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Abstract 
According to the main result of W. Feit and G. M. Seitz (see, Illinois J. Math. 33 (1), 103-131, 1988), the projective 
special linear group L2 (2m) for m = 3, 4, 5 and the smallest Conway group Co3 are unmatured groups. In this paper, we 
continue our study on special finite groups (see Int. J. Theo. Physics, Group Theory, and Nonlinear Optics (17)1, 57-62, 
2013) and the dominant classes and Q- conjugacy characters for the above groups are derived. 
MSC Mathematics Subject Classification (2010): 20D05, 20C15 
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1. Introduction 
In recent years, the problems over group theory have drawn the wide attention of researchers in mathematics, physics 
and chemistry. Many problems of the computational group theory have been researched, such as the classification, the 
symmetry, the topological cycle index, etc. It is not only on the property of finite group, but also its wide-ranging 
connection with many applied sciences, such as Nanoscience, Chemical Physics and Quantum Chemistry, for instant 
see [Moghani, 2010]. 
S. Fujita suggested a new concept called the markaracter table, which enables us to discuss marks and characters for a 
finite group on a common basis, and then introduced tables of integer-valued characters and dominant classes, which 
are acquired for such groups. A dominant class is defined as a disjoint union of conjugacy classes corresponding the 
same cyclic subgroups, which is selected as a representative of conjugate cyclic subgroups. Moreover, the cyclic 
(dominant) subgroup selected from a non-redundant set of cyclic subgroups of G is used to compute the Q-conjugacy 
characters of G, as demonstrated in [Fujita, 1998]. 
The projective special linear groups L2 (8), L2 (16), L2 (32) and the smallest Conway group Co3 with orders 540, 4080, 
32736 and 495766656000 respectively, are unmatured groups according to the main result of W. Feit and G. M. Seitz in 
[Feit et al., 1988]. The motivation for this study is outlined in [Safarisabet et al., 2013; Fujita, 1998; Moghani, 
2009&2010; Aschbacher, 1997; Feit et al., 1988; Conway et al., 1985] and the reader is encouraged to consult these 
papers and [Moghani, 2009&2010; Aschbacher, 1997; Feit et al., 1988; Conway et al., 1985; GAP, 1995; Kerbe et al., 
1982; Kerber, 1999] for background material as well as basic computational techniques. 
This paper is organized as follows: In Section 2, we introduce some necessary concepts, such as the maturity and 
Q-conjugacy character of a finit group. In Section 3, we provide all the dominant classes and Q- conjugacy characters 
for the projective special linear group L2 (2m) for m = 3, 4, 5 and the Conway groups Co3. 
2. Preliminaries 
Throughout this paper we adopt the same notations as in [Safarisabet et al., 2013; Conway, 1985]. For instance, we will 
use the ATLAS notations for conjugacy classes. Thus, nx, n is an integer and x = a, b, c…denotes an arbitrary conjugacy 
class of G of elements of order n. 
Definition 2.1: Let G be an arbitrary finite group and h1, h2 ∈ G, we say h1 and h2 are Q-conjugate if t ∈ G exists such 
that t-1 < h1 > t = < h2 > which is an equivalence relation on group G and generates equivalence classes that are called 
dominant classes. Therefore, G is partitioned into dominant classes [Fujita, 1998]. 
Definition 2.2: Suppose H be a cyclic subgroup of order n of a finite group G. Then, the maturity discriminant of H 
denoted by m(H), is an integer number delineated by |NG(H): CG(H)|  in addition, the dominant class of K ∩ H in the 
normalizer NG(H) is the union of t = m(H)

φ(|H|)
 conjugacy classes of 𝐺𝐺 where φ is Euler function, i.e. the maturity of G 

is clearly defined by examining how a dominant class corresponding to H contains conjugacy classes. The group G 
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should be matured group if t = 1, but if t ≥ 2, the group G is an unmatured concerning subgroup H, see [Safarisabet et al., 
2013; Fujita, 1998; Moghani, 2009&2010]. For some properties of the maturity see the following theorem which is 
introduced by the author in [Moghani, 2009]: 
Theorem 2.3: The wreath products of the matured groups again is a matured group, but the wreath products of at least 
one unmatured group is an unmatured group. 
Definition 2.4: Let Cu×u be a matrix of the character table for an arbitrary finite group G. Then, C is transformed into a 
more concise form called the Q-Conjugacy character table denoted by CG

