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Abstract

A Geometrical model for the global Cauchy problem, generalizing the traditional Cauchy problem is considered .The
complete correspondence between the known analytical formulation and the geometrical interpretation is described,
we have utilized the generalized Green's function and the open mapping theorem appropriate to the problem.

Keywords: Cauchy problem, Green's function, Globally Hyperbolic space time, Open mapping theorem,
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1. Introduction

In this paper we discuss the global formulation of the Cauchy problem(Bar, Ginoux, & Pfaffe, 2007; Minguzzi &
Sanchez, 2008), and its solution for globally hyperbolic space time(Beem, Ehrlich, & Easley, 1996; O'neill, 1983).
Also we discuss the role of open mapping theorem(Bér & Ginoux, 2012; Kreyszig, 1989), in our solution, because of
its various properties. The open mapping theorem seems to be a good tool for investigating that for general maps
between topological spaces. For the formulation of the global Cauchy problem we need to know two kinds of
structure, the first is a time orientation which separates future from past(Bar & Fredenhagen, 2009), the second
ingredient is that of a hyper surface X in which we can specify the initial values. In order to approach the global
existence of solutions we assume that M is globally hyperbolic with a smooth spacelike Cauchy hyper surface X .
For every peM we have a unique time twith peX, oneach X, (Mihlhoff, 2011), we also have a Riemannian
metric @, suchthat g=Adt*-g,, '

2. Preliminaries
2.1 Cauchy Problem in the (n-1)-dimensional Subspace E, , (Stakgold & Holst, 2011),

Let G be a domain in the (n-1)-dimensional subspace E,_; of the variable, X;,X,,....,X,_; . then the following is
a Cauchy problem :
= 62u_82u_0 (1)
—~ ox? ox?

Satisfying the conditions
u(X, Xpeee0s X, 4,0) = F(X) 2

FU(Xpé--’anXn)} _o(%) @)
Xn X, =0

For x= (Xl, ) U anl) e Gand f, g are sufficiently smooth functions defined in G. Conditions (2),(3) are called
Cauchy conditions or initial conditions f, g are called Cauchy data and the system (1), (2) and (3) is called a Cauchy
problem, G is called the initial manifold. In the IVP G is the hypersurface obtained by the intersection of the
n-dimensional region T and the hyperplane X, = O. An initial domain may not be a proper subset of the boundary,
for example in E, consisting of point (x ,t) , the initial domain may be t = O or a subset of it. In general elliptic
equations are associated with boundary conditions and hyperbolic and parabolic equations with initial conditions.
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2.2 (Example) : take the PDE

S%u  2%u S withICs: _ ou _
=2 oz ©° u(x,0)= f(x), " =g(x)

The D’ Alembert’s solution to the Cauchy problem is

1 1 1 pxt
u(x,t):gf(x+t)+§f(x—t)+5jx_tg(s)ds,t>0 (4)

The solution exists, is unique and depends continuously on the data f (x)and g (<) . Hence the Cauchy
problem for the wave equation is well-posed.

2.3 Semi-Riemannian Metric

A section g el (S*T'M) is called semi-Riemannian metric if the bilinear form g e SZTP*M onT M s
non-degenerate for all peM . If in addition g, is positive definite for all peM then g is called Riemannian
metric. If 9, has signature (+,—,,,,,—) then ¢ is called Lorentz metric.

2.4 Causal Subsets
Let U =M be an open subset. Then U is called causal if there is a geodesically convex open subset U’ =M
such that U®c U’ and for any two points p,qeU® thediamond J. (p,q) is compactand contained in U

2.5 A Causal and Achronal Subsets

Let A c— M be asubset of a time-oriented Lorentz manifold. Then A is called
i.) a chronal if every timelike curve intersects A in at most one point.

ii.) a causal if every causal curve intersects A in at most one point

2.6 (Theorem) A Chronal Hyper Surfaces

Let (M,g) be a time-oriented Lorentz manifold and A — M achronal. Then A is a topological hyper surface in
M ifand only if A does not contain any of its edge points.

2.7 Cauchy Hyper Surface

Let (M ,g) be a time-oriented Lorentz manifold. A subset ¥ — M is called a Cauchy hyper surface if every
inextensible timelike curve meets X in exactly one point.

