surface M→Σ:ι  . 
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i.) ,)()(, 0
#

000 EvandEiuufor ∞∞ Γ∈Γ∈  there exists a unique global solution )(Eu ∞Γ∈  of the 
inhomogeneous wave equation vuD =  with initial conditions, 0

.
#

0
# uuanduu E

n =∇= ιι , We have   

( )vuuJu M suppsuppsuppsupp 00 


⊆                               (18) 

ii.) For 2≥k  and ( ) ( ) ( ) )()(,)( 12
0

#112
0

.

0
#212

00 EvandEiuEiu nknknk ++++++++ Γ∈Γ∈Γ∈  there exists a unique global 
solution ( )Eu kΓ∈  of the inhomogeneous wave equation vuD =  with initial conditions 

0

.
#

0
# uuanduu E

n =∇= ιι  . It also satisfies (18). 

 
proof 

)(,, 1
00 RCCSVUUUvSuppanduSuppuSupplet c ′⊆⊆⊂  and UvSuppanduSuppuSuppset ⊆∪∪ 00 

which is compact then f we have UkJandk M ⊆Σ×∈∈−∩Σ×∈∈−⊆ )),(()(),( , for 0∈>   let  ( )UEu ∞Γ∈
 be the solution according to Proposition 3.1. 

Since )(KJSupp M⊆ we can extend u  to the whole time slice 0),( byΣ×∈∈− , and we have to argue that we can 
extend this solution  to large time slices .),( Σ×− TT we solve 0=Dw for the initial conditions 

tttt
uwanduw E

n
E
n ∑∑ ∇=∇=

∑∑

 by using Lemma 2.4 . 

Then on ,),( Σ×+− ηη tt  v  is vanishes by kSupp ⊆υ since  Σ×∈−⊆ ),( tk . 
and υ,w  both solve the 0=Dw with same initial condition on tΣ , 
Then uw =  on Σ×∈− ),( t  by the uniqueness theorem .and shows that w   extend  u  to the slice 

Σ×∞+∈− ),( t  in smooth way.  and tM kJw ∑∩⊆ )(  
For the future of  t  means that )(kincontainedstilliswSupp J M

 

For the past of t  we already know that uw =  whence in total  ).(kJwSUPP M⊆  
4. Global Green Functions and Cauchy Problem  
in this part we, show the Well-posedness of the Cauchy problem with respect to the usual locally convex topologies of 
smooth or ,sec tionsk −  
4.1. Open mapping Theorem  
Let εε ~,  be Fréchet spaces and let εεφ ~: →  be a continuous linear map. If φ  is surjective  then φ  is an open 
map. As usual, a map φ is called open if the images of open subsets are again open 
4.2. Corollary  
Let  εεφ ~: →  be a continuous linear bijection between Fréchet spaces. Then 1−φ  is continuous as well. Indeed, 
let ε⊆U  be open. Then the set-theoretic ( ) ( )U11 −−φ , i.e. the pre-image of  U  under 1−φ  , coincides simply 
with  ( )Uφ  which is open by the theorem. Thus 1−φ  is continuous. Take the result of theorem(2.5) .

                 
 

,)()()()( 0
#

0
#

0 EEEiEi ∞∞∞∞ Γ→Γ⊕Γ⊕Γ                            (19) 
Sending ),,( 00 υuu  to the unique solution u  of the Wave Equation υ=Du  with initial conditions 00 uandu  . 
4.3. (Theorem) Well-posed Cauchy Problem 
Let ( )gM ,  be a globally hyperbolic spacetime with smooth spacelike Cauchy hyper surface M→Σ:ι  . Then the 
linear map (19) sending the initial conditions and the inhomogeneity to the corresponding solution of the Cauchy 
problem is continuous. 
4.4. (Theorem ) Well-posed Cauchy problem II 
Let ( )gM ,  be a globally hyperbolic spacetime with smooth spacelike Cauchy hyper surface M→Σ:ι  and let 

2≥k . Then the linear map  
               ( ) ( ) ( ) ( )EEEE knknknk Γ→Γ⊗Γ⊗Γ ++++++++ )()()( 12

0
#112

0
#212

0 ιι                   (20) 
sending ( )

.

