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Abstract

In this paper, we introduce the linear boundary value problem for k-regular function, and give an unique solution for this
problem by integral equation method and fixed-point theorem.
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1. Introduction

The boundary value problem is one of the important aspects in Clifford analysis. This problem on bounded domains
has seen great achievements. [Wen, 1991; Huang, 1996; Zhang et al., 2001] have discussed Riemann-Hilbert boundary
value problems of regular function on bounded domains. [Li, 2007] characterized boundary value problems of k- regular
functions. In this paper, we introduce the linear boundary value problem of k-regular function, and give an unique solution
to this problem by integral equation method and fixed-point theorem.

Let n be a positive integer, and {e0, e1, · · · , en} be basis for the Euclidean space Rn+1. We denote byA the 2n dimensional
real Clifford algebra, which is generated by Rn+1; denote the basis of A by eA = eα1, α2, ··· , αh , A = {α1, α2, · · · , αh} ⊆
{1, 2, · · · , n}, 1 ≤ α1 < α2 < · · · < αh ≤ n. In particular, if A = ∅, eϕ = e0. So, for an arbitrary u ∈ A, we have
u =
∑

A uAeA with uA ∈ R. InA, we have

e2
i = −1, eie j = −e jei for i , j, i, j = 1, 2, · · · , n,

that is so-called combinative and incommutable multiplication rule of Clifford algebra. For u ∈ A, we write u∗ =∑
A(−1)

|A|(|A|−1)
2 uAeA, u

′
=
∑

A(−1)
|A|
2 uAeA and |u| for its module, where |A| is the cardinality of the index set A. Define

|u|2 = ∑A |uA|2; ū its conjugate with ū = (u∗)′, where u∗ =
∑

A(−1)
|A|(|A|−1)

2 uAeA, and u′ =
∑

A(−1)|A|uAeA. For u, v ∈ A, we
have

|u + v| ≤ |u| + |v|, |uv| ≤ 2n|u||v|.
Let D be a region in Rn+1. For a differentiable function f : D→ A with f (x) =

∑
A fA(x)eA, we say f is a regular function

if

∂̄ f =
n∑

i=0

ei
∂ f
∂xi
=

n∑
i=0

∑
A

eieA
∂ fA

∂xi
= 0,

and a k-regular function if ∂̄k f = 0, where the operator ∂̄ =
∑n

j=0
∂
∂x j

e j. Let Ω ⊂ Rn+1 be an unbounded domain with
smooth oriented Liapunove boundary ∂Ω, and Ωc, the complementary set of Ω containing a non-empty open set. We
denote the bounded Hölder continuous function on ∂Ω in order of β(0 < β < 1) by H(∂Ω, β). For f ∈ H(∂Ω, β), we define
its norm by

∥ f ∥β = sup
t∈∂Ω
| f (t)| + sup

t1,t2

| f (t1) − f (t2)|
|t1 − t2|

.

Then H(∂Ω, ∥ · ∥β) is a Banach space. And for f , g ∈ H(∂Ω, ∥ · ∥β), we have

∥ f + g∥β ≤ ∥ f ∥β + ∥g∥β, ∥ f g∥β ≤ 2n∥ f ∥β∥g∥β.

2. Main Result

In what follows, we denote by Ω a non-empty connected open set in Rn+1 with smooth oriented Liapunove boundary ∂Ω,
and by wn the area of unit ball in Rn+1. We first give the linear boundary value problem for k-regular function.

Definition 2.1. Let A(t), B(t), gl(t) ∈ H(∂Ω, β), 1 ≤ l ≤ k. Write Ω+ = Ω, Ω− = Rn+1\Ω̄ with Ω̄ = Ω ∪ ∂Ω. If there exists
some function ϕ such that
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1) ϕ is a k-regular function on Ω±;

2) 
ϕ+(t)A(t) + ϕ−(t)B(t) = g1(t)
∂̄ϕ+(t)A(t) + ∂̄ϕ−(t)B(t) = g2(t)

...

∂̄k−1ϕ+(t)A(t) + ∂̄k−1ϕ−(t)B(t) = gk(t)

(1)

Then we say ϕ is a solution to the linear boundary problem. And this problem is also called linear boundary problem for
k-regular function.

The following lemmas are borrowed from [Li, 2007]:

Lemma 2.1. Let f (x) be a k-regular function on Ω. Then we have

f (x) =
k−1∑
m=0

1
m!

xm
0 fm(x), (2)

where fm,m = 0, 1, · · · , k − 1 are regular functions defined on Ω.