2.8. Cauchy development

Let A<M beasubset. The future Cauchy development D/ (A) cM of A isthe set of all those points pe M

for which every past-inextensible causal curve through p also meets A Alogously, one defines the past Cauchy
development D, (A) and we call

Dy (A)=Dy (A) N Dy (A) ®)
the Cauchy development of A.
2.9 Globally Hyperbolic Spacetime
A time-oriented Lorentz manifold (M,g) is called globally hyperbolic if
i.) (M,g) iscausal,
ii.) all diamonds J,,( p,q) are compact for p,qeM
2.10. Time Function(Baer & Strohmaier, 2015)

Let (M,g) be atime-oriented Lorentz manifold and t:M — R a continuous function. Then t is called a
i.) time function if t is strictly increasing along all future directed causal curves.
ii.) temporal function if t issmooth and grad t is future directed and timelike.

i.) Cauchy time function if t is a time function whose level sets are Cauchy hypersurfaces.
v.) Cauchy temporal function if t is atemporal function such that all level sets are Cauchy hyper surfaces.
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2.11. Theorem(Baer & Strohmaier, 2015),
Let (M,g)be a connected time-oriented Lorentz manifold. Then the following statements are equivalent:

i.) (M,g) isglobally hyperbolic.

ii.) There exists a topological Cauchy hypersurface.

iii.) There exists a smooth spacelike Cauchy hypersurface.

In this case there even exists a Cauchy temporal function t and (M ,g) is isometrically diffeomorphic to the product
manifold

RxZwith metricg=£dt*- gt , (6)
where per” (Rxx) is positive and g, eI’ (S?T'T)is a Riemannian metric on X depending smoothly on t.
Moreover, each level set

Etz{(t,a)eRxE} M @)

of the temporal function t isa smooth spacelike Cauchy hypersurface.
3. Existence of Global Solutions to the Cauchy Problem
3.1 Proposition
Let (M,g) be a time-oriented Lorentz manifold with a smooth spacelike hyper surface ;:X+>M with future
directed normal vector field N. Moreover, let U cU® < U'be a sufficiently small causal open subset of M such
that ¥ nU — U isa Cauchy hyper surface for U . Then there exists a unique solution ¢ rw(EL) for given initial

values Uy, Uo € Iy (l#El ) and given inhomogeneity o e F0°°(E| ) of the inhomogeneous wave equation
U U

Du=v (8)
with  /u =u, , and *VEu =u, . in addition we have
suppu < J,, (suppu, Usuppti, Usuppv ) 9)

3.2 Theorem
Let (M ,g) be a globally hyperbolic and let ;:X+—>M be a smooth spacelike Cauchy hypersurface with future
directed normal vector field ne F“"(z#El ). Assume that is a solution to the wave equation Du=0Qwith initial
conditions v

U, =0=u, (10)
then

u=0 (12)

Moreover to develop our constructing we assume that M is globally hyperbolic with X is smooth spacelike. For
every peM we have a unique time { with peX, .we have a Riemannian metric J; such thatg = gdt*>-g, on

each X .and open Ball B (p),such B (p)cX, isopenn X, butnotin M .Then

dy (p.) = inf [ Gt(7(0). 7(2)d7 | 7(2) = p.7(B) = 4, 7(0) €, (12)
where y is an at least piecewise fl curve joining p,qeX, inside X, .consider its Cauchy development
D,, (B,(p)) =Dy, (p)) v D, (B,(p)) in M according to Definition.Now we want to find I small enough that
D,, (B, (p)) is a nice open neighbourhood of P allowing a local fundamental solution[4].