Q containing integer-valued characters. By 
Theorem 4 in [Fujita, 1998], the dimension of a Q-conjugacy character table CG

Q is equal to its corresponding 
markaracter table denoted by MG

C, i.e. CG
Q  is a m × m –matrix where m ≤ u is the number of dominant classes or 

equivalently the number of non-conjugate cyclic subgroups denoted by denoted by SCSG, see [Safarisabet et al., 2013; 
Fujita, 1998; Moghani, 2009&2010]. 
Definition 2.5: If χ1, ... , χk are all the irreducible characters of a finite group H, let Q(H) = Q(χ1,..., χk) be the field 
generated by all χi (x), x ∈H, 1 ≤ I ≤ k.  
A character χ is rational if Q (χ) = Q. A group H is a rational group if Q (H) = Q (e.g. every Weyl group is a rational 
group [Feit et al., 1988]). 
Theorem 2.6 [Feit et al., 1988]: Let G be a non cyclic finite simple group. Then G is a composition factor of a rational 
group if and only if G is isomorphic to an alternating group or one of the following groups: PSp4(3), Sp6(2), 𝑂𝑂8+(2)´, 
PSL3(4), PSU4(3). 
3. Conclusion 
According to the Theorem 2.6, the projective special linear groups L2 (8), L2 (16), L2 (32) and the Conway group Co3 
are unmatured groups. Now we are equipped to compute all the dominant classes and Q-conjugacy characters for the 
above groups with aid GAP program [GAP, 1995], http://www.gap–system.org. 
Theorem 3.1 
(i) The projective special linear group L2 (8) has two unmatured dominant classes with t = 3 in definition 2.2. 
Furthermore, there are five Q- conjugacy characters for L2 (8) with the following degrees: 1, 7, 8, 21 and 27. 
(ii) The projective special linear group L2 (16) has three unmatured dominant classes with t= 2, 4 and 8. Furthermore, 
there are eight Q- conjugacy characters for L2 (16) with the following degrees: 1, 16, 17, 34, 68 and 120. 
(iii) The projective special linear group L2 (32) has three unmatured dominant classes with t= 5, 15 and 10. 
Furthermore, there are six Q- conjugacy characters for L2 (32) with the following degrees: 1, 31, 32, 155, 310 and 495. 
Proof: Here, because of similar discussions we verify via full discussions just (ii) for L2 (16) of order 4050. To find all 
the number of dominant classes for L2 (16) at first, we calculate the markaracter table for L2 (16) via GAP system, see 
definition 2.2 and GAP programs in [Safarisabet et al., 2013; GAP, 1995] for more details. 
Hence, see the markaracter table for L2 (16) (i.e. ML2(16)

C ) in Table 1, corresponding to five non-conjugate cyclic 
subgroups ( i.e. Gi ∈ SCSL2(16)) of orders 1, 2, 3, 5, 15 and 17 respectively, as follow: 
G1 = id, G2 = < (2, 3)(4, 5)(6, 9)(7, 12)(8, 17)(10, 16)(11, 13)(14, 15) >, G3 = < (3, 4, 5)(6, 10, 14)(7, 11, 15)(8, 12, 
16)(9, 13, 17) >, G4 = < (3, 8, 10, 13, 15)(4, 12, 14, 17, 7)(5, 16, 6, 9, 11) >, G5 = < (3, 4, 5)(6, 10, 14)(7, 11, 15)(8, 12, 
16)(9, 13, 17), (3, 8, 10, 13, 15)(4, 12, 14, 17, 7)(5, 16, 6, 9, 11) >, and G6 = < (1, 2, 3, 6, 17, 11, 5, 13, 9, 10, 12, 8, 7, 4, 
16, 14, 15) >.  
Therefore, �SCSL2(16)� = 6 and its dominant classes are 1a, 2a, 3a, K5= 5a ∪ 5b, K15= 15a ∪ 15b ∪ 15c ∪ 15d and K17 
= 17a ∪ 17b ∪ 17c ∪ 17d ∪ 17e ∪ 17f ∪ 17g ∪ 17h, thus L2 (16) has three unmatured dominant classes with t = 2, 4 
and 8. 
Furthermore, L2 (16) has three unmatured Q-conjugacy characters ϕ2, ϕ5 and ϕ6 which are the sum of eight, two and 
four irreducible characters respectively. Therefore, there are eight, two and four column-reductions respectively 
(similarly row-reductions) in the character table of L2 (16). There are eight Q- conjugacy characters for L2 (16) with the 
following degrees: 1, 16, 17, 34, 68 and 120, see Table 2. 
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Table 1. The markaracter Table of the projective special linear group L2 (16) 

