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Abstract

In this paper the concept of Zamfirescu single-valued maps is extend to multi-valued maps and then we study the fixed
point properties. We show that the multi-valued Zamfirescu mapping has an iteration which converges to a fixed point and
give a rate of convergence. Data dependence problems on multi-valued Zamfirescu mapping are studied.
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1. Introduction

The original theorem on fixed point theory is the contraction mapping principle theorem which is stated in Theorem 1.1
by Banach (Banach, S.,1922).

Theorem 1.1 Let (X, d) be a complete metric space and T : X → X be an a-contraction mapping, i.e., there exists a
constant a ∈ (0, 1) such that d(T x,Ty) ≤ ad(x, y), for all x, y ∈ X. Then T has a unique fixed point.

In 1972, Zamfirescu (Zamfirescu, T.,1972) extended the condition on T in contraction mapping principle theorem to the
class of maps which may not be continuous, called Zamfirescu mappings defined in Definition 1.2 and showed that such
a mapping has a unique fixed point in Theorem 1.3, respectively.

Definition 1.2 Let (X, d) be a metric space, T : X → X is called Zamfirescu mapping iff there exist real numbers a, b and
c satisfying 0 ≤ a < 1, 0 ≤ b < 1

2 and 0 ≤ c < 1
2 such that for each x, y ∈ X at least one of the followings is true:

(z1) d(T x,Ty) ≤ ad(x, y)

(z2) d(T x,Ty) ≤ b[d(x,T x) + d(y,Ty)]

(z3) d(T x,Ty) ≤ c[d(x,Ty) + d(y,T x)].

Theorem 1.3 Let (X, d) be a complete metric space and T a self map. If T is a Zamfirescu mappings, then T has a unique
fixed point.

Zamfirescu’ theorem is a generalization of (z1) Banach’s theorem (Banach, S.,1922), (z2) Kannan’ s theorem (Kannan,
R.,1968) and (z3) Chatterjea’s theorem (Chatterjea, S.K.,1972).

In 1967, Nadler (Nadler, S.B.,1967) initiated the idea for multi-valued contraction mapping. Later, in 1968,1969 Markin
(Markin, J.T.,1968) and Nadler (Nadler, S.B.,1969) independently studied the fixed point of multi-valued contraction
mapping.

Let P(X) be the family of all nonempty subsets of X and let T be a multi-valued mapping, i.e., T : X → P(X) . An
element x ∈ X such that x ∈ T x is called a fixed point of T . We denote by FT the set of all fixed points of T , i.e.,
FT = {x ∈ X : x ∈ T x} and by G(T ) the graph of multi-valued operator T , i.e., G(T ) = {(x, y) : x ∈ X and y ∈ T x}.
Let (X, d) be a metric space and let CB(X) denote the family of all nonempty bounded closed subsets of X. For x ∈ X,
A, B ⊆ X, we consider

d(x, A) = inf{d(x, a) : a ∈ A}, the distance between x and A,

d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}, the distance between A and B,

δ(A, B) = sup{d(a, b) : a ∈ A, b ∈ B}, the diameter of A and B,
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h(A, B) = sup{d(a, B) : a ∈ A},
H(A, B) = max{h(A, B), h(B, A)}, the Hausdorff-Pompeiu metric on P(X) induced by d.

The following result, usually referred as Nadler’s fixed point theorem, gives a multi-valued version of Theorem 1.1.

Theorem 1.4 (Nadler, S.B.,1969) Let (X, d) be a metric space and T : X → CB(X) a multi-valued a-contraction, i.e.,
there exists a constant a ∈ (0, 1) such that H(T x,Ty) ≤ ad(x, y), for all x, y ∈ X. Then T has at least one fixed point.

In this work, we extend the definition of Zamfirescu mapping in case of multi-valued and study the fixed point properties.
In section 2, we show that the multi-valued Zamfirescu mapping has an iteration which converges to a fixed point and give
a rate of convergence. Data dependence problem on multi-valued Zamfirescu mapping are studied in section 3. Finally,
we give an example of such a map on which Nadler’s theorem cannot be applied but our criteria can be used.

2. Multi-valued Zamfirescu mapping

We extend the definition of Zamfirescu mapping to case of multi-valued mapping in Definition 2.1.