00 ,, vuu to the unique solution u  of the inhomogeneous wave equation  vuD =  with initial˙
0

.
#

0
# uuanduu E

n =∇= ιι  continuous.  
4.5. (Theorem )  
Let ( )gM ,  be a globally hyperbolic spacetime and )(2 EDiffopD∈  a normally hyperbolic differential operator. For 
every point Μ∈P  there is a unique advanced and retarded fundamental solution )(PFM

±  patDof . Moreover, for 
every test section )( *

0 E∞Γ∈ϕ  the section. 
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±± ∈∋Μ pM EPFP ϕ)(
                                   (21) 

is a smooth section of *E which satisfies the equation 
.(.) ϕϕ =±

M
T FD                                        (22) 

Finally, the linear map 
 )((.))(: **

0 EFEF MM
∞±∞± Γ∈∋Γ ϕϕ                              (23)     

is continuous. 
4.6. (Theorem) 
Let ( )gM ,  be a globally hyperbolic spacetime and )(2 EDiffopD∈  a normally hyperbolic differential operator. 
Then the unique advanced and retarded Green functions )( pF ±

Μ of D  at p  are of global order 
.62)( +≤±

Μ npFord                                       (24) 
More precisely, the linear map (23) extends to a continuous linear map 

)((.))(: **)1(2
0 EFEF kk Γ∈∋Γ ±

Μ
++±

Μ ϕϕ                            (25) 
for all k ≥ 2 such that we still have  

ϕϕ =±
Μ (.)FDT

                                       (26)     
 

4.7. Green Operator 
Let ( )gM ,  be a time-oriented Lorentz manifold and )(2 EDiffopD ∈  a normally hyperbolic differential operator. 
Then a continuous linear map 

)()(: 0 EEG ∞∞± Γ→Γ
                                     (27) 

with   
i.) ( ),0 EdiGD ∞±

Μ Γ=  

ii.) ( ),0
0

EdiDG ∞
Γ

±
Μ Γ=∞  

iii) ( ) ( ) ( )EuallforuSuppJuGSupp c ∞±
Μ

±
Μ Γ∈⊆ 0

1 . 
is called an advanced and retarded Green operator for D respectively   
4.8. (Proposition) Green Operators and Fundamental Solutions  
Let ( )gM ,  be a time-oriented Lorentz manifold and )(2 EDiffopD ∈  a normally hyperbolic differential operator. 
i.) Assume { })( pG±

Μ
 is a family of global advanced or retarded fundamental solutions of TD  at every point Μ∈P  

with the following property: for every test section )(0 Eu ∞Γ∈  the section upGp )(±
Μ

 is a smooth section of E  
depending continuously on u  and satisfying uuGD =±

Μ (.) .Then 
upGpuG )()()( 

Μ
±
Μ =                                    (28) 

yield advanced or retarded Green operator for D, respectively. 
ii.) Assume ±

ΜG  are advanced or retarded Green operator for D , respectively. Then CEpG →Γ∞±
Μ )(:)( 0  defined 

by 
))(()()( puGupG 

Μ
±
Μ =                                   (29) 

defines a family of advanced and retarded fundamental solutions of TD  at every point Μ∈P with the properties 
described in i.), respectively. 
4.9. (Proposition )  
Let ( )gM ,  be globally hyperbolic and let )(2 EDiffopD∈  be a normally hyperbolic differential operator with 
advanced and retarded Green operators )()(: 0 EEG ∞∞±

Μ Γ→Γ . 
i.) The dual map )()(:)( **

0 EEG −∞−∞±
Μ Γ→Γ′  is continuous*weak  and satisfies 

( ) ϕϕϕ TT DGGD )()( ′==′ ±
Μ

±
Μ                                (30) 

for all generalized sections )( *
0 E−∞Γ∈ϕ with compact support . 

ii.) for  generalized section )( *
0 E−∞Γ∈ϕ with compact support we have  

( ) ( ).)( ϕϕ SuppJGSupp ±
Μ

±
Μ ⊆′                                  (31) 

4.10. (Lemma) 
Let ( )gM ,  be globally hyperbolic and let )(2 EDiffopD∈  be a normally hyperbolic differential operator with 
advanced and retarded Green operators ±