  𝐌𝐋𝟐(𝟏𝟔)
𝐂  G1 G2 G3 G4 G5 G6 

(L2(16)/G1) 4080 0 0 0 0 0 
(L2(16)/G2) 2040 8 0 0 0 0 
(L2(16)/G3) 1360 0 10 0 0 0 
(L2(16)/G4) 816 0 0 6 0 0 
(L2(16)/G5) 272 0 2 2 2 0 
(L2(16)/G6) 240 0 0 0 0 2 

Besides, the dominant classes of L2 (8) are 1a, 2a, 3a, D7 = 7a ∪ 7b ∪ 7c and D9 = 9a ∪ 9b ∪ 9c which has two 
unmatured dominant classes with t = 3. Similar discussions show that there are five Q- conjugacy characters for L2 (8) 
with the following degrees: 1, 7, 8, 21 and 27. 
L2 (8) has two unmatured Q-conjugacy characters µ3 and µ5 which are the sum of three irreducible characters 
respectively, see Table 3. 

Table 2. The Q-Conjugacy Character of the projective special linear group L2 (16) 

  𝐂𝐋𝟐(𝟏𝟔)
𝐐  1a 2a 3a K5 K15 K17 
φ1 1 1 1 1 1 1 
φ2 120 -8 0 0 0 1 
φ3 16 0 1 1 1 -1 
φ4 17 1 -1 2 -1 0 
φ5 34 2 4 -1 -1 0 
φ6 68 4 -4 -2 1 0 

wherein K5= 5a ∪ 5b, K15= 15a ∪ 15b ∪ 15c ∪ 15d and K17 = 17a ∪ 17b ∪ 17c ∪ 17d ∪ 17e ∪ 17f ∪ 17g ∪ 17h 

The dominant classes of L2 (32) are 1a, 2a, 3a, L11 = 11a ∪ 11b ∪ 11c ∪ 11d ∪ 11e, L31 = 31a ∪ 31b ∪ 31c ∪ 31d ∪ 
31e ∪ 31f ∪ 31g ∪ 31h ∪ 31i ∪ 31j ∪ 31k ∪ 31l ∪ 31m ∪ 31n ∪ 31o and L33 = 33a ∪ 33b ∪ 33c ∪ 33d ∪ 33e ∪ 33f 
∪ 33g ∪ 33h ∪ 33i ∪ 33j which has three unmatured dominant classes with t = 5, 15 and 10.  

Table 3. The Q-Conjugacy Character of the projective special linear group L2 (8) 

  𝐂𝐋𝟐(𝟖)
𝐐  1a 2a 3a D7 D9 
µ1 1 1 1 1 1 
µ2 7 -1 -2 0 1 
µ3 21 -3 3 0 0 
µ4 8 0 -1 1 -1 
µ5 27 3 0 -1 0 

Wherein, D7 = 7a ∪ 7b ∪ 7c and D9 = 9a ∪ 9b ∪ 9c 

Table 4. The Q-Conjugacy Character of the projective special linear group L2 (32) 

  𝐂𝐋𝟐(𝑪𝑪𝟐)
𝐐  

1a 2a 3a L11 L31 L33 

ς1 1 1 1 1 1 1 
ς2 120 -8 0 0 0 1 
ς3 16 0 1 1 1 -1 
ς4 17 1 -1 2 -1 0 
ς5 34 2 4 -1 -1 0 
ς6 68 4 -4 -2 1 0 