Definition 2.1 Let (X, d) be a metric space and T : X → CB(X) be a multi-valued mapping. T is said to be a multi-valued

Zamfirescu mapping iff there exist real numbers a, b and c satisfying 0 ≤ a < 1, 0 ≤ b < 1
2 and 0 ≤ c < 1

2 such that for
each x, y ∈ X at least one of the followings is true:

(z̃1) H(T x,Ty) ≤ ad(x, y)

(z̃2) H(T x,Ty) ≤ b[d(x,T x) + d(y,Ty)]

(z̃3) H(T x,Ty) ≤ c[d(x,Ty) + d(y,T x)].

Now, we define three important abstract notions given in (Rus, I.A., Petruşel, A., & Sı̂ntămărian, A., 2003).

Definition 2.2 Let (X, d) be a metric space and T : X → P(X) be a multi-valued operator. T is said to be a multi-valued

weakly Picard (briefly MWP) operator iff for each x ∈ X and any y ∈ T x, there exists a sequence {xn}∞n=0 such that

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ T xn for all n = 0, 1, 2 . . . and

(iii) the sequence {xn}∞n=0 is convergent and its limit is a fixed point of T .

Remark 2.3 A sequence {xn}∞n=0 satisfying conditions (i) and (ii) in Definition 2.2 is also called a sequence of successive
approximations of T starting from (x, y).

Definition 2.4 Let (X, d) be a metric space and T : X → P(X) be a MWP operator. Then we define the multi-valued

operator T∞ : G(T ) → P(FT ), by the formula;

T∞(x, y) := {z ∈ FT | there exists a sequence of successive approximations of T starting from (x, y) which converges to z }.
Definition 2.5 Let (X, d) be a metric space, T : X → P(X) be a MWP operator and c > 0. Then T is a c−multi-valued

weakly Picard (briefly c-MWP) operator if for every (x, y) ∈ G(T ) there exists a selection t∞(x, y) in T∞(x, y) such that
d(x, t∞(x, y)) ≤ cd(x, y).

At the beginning, we shall present some examples of c-MWP operators given in (Rus, I.A., Petruşel, A., & Sı̂ntămărian,
A., 2003).

Example 2.6 Let (X, d) be a metric space and T : X → CB(X) be a multi-valued a-contraction (0 < a < 1). Then T is a
c-MWP operator with c = (1 − a)−1.

Example 2.7 Let (X, d) be a metric space and T : X → CB(X) be a multi-valued operator for which there exist positive
real numbers α, β and γ such that α + β + γ < 1 and

H(T x,Ty) ≤ αd(x, y) + βd(x,T x) + γd(y,Ty),

for all x, y ∈ X. Then T is a c-MWP operator with c = (1 − γ)[1 − (α + β + γ)]−1.

Example 2.8 Let (X, d) be a metric space and T : X → CB(X) be a closed multi-valued operator for which there exist
positive real numbers α and β such that α + β < 1 and

H(T x,Ty) ≤ αd(x, y) + βd(y,Ty),

for all x ∈ X and y ∈ T x. Then T is a c-MWP operator with c = (1 − β)[1 − (α + β)]−1.
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Example 2.9 Let (X, d) be a metric space, x0 ∈ X and r > 0. Let T : B̃(x0, r) → CB(X), where B̃(x0, r) = {x ∈ X :
d(x0, x) ≤ r} be a multi-valued operator for which there exist α, β, γ ∈ R+ and α + β + γ < 1 such that

(i) H(T x,Ty) ≤ αd(x, y) + βd(x,T x) + γd(y,Ty), ∀x, y ∈ B̃(x0, r)

(ii) δ(x0,T x0) < [1 − (α + β + γ)](1 − γ)−1r.

Then T is a c-MWP operator with c = (1 − γ)[1 − (α + β + γ)]−1.

To prove the main results of this paper, we shall need the following lemmas which can be found in (Kunze, H.E., La Torre,
D., & Vrscay, E.R., 2007) and (Rus, I.A., 2001).

Lemma 2.10 (Kunze, H.E., La Torre, D., & Vrscay, E.R., 2007) Let (X, d) be a metric space, x, y ∈ X and A, B and C are
subsets of X. The following statements hold.