Lemma 2.2 Here we give Plemelj equation for regular function:

ϕ±m = ±
1
2
φm +

1
wn

∫
∂Ω

τ − x
|τ − x|n+1 m(τ)φm(τ)dsτ . (3)

where m(u) is the unit vector in ∂Ω’s normal direction, and φ j ∈ H(∂Ω, β), j = 0, 1, · · · , k−1. Then ϕ is a regular function
on Rn+1\∂Ω.

The following lemma is borrowed from [Xu et al., 2008]

Lemma 2.3. Let ϕ ∈ H(∂Ω, β). Define a operator K on H(∂Ω, β) by

(Kϕ)(x) =
1

wn

∫
∂Ω

τ − x
|τ − x|n m(τ)ϕ(τ)dsτ (4)

for x ∈ ∂Ω. Then there exists some C > 0 such that ∥K · ∥ ≤ C∥ · ∥ on H(∂Ω, β).

Theorem 2.1. Let A(t), B(t), gl(t), (1 ≤ l ≤ k) ∈ H(∂Ω, β). If

ζ = 2n[(
1
2
+C)(∥A + B∥) + ∥1 − B∥] ∈ (0, 1),

||g′m+1||β ≤ M(1 − ζ), (5)

where C is in Lemma 2.3, then the solution of the m-th equation in (1) is given by

ϕ(x) =
k−1∑
m=0

1
m!

xm
1 ϕm(x)

with

ϕm =
1

wn

∫
∂Ω

τ − x
|τ − x|n m(τ)φm(τ)dsτ

for m = 0, 2, · · · , k − 1.

Proof. Substituting (2) into (1), we have

T


ϕ+0
...
ϕ+k−2
ϕ+k−1

 A + T


ϕ−0
...
ϕ−k−2
ϕ−k−1

 B =


g1
...

gk−1
gk,

 (6)
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where

T =


0 0 0 · · · 1
0 1 x1 · · · 1

(k−2)! xk−2
1

...
...

...

1 x1
1
2! x2

1 · · · 1
(k−1)! xk−1

1

 .
We rewrite (6) as 

ϕ+0 A
...

...
ϕ+k−2 A
ϕ+k−1 A

 +

ϕ+0 B
...

...
ϕ+k−2 B
ϕ+k−1 B

 =


g′1
...

g′k−1
g′k

 with


g′1
...

g′k−1
g′k

 = T−1


g1
...

gk−1
gk

 ,
which is equivalent to 

ϕ+0 A + ϕ−0 B = g′1
ϕ+1 A + ϕ−1 B = g′2

...

ϕ+k−1A + ϕ−k−1B = gk,
′

(7)

herein ϕm is a regular function given by

ϕm =
1

wn

∫
∂Ω

τ − x
|τ − x|n m(τ)φm(τ)dsτ (8)

for m = 0, · · · , k − 1. Next, to finish the proof, we only need to prove that ϕm (0 ≤ m ≤ k − 1) given by (8) are solutions
to (7). By substituting (3) into (7), we have

(
1
2
φm + Kφm)A + (−1

2
)φm + KφmB = g′m+1 m = 0, · · · , k − 1. (9)

Write

Lϕm = (
1
2
φm + Kφm)(A + B) + φm(1 − B) − g′m+1,

then (9) can be rewritten as Lϕm = ϕm. Let T = {φ|φ ∈ H(∂Ω, β), ||φ||β ≤ M}. Then T is a closed subspace of H(∂Ω, β).
Since

∥Lφm∥β = ∥(1
2
ϕm + Kϕm)(A + B) + (1 − B)ϕm − g′m+1∥

≤ 2n[(
1
2
+C)(∥A + B∥) + ∥1 − B∥]∥ϕm∥ + ∥g′m+1∥

≤ ζ∥ϕm∥ + ∥g′m+1∥
≤ M, (10)

F is a map on T . For ϕ′m, ϕ
′′
m ∈ T , we have

||Lϕ′m − Lϕ′′m|| ≤ ζ ||ϕ′m − ϕ′′m||β,

with 0 < ζ < 1, and thus L is a compression map on T . So, there is an unique fixed φm such that Lφm = φm by fixed point
theorem, which implies that

ϕm =
1

wn

∫
∂Ω

τ − x
|τ − x|n m(τ)φm(τ)dsτ

is unique solution for the m-th equation in (7). This gives the proof.
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