Wherein L11 = 11a ∪ 11b ∪ 11c ∪ 11d ∪ 11e, L31 = 31a ∪ 31b ∪ 31c ∪ 31d ∪ 31e ∪ 31f ∪ 31g ∪ 31h ∪ 31i ∪ 31j ∪ 
31k ∪ 31l ∪ 31m ∪ 31n ∪ 31o and L33 = 33a ∪ 33b ∪ 33c ∪ 33d ∪ 33e ∪ 33f ∪ 33g ∪ 33h ∪ 33i ∪ 33j. 
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We afford all the Q-conjugacy characters of L2 (2m) for m = 3, 4, 5 in Tables 2-4. 
Theorem 3.2 
The Conway groups Co3 has six unmatured dominant classes with the t = 2.  
Furthermore, there are thirty eight Q- conjugacy characters for Co3 with the following degrees: 1, 23, 253, 275, 1771, 
1792, 2024, 4025, 5544, 7040, 7084, 8855, 19250, 23000, 26082, 31625, 31878, 40250, 41216, 57960, 63250, 73600, 
80960, 91125, 93312, 129536, 177100, 184437, 221375, 226688, 246400, 249480, 253000 and 255024. 
Proof: According to similar discussion in the previous theorem, it is enough to report the dominant classes of Co3 as 
follow: 
1a, 2a, 2b, 3a, 3b, 3c, 4a, 4b, 5a, 5b, 6a, 6b, 6c, 6d, 6e, 7a, 8a, 8b, 8c, 9a, 9b, 10a, 10b, M11 = 11a ∪ 11b, 12a, 12b, 12c, 
14a, 15a, 15b, 18a, M20 = 20a ∪ 20b, 21a, M22 = 22a ∪ 22b, M23 = 23a ∪ 23b, 24a, 24b, 30a which has four unmatured 
dominant classes with t = 2.  

Table 5. The Q-Conjugacy Character Table of the Conway group Co3 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝑸𝑸  1a 2a 2b 3a 3b 3c 4a 4b 5a 5b 6a 6b 

π1 1 1 1 1 1 1 1 1 1 1 1 1 
π2 23 7 -1 -4 5 -1 -5 3 -2 3 4 -2 
π3 253 13 -11 10 10 1 9 1 3 3 10 4 
π4 253 29 -11 10 10 1 -11 5 3 3 2 2 
π5 275 35 11 5 14 -1 15 7 0 5 5 -1 
π6 1792 0 32 64 -8 -14 0 0 -8 2 0 0 
π7 1771 -21 11 -11 16 7 -5 -5 -4 1 21 -3 
π8 2024 104 0 -1 26 8 -24 8 -1 4 -1 5 
π9 7040 -128 0 -88 20 -16 0 0 -10 0 -8 16 
π10 4025 105 1 -25 29 -7 -35 5 0 5 15 -3 
π11 5544 168 0 -45 36 0 40 8 -6 4 3 -3 
π12 7084 -84 44 10 19 -14 -4 -4 9 -1 18 6 
π13 8855 231 55 -1 35 -7 19 11 5 0 -9 -3 
π14 19250 210 -110 80 -10 14 10 -6 0 0 0 12 
π15 41216 0 -32 -256 -40 14 0 0 16 6 0 0 
π16 23000 280 120 50 5 8 40 8 0 0 10 10 
π17 26082 -126 -54 81 0 0 -6 10 7 -3 9 9 
π18 31625 265 -55 35 35 -1 -55 9 0 0 -5 -5 
π19 31625 -55 -55 35 35 -1 25 -7 0 0 35 -1 
π20 31625 505 -55 35 35 -1 -35 5 0 0 -5 1 
π21 31878 294 -66 45 45 0 46 -2 3 3 -3 -3 
π22 40250 -70 10 -115 -25 14 10 10 0 0 5 -7 
π23 57960 168 120 126 45 0 -40 -8 10 0 6 6 
π24 63250 210 -110 -65 -20 22 -30 2 0 0 15 3 
π25 73600 0 144 160 16 13 0 0 0 -5 0 0 
π26 80960 -448 0 176 50 8 0 0 10 0 -16 -16 
π27 91125 405 45 0 0 27 45 -3 0 0 0 0 
π28 93312 0 -144 0 0 27 0 0 12 -3 0 0 
π29 129536 -512 0 -64 44 8 0 0 -14 -4 16 -8 
π30 129536 512 0 -64 44 8 0 0 -14 4 -16 8 
π31 177100 140 44 -20 -29 -14 -20 12 0 -5 20 -4 
π32 184437 405 -99 0 0 -27 45 -3 12 -3 0 0 
π33 221375 735 55 -160 -25 -7 -25 -9 0 0 0 -12 
π34 226688 0 -176 320 -40 -7 0 0 -12 3 0 0 
π35 246400 0 176 160 -56 7 0 0 0 5 0 0 
π36 249480 -504 0 -81 0 0 -24 8 5 0 -9 9 
π37 253000 -440 0 -125 10 -8 40 8 0 0 -5 1 
π38 255024 -336 0 -126 36 0 -16 -16 -1 4 -6 6 
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Table 5 (continued); wherein M11= 11a ∪ 11b. 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝑸𝑸  6c 6d 6e 7a 8a 8b 8c 9a 9b 10a 10b M11 12a 