1. If A ⊆ B, then d(A,C) ≥ d(B,C) and h(A,C) ≤ h(B,C) and h(C, A) ≥ h(C, B).

2. d(x, A) ≤ d(x, y) + d(y, A).

3. d(x, A) ≤ d(x, y) + d(y, B) + h(B, A).

4. d(x, A) ≤ d(x, B) + h(B, A).

Remark 2.11 If A ⊆ B, then δ(A,C) and δ(B,C) cannot be compared.

Lemma 2.12 (Rus, I.A., 2001) Let (X, d) be a metric space, A, B ∈ P(X) and q ∈ R, q > 1 be given. Then for every a ∈ A

there exists b ∈ B such that d(a, b) ≤ qH(A, B).

The next theorem is our main result of this section. It shows that any a multi-valued Zamfirescu mapping is a MWP

operator, moreover it is a c-MWP operator.

Theorem 2.13 Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued Zamfirescu mapping. Then

1. T is a MWP operator;

2. for any x0 ∈ X, there exists an orbit {xn}∞n=0 of T at a point x0 that converges to a fixed point u of T , for which the
following estimates holds:

d(xn, u) ≤ αn

1 − αd(x0, x1), n = 0, 1, 2, . . .

d(xn, u) ≤ α

1 − αd(xn−1, xn), n = 1, 2, , 3, . . .
for a certain constant α < 1.

Proof : Let x0 ∈ X and x1 ∈ T x0.

If H(T x0,T x1) = 0, then T x0 = T x1, i.e., x1 ∈ T x1, this means that FT � ∅.

Let H(T x0,T x1) > 0. Choose q, 1 < q < min{1
a
,

1
2b
,

1
2c

}. By Lemma 2.12 there exists x2 ∈ T x1 such that d(x1, x2) ≤
qH(T x0,T x1).

If x0, x1 satisfy (z̃1), then we have d(x1, x2) ≤ qad(x0, x1),

if x0, x1 satisfy (z̃2), then we have

d(x1, x2) ≤ qb[d(x0,T x0) + d(x1,T x1)]
≤ qb[d(x0, x1) + d(x1, x2)]

and hence d(x1, x2) ≤ (
qb

1 − qb
)d(x0, x1),

and if x0, x1 satisfy (z̃3), then we have

d(x1, x2) ≤ qc[d(x0,T x1) + d(x1,T x0)]
= qcd(x0,T x1) ≤ qcd(x0, x2)
≤ qc[d(x0, x1) + d(x1, x2)]

and hence d(x1, x2) ≤ (
qc

1 − qc
)d(x0, x1).
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Therefore, for α = max{qa,
qb

1 − qb
,

qc

1 − qc
}, we have 0 ≤ α < 1 and thus

d(x1, x2) ≤ αd(x0, x1).

If H(T x1,T x2) = 0 then T x1 = T x2, i.e., x2 ∈ T x2, this means that FT � ∅.

Let H(T x1,T x2) > 0. Again by Lemma 2.12, there exists x3 ∈ T x2 such that

d(x2, x3) ≤ αd(x1, x2).

In this manner we obtain an orbit {xn}∞n=0 of T at a point x0 satisfying

d(xn, xn+1) ≤ αd(xn−1, xn), n = 1, 2, , 3, . . . (1)

and hence by (1) we inductively obtain

d(xn, xn+1) ≤ αnd(x0, x1), (2)

and, respectively,
d(xn+k−1, xn+k) ≤ αkd(xn−1, xn), k ∈ N ∪ {0}. (3)

Thus, for any n, p ∈ N by (2), we obtain

d(xn, xn+p) ≤
n+p−1∑

k=n

d(xk, xk+1)

≤
n+p−1∑

k=n

αkd(x0, x1)

≤ αn(1 − αp)
1 − α d(x0, x1)

≤ αn

1 − αd(x0, x1)

(4)

and so by (3), we arrive at

d(xn, xn+p) ≤ (α + α2 + · · · + αp)d(xn−1, xn) ≤ α

1 − αd(xn−1, xn). (5)

Since 0 ≤ α < 1, it results in αn → 0 (as n → ∞). Together with (4), this shows that {xn}∞n=0 is a Cauchy sequence, and so
{xn}∞n=0 converges to some u ∈ X as (X, d) is complete.