3.3. Lemma,(Waldmann, 2012)
The function p:M —(0,+c0] defined by
p(p)=sup{r>0|D(B, (p) )isRCCSV | (13)
Is well defined and lower semi-continuous.
3.4. Lemma
for every point pe M and >0 theexistsa t>0 such that

3,8, (p)")N(t-z.t+7]xZ) < D, (B, (p)) (14)
2
Where t e R isthe unige time with peX,.
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3.5. Lemma
The function @ : M — (0, oo]is well-defined and lower semi-continuous, where

2

6, =sup {T>O Jm(BL(p)Cl)m([t—r,t+r]><2) c D, (Br(p))}

3.6. Lemma (waldmann, 2012)
let K <M be compact then thereisa & >0 such that for all times t € R andall u,,u, € Fw(zt#E) on 2, with
support  Supp u,, Supp U, < K, We have smooth solution U of the homogeneous Wave Equation Du = 0, on

the time slice (t—o,t+0)xX , with the initial conditions u|, =u, and Viu s, =U, Moreover for the support

we have

Supp u < J,, (Supp u, L Supp u,) (15)
Proof:
Since pis lower semi-continous according to lemma 2-1 and positive, it admits a minimum on the compact subset
K. Thus we find r>0 with 2(p)>2rforall P €K so for this radius the function 0,,, is lower semi-continuous

according lemma 3.3 and positive. And we can find 6>0with@,,, >0 on K , given teR, £ nK is compact.
We can cover it with open balls B ,(p,),......., B,,(p,) Of radius ;. Also we can find i, ¥,subordinate to
B,y (P e U B, (Py)

Then we have %1, Xy =1, and Supp z,, < B,,(p, ) forall & =1...N.

letu, and u,inB,,(p,) by considering y_ u,x,U, respectively with 5 u, y u, eTy (zt# E) , and
2l +o+ U =u, and gl +....+ gy U, =u,, Then D, (B,,,(p,)),is still RCCSV.

Then we can use the proposition 3.1 to obtain smooth solution ,u_ erx( ))) of the homogeneous wave

E‘ DM (Byy, (P,

equation Du, =0,0n D, (B, (p,)), For the initial conditions, Y, =%, U and Vi ly|s, =% U+ and

Then
Supp u, < Jy, (Supp z,, u, W Supp ¥, U,) (16)
By the Definition of the function @, and the choice of ¢ we see that

2ro

Iu (Bro(pa)°1ﬁ([t—5,t+5]><2) < Dy (Byo(P.))
Since

U, is difinedon J, (Bo(p,)" N ([t-&,t+5]xx),and Suppy, u,,Supp 7, U, = (B,o(p,) from (16) we find
Supp U, = Ju (Bro(P,)Y),
since u,, issmooth on D,, (B,,,(p,)),We canextend U, to ([t—5,t+5|x2)
Then u, el“w(E‘([%M]xz) satisfying  Suppu, < J,, (B,o(p,)" N ([t-J,t+5]xx), and Du, =0as well as

v = Xa U, .
since %, is partition of unity , finally
Supp ucSupp u, U....... wSupp uy,
< J,, (Supp 7, U, USUPP 7, U, )U........u J,, (Supp 7, U, U SUpp 7y U, ),
QJM(SUppﬂﬁ u, U Supp x, U, U Supp x, U, Supp xy U, ) )
< J,, (Supp u, L Supp,) 17
Since J,, (A)uJ,, (B)c J,, (AuB)and Supp y, u, =Supp u, and Supp y, U, <Supp u, for all «a . this completes
the proof.
3.7. Theorem (Waldmann, 2012),
Let (M , g) be a globally hyperbolic spacetime with smooth spacelike Cauchy hyper-surface 7:%X — M

E
Uy, = Zalh and V;u,
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i) for uy,u,ely(i"E) and v eI "(E), there exists a unique global solution uel™(E) of the
inhomogeneous wave equation Du=v  with initial conditions, :*u=u, and:* Vi u=uo , We have

suppuc J,, (suppu, Usuppu, Usuppv ) (18)

i) For k>2 and u, e T2 " 2(#E) y e 2K (i*E)and ve I2%*"*)(E) there exists a unique global
solution uer*(E) of the inhomogeneous wave equation Du=v with  initial  conditions

fu=u, and* VEu=u, .Italso satisfies (18).

proof

let Suppu,,Suppu,,and Suppv cU cU® cU’ (RCCSV)  and set Suppu, w Suppu, wand Suppv cU
which is compact then f we have kc (-€,€)xZ and J,, (k)" ((—ge)xZ)cU, for e>0 let yer~ (E\U)
be the solution according to Proposition 3.1.

Since SuppcJ,, (K)we can extend U to the whole time slice (—€,€)xZby 0, and we have to argue that we can
extend this solution to large time slices (—T,T)xXZ.we solve Dw = 0 for the initial conditions

w_ =u_ and Viwy, =Viu, byusing Lemma24.