π1 1 1 1 1 1 1 1 1 1 1 1 1 1 
π2 1 -1 -1 2 1 -3 1 -1 2 2 -1 1 -2 
π3 -2 -2 1 1 -1 3 -1 1 1 3 -1 0 0 
π4 2 -2 1 1 -3 -3 1 1 1 -1 -1 0 -2 
π5 2 2 -1 2 1 5 1 -1 2 0 1 0 3 
π6 0 -4 2 0 0 0 0 4 -2 0 2 -1 0 
π7 0 2 -1 0 -1 -1 -1 -2 -2 4 1 0 1 
π8 2 0 0 1 4 -4 0 -1 -1 -1 0 0 -3 
π9 4 0 0 -2 0 0 0 2 2 2 0 0 0 
π10 -3 1 1 0 -1 -5 -1 2 2 0 1 -1 1 
π11 0 0 0 0 -4 4 0 0 0 -2 0 0 1 
π12 3 -1 2 0 0 0 0 4 -2 1 -1 0 2 
π13 3 1 1 0 5 1 1 2 -4 1 0 0 1 
π14 6 -2 -2 0 6 -2 -2 -4 2 0 0 0 4 
π15 0 4 -2 0 0 0 0 -4 -4 0 -2 -1 0 
π16 1 3 0 -2 0 0 0 -1 2 0 0 -1 -2 
π17 0 0 0 0 2 2 -2 0 0 -1 1 1 -3 
π18 -5 -1 -1 -1 1 1 1 -1 -1 0 0 0 -1 
π19 -1 -1 -1 -1 1 1 1 -1 -1 0 0 0 -5 
π20 7 -1 -1 -1 -5 -1 -1 -1 -1 0 0 0 1 
π21 -3 -3 0 0 2 2 -2 0 0 -1 -1 0 1 
π22 -1 1 -2 0 -2 -2 -2 5 -1 0 0 1 1 
π23 -3 3 0 0 0 0 0 0 0 -2 0 1 2 
π24 0 -2 -2 -2 2 2 2 4 1 0 0 0 3 
π25 0 0 -3 2 0 0 0 4 1 0 -1 -1 0 
π26 2 0 0 -2 0 0 0 -1 2 2 0 0 0 
π27 0 0 3 -1 -3 -3 1 0 0 0 0 1 0 
π28 0 0 3 2 0 0 0 0 0 0 1 -1 0 
π29 4 0 0 1 0 0 0 -1 -1 -2 0 0 0 
π30 -4 0 0 1 0 0 0 -1 -1 2 0 0 0 
π31 -1 -1 2 0 0 0 0 -5 1 0 -1 0 4 
π32 0 0 -3 1 -3 -3 1 0 0 0 1 0 0 
π33 3 1 1 0 3 3 -1 2 2 0 0 0 -4 
π34 0 4 1 0 0 0 0 2 -1 0 -1 0 0 
π35 0 -4 1 0 0 0 0 -2 -2 0 1 0 0 
π36 0 0 0 0 -4 4 0 0 0 1 0 0 -3 
π37 -2 0 0 -1 4 -4 0 1 1 0 0 0 1 
π38 0 0 0 0 0 0 0 0 0 -1 0 0 2 
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Table 5 (continued); wherein Mn= na ∪ nb, for n= 20, 22, 23. 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝑸𝑸  12b 12c 14a 15a 15b 18a M20 21a M22 M23 24a 24b 30a 