Lemma 2.10 (2) implies that

d(u,Tu) ≤ d(u, xn+1) + d(xn+1,Tu) ≤ d(u, xn+1) + H(T xn,Tu).

If xn, u satisfy (z̃1), then
d(u,Tu) ≤ d(u, xn+1) + ad(xn, u), (6)

if xn, u satisfy (z̃2), then
d(u,Tu) ≤ d(u, xn+1) + b[d(xn,T xn) + d(u,Tu)]

≤ d(u, xn+1) + b[d(xn, xn+1) + d(u,Tu)], (7)

and if xn, u satisfy (z̃3), then
d(u,Tu) ≤ d(u, xn+1) + c[d(xn,Tu) + d(u,T xn)]

≤ d(u, xn+1) + c[d(xn,Tu) + d(u, xn+1)]. (8)

Therefore, letting n → ∞ in (6), (7) and (8), we have d(u,Tu) = 0.

Since Tu is closed, this implies u ∈ Tu.

To prove (2), we use (4) and (5) and the continuity of the metric and so by letting p → ∞, the proof completes. �
Given a point x ∈ X and a compact set A ⊂ X, we know that there exist a∗ ∈ A such that d(x, a∗) = d(x, A). We call a∗ the
projection of the point x on the set A and denote it as a∗ = πxA. Obviously, a∗ is not unique but we choose one of it.
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Let T : X → P(X) be a multi-valued mapping such that T x is a compact set for all x ∈ X. We now define the following
projection associated with a multi-valued T by Px = πx(T x). For x0 ∈ X, we define xn+1 = Pxn, n = 0, 1, 2 . . . and we call
the sequence {xn}∞n=0 in this manner a Picard projection iteration sequence of T .

Theorem 2.14 Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued Zamfirescu mapping such
that T x is compact for all x ∈ X. Then

1. FT � ∅;

2. for any x0 ∈ X, the Picard projection iteration {xn}∞n=0 converges to some x∗ ∈ FT ;

3. The following estimates

d(xn, x
∗) ≤ αn

1 − αd(x0, x1), n = 0, 1, 2, . . .

d(xn, x
∗) ≤ α

1 − αd(xn−1, xn), n = 1, 2, , 3, . . .
hold, for a certain constant α < 1.

Proof: Let T be a multi-valued Zamfirescu mapping, i.e., for each x, y ∈ X satisfying at least one condition (z̃1), (z̃2) or
(z̃3), and T x is compact for all x ∈ X.

Let x0 ∈ X be arbitrary and let {xn}∞n=0 be the Picard projection iteration.

For x1, x2 ∈ X we see that;

d(x1, x2) = d(x1, Px1) = d(x1,T x1) ≤ h(T x0,T x1) ≤ H(T x0,T x1)

, if x0, x1 satisfy (z̃1), then d(x1, x2) ≤ ad(x0, x1),
if x0, x1 satisfy (z̃2), then

d(x1, x2) ≤ b[d(x0,T x0) + d(x1,T x1)]
= b[d(x0, x1) + d(x1, x2)]

and hence d(x1, x2) ≤ b

1 − b
d(x0, x1),

if x0, x1 satisfy (z̃3), then
d(x1, x2) ≤ c[d(x0,T x1) + d(x1,T x0)]

= cd(x0,T x1)
≤ c[d(x0, x1) + d(x1,T x1)]
= c[d(x0, x1) + d(x1, x2)]

and hence d(x1, x2) ≤ c

1 − c
d(x0, x1).

Therefore, for α = {a, b

1 − b
,

c

1 − c
}, we have 0 ≤ α < 1 and thus d(x1, x2) ≤ αd(x0, x1).

Moreover, for each n ∈ N we have;
d(xn, xn+1) ≤ αd(xn−1, xn). (9)

We can use the same argument as in Theorem 2.13 for the rest of the proof. �
Corollary 2.15 Let (X, d) be a complete metric space. If T is a multi-valued Zamfirescu mapping then T is a c-MWP

operator with c =
1

1 − α for a certain constant α < 1.