ΜG , Moreover, denote the corresponding Green operator of 
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)( *2 EDiffopDT ∈  
by ±

ΜF .Then we have for )()( 0
*

0 EuandE ∞∞ Γ∈Γ∈ϕ  

( ) ( ) .. g
M

g
M

uGuF µϕµϕ ∫∫ ±
Μ

±
Μ =                            (32) 

4.11(Theorem) 
Let ( )gM ,  be a globally hyperbolic and )(2 EDiffopD∈  be normally hyperbolic differential operator. Denote the 
global advanced and retarded Green operator of D  by ±

ΜG  and those of TD by ±
ΜF   respectively . 

i.) For the dual operators we have  

( ) ±
ΜΓ

±
Μ =
′

∞ FG E )( *
0

                                     (33) 

( ) ±
ΜΓ

±
Μ =
′

∞ GF E )( *
0

                                     (34) 

ii.) The duals of the Green operators restrict to maps  
( ) ( ) ( )**

0; EEG ∞∞±
Μ Γ→Γ
′                                  (35) 

( ) ( ) ( )EEF ∞∞±
Μ Γ→Γ
′

0;                                   (36) 
which are continuous with respect to the .,log0 lyrespectiveytopoand −− ∞∞



           

iii.) The Green operators have unique *weak continuous extensions to operators  
( ) ( )EEG ∞−∞−±

Μ Γ→Γ0;                                    (37) 

( ) ( )**
0; EEF ∞−∞−±

Μ Γ→Γ                                   (38) 
satisfying     

( ) ( )uSuppJuGSupp ±
Μ

±
Μ ⊆                                 (39) 

( ) ( )ϕϕ SuppJFSupp ±
Μ

±
Μ ⊆                                (40) 

respectively. for these extensions one has  

( )′= ∞Γ
±
Μ

±
Μ )( *

0 EFG                                     (41) 

( )′= ∞Γ
±
Μ

±
Μ )( *

0 EGF                                     (42) 

4.12. (Theorem) 
Let ( )gM ,  be a globally hyperbolic spacetime and )(2 EDiFFOpD∈  normally hyper-bolic with advanced and 
retarded Green operators ±

ΜG  . 
i.) The Green operators  ( ) ( ) ,; 0 EEG ∞−∞−±

Μ Γ→Γ  satisfy  

)()( 00 EE DGidDG ∞−∞− Γ
±
ΜΓ

±
Μ ==

                                 
(43) 

ii.) For every ( ) ,0 Ev ∞−Γ∈  every smooth spacelike Cauchy hypersurface MΣ:ι  with      
( )Σ⊆ +

ΜIvSupp                                          (44) 
and all ( ) ,, #

0

.

00 Euu ι∞−Γ∈  there exists a unique generalized section ( ) ,Eu −∞Γ∈  with  
vuD =+                                             (45) 

( ) 





 ∪∪⊆ +

+ vSuppJuSuppuSuppJuSupp MM

.

00                           (46) 

( )vSuppJuSuppSing M
+

+ ⊆                                    (47) 
.

0
#

0
# .uuanduu E

n =∇=+ ιι                                    (48) 
The section .,

.

00
* uuonlycontinuousandvonlycontinuousweakdependsu+   

iii.) An analogous statement holds for the case ( )Σ⊆ −
MIvSupp . 

5. Conclusion  
The formulation of the Cauchy problem in Euclidean space with specified boundary condition is well known. In that 
formulation the traditional Green's function is involved in the construction of the solution. However one need a 
generalization of the Cauchy problem to spaces that are not Euclidean, such as Lorentzian manifolds, with 
pseudo-Riemannian metric .The consideration of this problem in such a geometrical Lorentzian manifold has very 
important impact on wave propagation with applications cosmic wave, Thus we have treated the formulation of Cauchy 
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problem in Lorentzian manifolds. Here we also needed a generalizing form of Green's function . In order to find the 
inverse of Cauchy hyperbolic differential operator on a fiber bundle we also utilized the open mapping theorem 
appropriate to the problem. The solution appeared as a cross section of a fiber bundle ,that may be pulled down to base 
Lorentzian manifold to give the traditional local solution.   
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