π1 1 1 1 1 1 1 1 1 1 1 1 1 1 
π2 0 1 0 1 0 1 0 -1 -1 0 -2 0 -1 
π3 -2 0 -1 0 0 1 -1 1 0 0 2 0 0 
π4 2 -2 1 0 0 -1 -1 1 0 0 0 0 2 
π5 1 0 0 0 -1 -1 0 -1 0 -1 1 -1 0 
π6 0 0 0 4 2 0 0 0 -1 -2 0 0 0 
π7 1 -2 0 -1 1 0 0 0 0 0 -1 -1 1 
π8 -1 0 -1 -1 1 -1 1 1 0 0 1 -1 -1 
π9 0 0 -2 2 0 -2 0 -2 0 2 0 0 2 
π10 -1 1 0 0 -1 0 0 0 1 0 -1 1 0 
π11 -1 -2 0 0 1 0 0 0 0 1 -1 1 -2 
π12 2 -1 0 0 -1 0 1 0 0 0 0 0 -2 
π13 -1 1 0 -1 0 0 -1 0 0 0 -1 1 1 
π14 0 -2 0 0 0 0 0 0 0 -1 0 4 0 
π15 0 0 0 4 0 0 0 0 1 0 0 0 0 
π16 2 1 0 0 0 1 0 1 -1 0 0 0 0 
π17 1 0 0 1 0 0 -1 0 1 0 -1 -1 -1 
π18 3 -1 -1 0 0 1 0 -1 0 0 1 1 0 
π19 -1 1 1 0 0 -1 0 -1 0 0 1 1 0 
π20 -1 1 1 0 0 1 0 -1 0 0 1 -1 0 
π21 1 1 0 0 0 0 1 0 0 0 -1 -1 2 
π22 1 1 0 0 0 -1 0 0 -1 0 1 1 0 
π23 -2 1 0 1 0 0 0 0 -1 0 0 0 1 
π24 -1 0 0 0 0 0 0 1 0 0 -1 -1 0 
π25 0 0 0 0 1 0 0 -1 1 0 0 0 0 
π26 0 0 0 1 0 -1 0 1 0 0 0 0 -1 
π27 0 0 -1 0 0 0 0 -1 1 -1 0 0 0 
π28 0 0 0 0 0 0 0 -1 -1 1 0 0 0 
π29 0 0 -1 1 -1 1 0 1 0 0 0 0 1 
π30 0 0 1 1 -1 -1 0 1 0 0 0 0 -1 
π31 0 1 0 0 1 -1 0 0 0 0 0 0 0 
π32 0 0 -1 0 0 0 0 1 0 0 0 0 0 
π33 0 -1 0 0 0 0 0 0 0 0 0 0 0 
π34 0 0 0 0 0 0 0 0 0 0 0 0 0 
π35 0 0 0 0 0 0 0 0 0 1 0 0 0 
π36 -1 0 0 -1 0 0 1 0 0 -1 -1 1 1 
π37 -1 -2 1 0 0 1 0 -1 0 0 1 -1 0 
π38 2 2 0 -1 1 0 -1 0 0 0 0 0 -1 

Furthermore, Co3 has four unmatured Q-conjugacy characters π6, π9, π14 and π15 which are the sum of two irreducible 
characters respectively. Therefore, there are two column-reductions (similarly row-reductions) in the character table of 
Co3. 
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There are thirty eight Q- conjugacy characters for Co3 with the following degrees: 1, 23, 253, 275, 1771, 1792, 2024, 
4025, 5544, 7040, 7084, 8855, 19250, 23000, 26082, 31625, 31878, 40250, 41216, 57960, 63250, 73600, 80960, 91125, 
93312, 129536, 177100, 184437, 221375, 226688, 246400, 249480, 253000 and 255024, see all the Q-conjugacy 
characters of Co3 which are stored in Table5. 
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