Proof : It follows immediately from Theorem 2.13 (2). �
Theorem 2.16 Let (X, d) be a complete metric space. If T is a multi-valued Zamfirescu mapping, then FT is complete.
Proof : Let {xn}∞n=0 be a Cauchy sequence in FT . Since X is complete, there exist u ∈ X such that d(xn, u) → 0 as n → ∞.
By Lemma 2.10 (3),

d(u,Tu) ≤ d(u, xn) + d(xn,T xn) + h(T xn,Tu)
≤ d(u, xn) + d(xn,T xn) + H(T xn,Tu)
= d(u, xn) + H(T xn,Tu).

If xn, u satisfy (z̃1), then
d(u,Tu) ≤ d(u, xn) + ad(xn, u), (10)

if xn, u satisfy (z̃2), then

d(u,Tu) ≤ d(u, xn) + b[d(xn,T xn) + d(u,Tu)] = d(u, xn) + bd(u,Tu), (11)
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and if xn, u satisfy (z̃3), then

d(u,Tu) ≤ d(u, xn) + c[d(xn,Tu) + d(u,T xn)]
≤ d(u, xn) + c[d(xn,Tu) + d(u, xn) + d(xn,T xn)]
= d(u, xn) + c[d(xn,Tu) + d(u, xn)].

(12)

Hence, letting n → ∞ in (10),(11) and (12), we get d(u,Tu) = 0. Since Tu is closed, u ∈ Tu. Therefore we have the
theorem. �
In example 2.17, we give an example of a mapping T such that Nadler’s fixed point theorem can not be applied while we
can use our Theorem 2.14.

Example 2.17 Let X = [0, 1] and T : X → CB(X) defined by

T x = { [0, 1
4 ] ; x ∈ [0, 1)

[0, 1
2 ] ; x = 1.

Then T satisfies (z̃3) by choosing c = 1
3 . Hence, by Theorem 2.14, T has a fixed point. For y = 1, x ∈ [ 3

4 , 1), we observe
that |x − y| ≤ 1

4 = H(T x,Ty). These imply that T is not multi-valued contraction, so we cannot apply Nadler’s theorem
with this example.

3. Data dependence

Let (X, d) be a metric space and T1,T2 : X → CB(X) such that FT1 and FT2 are nonempty. Data dependence problem
concern on H(FT1 , FT2 ). In this section we give some upper bound on H(FT1 , FT2 ).

One of the main results concerning c-MWP operators is the following:

Theorem 3.1 (Rus, I.A., Petruşel, A., & Sı̂ntămărian, A., 2003) Let (X, d) be a metric space and T1,T2 : X → P(X) be
two multi-valued operators. We suppose that:

(i) Ti is a ci-MWP operator, for i ∈ {1, 2}, and

(ii) there exists η > 0 such that H(T1x,T2x) ≤ η, for all x ∈ X.

Then H(FT1 , FT2 ) ≤ ηmax{c1, c2}.
We have an immediate Corollaries.

Corollary 3.2 Let (X, d) be a complete metric space and T1,T2 two multi-valued Zamfirescu mappings on X and there
exists η > 0 such that H(T1x,T2x) ≤ η, for all x ∈ X. Then H(FT1 , FT2 ) ≤ ηmax{c1, c2} for certain constants c1 and c2.

Proof: It follows from the fact T1 and T2 are c-MWP operators. �
Let (X, d) be metric space and T1,T2 : X → CB(X) multi-valued mappings. Define the distance d∞(T1,T2) = sup

x∈X

H(T1x,T2x).

Clearly d∞ is a metric on a class of multi-valued mappings.

Corollary 3.3 Let (X, d) be a complete metric space and T1,T2 two multi-valued Zamfirescu mappings on X. Then

H(FT1 , FT2 ) ≤ d∞(T1,T2)
1 − max{α1, α2} for certain constants α1, α2 < 1.

Proof: Since H(T1x,T2x) ≤ d∞(T1,T2) for all x ∈ X, by Theorem 3.1(ii), we have the corollary. �
Corollary 3.4 follows immediately from Corollary 3.3.

Corollary 3.4 Let Tn : X → CB(X) be a sequence of multi-valued Zamfirescu mapping such that supn αn = c < 1 where
αn is a certain constant for Tn . Suppose that Tn → T in the d∞ metric where T ismulti-valued Zamfirescu mapping, then
FTn

→ FT in the Hausdorff metric.
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