Xt

Xt
Thenon (t—#,t+n)x%, V isvanishesby Suppuvcksince kc(-et)xX.

and w,v both solve the Dw = 0 with same initial conditionon X,

Then wW=u on (—egt)xX by the uniqueness theorem .and shows that W extend U to the slice
(-&t+)xX insmoothway. and wcJ, (k)nZ,

For the future of t means that Supp wis still contained in J, (k)

For the past of t we already know that W =U whence intotal SUPP wc J,, (k).

4. Global Green Functions and Cauchy Problem

in this part we, show the Well-posedness of the Cauchy problem with respect to the usual locally convex topologies of
smooth or /¥ —sections,

4.1. Open mapping Theorem

Let £,& be Fréchet spaces and let: &—>¢& be a continuous linear map. If @ issurjective then ¢ is an open
map. As usual, amap ¢ is called open if the images of open subsets are again open

4.2. Corollary

Let ¢:c-—>z be a continuous linear bijection between Fréchet spaces. Then ¢’l is continuous as well. Indeed,
let Uc ¢ be open. Then the set-theoretic ¢‘1)’1 (). i.e. the pre-image of U under ¢~ , coincides simply
with ¢(U) which is open by the theorem. Thus ¢ is continuous. Take the result of theorem(2.5) .

Iy ("E)®r; (i"E)® Iy (E) > I (E), (19)
Sending (U, U,,v)to the unique solution U of the Wave Equation Du =o with initial conditions U, and u,.
4.3. (Theorem) Well-posed Cauchy Problem

Let (M,g) bea globally hyperbolic spacetime with smooth spacelike Cauchy hyper surfacez :> —M . Then the
linear map (19) sending the initial conditions and the inhomogeneity to the corresponding solution of the Cauchy
problem is continuous.

4.4. (Theorem ) Well-posed Cauchy problem Il

Let (M | ) be a globally hyperbolic spacetime with smooth spacelike Cauchy hyper surface ;:> —M and let
k>2 . Then the linear map

1—~02(k+n+1)+2(l#E) ®1—~02(k+n+1)+1(l#E) ® 1—~02(k+n+1)( E) N rk (E) (20)

sending (uo,'uo,v) to the unique solution U of the inhomogeneous wave equation Du=v with initial’
fu=u, and:* VS u=uo continuous.

4.5. (Theorem)

Let(M ,g) be a globally hyperbolic spacetime and D e Diffop?(E) a normally hyperbolic differential operator. For
every point P eM there is a unique advanced and retarded fundamental solution F; (P) of Dat p. Moreover, for
every test section ¢ eTI;’(E") the section.
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M>P - Fy(P)peE; (21)
is a smooth section of E” which satisfies the equation
D'Fy (Do =9. (22)
Finally, the linear map
Fu TS (E)39- Fy()pel”(E) (23)

is continuous.
4.6. (Theorem)

Let(l\/l ,0) be a globally hyperbolic spacetime and D e Diffop?(E) a normally hyperbolic differential operator.
Then the unique advanced and retarded Green functions Fy(p)of D at p are of global order

ord F; (p) <2n+6. (24)
More precisely, the linear map (23) extends to a continuous linear map
Fo T2 (E") s> Fi() peT* (E) (25)
for all k > 2 such that we still have
D" Fi() p=9p (26)

4.7. Green Operator

Let(M,g) be a time-oriented Lorentz manifold and D e Diffop? (E) a normally hyperbolic differential operator.
Then a continuous linear map
Ty (E) » ' (E) (27)

0]
Ch

with
i) DG} =idIy (E),

i) G|, =idry (E),

i) Supp(Gu) < I (Suppu )™ forall uery (E).
is called an advanced and retarded Green operator for D respectively

4.8. (Proposition) Green Operators and Fundamental Solutions
Let (M,g) be atime-oriented Lorentz manifold and D e Diffop®(E) anormally hyperbolic differential operator.
i.) Assume {G;(p)} is a family of global advanced or retarded fundamental solutions of D' at every point p ¢ M
with the following property: for every test section ue I';’(E) the section pi—»G,,(p)u is a smooth section of E
depending continuously on U and satisfying DG, (.)u=u.Then

(Guu) (P)=Gy (p)u (28)
yield advanced or retarded Green operator for D, respectively.
ii.) Assume G are advanced or retarded Green operator for D, respectively. Then G (p) : Iy (E) — C defined
by

(Gy) (p)u=(Gyu)(p) (29)
defines a family of advanced and retarded fundamental solutions of D' at every point P e M with the properties
described in i.), respectively.

4.9. (Proposition )

Let (M,g) be globally hyperbolic and let De Diffop?’(E) be a normally hyperbolic differential operator with
advanced and retarded Green operators Gy, : F§°(E)—>l:°°(E).
i.) The dual map (Gy,) :I,”(E") > T ™(E") is weak continuous and satisfies

D'(Gy)(p)=¢=(Gy)D" ¢ (30)
for all generalized sections @ €I'y;” (E ") with compact support .
ii.) for generalized section ¢ €I',”(E") with compact support we have

Supp(Gy,)'(@) = Iy (Suppg). (31)
4.10. (Lemma)

Let (M ,g) be globally hyperbolic and let De Diffop’(E) be a normally hyperbolic differential operator with
advanced and retarded Green operators G, , Moreover, denote the corresponding Green operator of
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D" € Diffop?(E”)
by F,; .Thenwe have for ¢ <I'7(E”) and uely (E)
I(Fﬁ go).u Uy = I go(Gl\i4 u ),ug . (32)

M M
4.11(Theorem)
Let(M ,g) be a globally hyperbolic and D e Diffop?(E) be normally hyperbolic differential operator. Denote the

global advanced and retarded Green operator of D byG,; and those of D' by Fy respectively.
i.) For the dual operators we have

(Gl\i/l ) e (E") = F!\j (33)
(FI\:I_r )' Iy (EY) :Gl\i/l (34)
ii.) The duals of the Green operators restrict to maps,
) (E)->r(E) (35)
(Ri) 1y (E)>r(E) (36)

which are continuous with respect to the E:—a”d ¢~ —topolog y, respectively.

iii.) The Green operators have unique weak “continuous extensions to operators

G ;" (E) >~ (E) @37)
Foil,”(E7) > (E7) (38)
satisfying

supp (G u) < 35 (Suppu) (39)
supp (Fi¢) < 35 (Suppo) (40)

respectively. for these extensions one has
Gy = (FJ r;(E*)) (41)
Fo = (G; r;(Eu) (42)

4.12. (Theorem)

Let (M ,g) be a globally hyperbolic spacetime and D e DiFFOp?(E) normally hyper-bolic with advanced and
retarded Green operators Gy
i.) The Green operators G} ;T,” (E) > (E) , satisfy

DGy =id . ., =GuD| . (43)

ii.) Forevery vel,” (E) , every smooth spacelike Cauchy hypersurface; :>+M with
. Suppvc 1} (2) (44)

and all U, ,u el (z# E) , there exists a unique generalized section uel ™ (E) , with
Du, =v (45)
Suppu, < J,, (Supp Uy U Supp U, J;, (Supp v)) (46)
Sing Suppu, < J,, (Suppv) (47)
*u, =u, and *VEu=u,. (48)

The section u, dependsweak " continuously onvand continuouslyon u,, u'O .
iii.) An analogous statement holds for the case Suppvcl,, (E)

5. Conclusion

The formulation of the Cauchy problem in Euclidean space with specified boundary condition is well known. In that
formulation the traditional Green's function is involved in the construction of the solution. However one need a
generalization of the Cauchy problem to spaces that are not Euclidean, such as Lorentzian manifolds, with
pseudo-Riemannian metric .The consideration of this problem in such a geometrical Lorentzian manifold has very
important impact on wave propagation with applications cosmic wave, Thus we have treated the formulation of Cauchy
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problem in Lorentzian manifolds. Here we also needed a generalizing form of Green's function . In order to find the
inverse of Cauchy hyperbolic differential operator on a fiber bundle we also utilized the open mapping theorem
appropriate to the problem. The solution appeared as a cross section of a fiber bundle ,that may be pulled down to base
Lorentzian manifold to give the traditional local solution.
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