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Abstract

The Making the experiment on electromagnetic launcher, the rail supported by the containment and the insulator is mod-
eled as a cantilever beam of finite length sitting on the elastic foundation. The mathematical model and the dynamic
equation of the rail is given in the loading condition, as well as the analytical solution of the equation. The study will
paves the way for mathematic model building and solution of rail gun with uneven pressure.
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1. Introduction

Since 1980, particularly over the past decade, with the development of new technologies, new materials, electromagnetic
launch technology has become a concern around the world. Electromagnetic launch technology is an emerging propulsion
technology, and suitable for big load fired in the short stroke as well as widely used in the military, civilian and industry.
(Li, 2001) However, electromagnetic launch technology is still in the experimental stage in the world. There are many
technical problems still unresolved to electromagnetic gun from the laboratory onto the battlefield.

Figure 1 shows the principle of magnetic rail. When electric current pass through the rails and armature, it cause the
electromagnetic force to promote armature and projectile movement. (Wang, 1995, pp1-124)But the electromagnetic
force is very short-lived. In this paper, we establish the mechanical model of the structure response to the rail caused
instantly by the electromagnetic force. Meanwhile the containment and insulator as elastic foundation, so the rail can be
considered as a cantilever elastic beam to study.

In this paper, the rail is simplified as Timoshenko beams sitting on the elastic foundation. We research the dynamic
response of the rail under the magnetic pressure, and obtain the mathematical model and differential equation, boundary
conditions and initial conditions of the Timoshenko beam under a loading condition. Using the detached variable, the
form solution of equation are obtained, further the complete solution obtained by Lagrange s equation too. It will provide
the theoretical basis of mathematics to guide the design and manufacture of the rail.

2. Mathematic model

Figure 2 show the simplified force model of the rail sitting on elastic foundation, and a seriate electromagnetic pressure
p(x, t) = q[1 − H(x − vt)] on the rail in the course of the armature movement. (Jerome T., 2003) Where H(t) is the unit
step function, and q is the constant.

Bernoulli-Euler beam theory builts on the plane-section assumption and ignores the effects of shear deformation. In1920s,
Timoshenko proposed the amendments theory under the premise of retaining the plane-section assumption, and considered
shear deformation and rotational inertia of cross section. (Zhu, 2003, pp1-9)On the two broad-based displacement of the
beam theory to the shear deformation, we could assume that the displacement of cross-section can be expressed as two
parameters ω and ϕ. (Jerome T., 2005, pp246-250)Considering the issue of plane bending, and ingore the inertial force
when the rail is working, the deflection and the corner of the rail satisfy the following equation

κGA(
∂ϕ(x, t)
∂x

− ∂
2ω(x, t)
∂2x

) + ρA
∂2ω(x, t)
∂2t

+ kω(x, t) = p(x, t) (1)
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κGA(
∂ω(x, t)
∂x

− ϕ(x, t)) + EI
∂2ϕ(x, t)
∂2x

− ρI ∂
2ϕ(x, t)
∂2t

= 0 (2)

Ignoring the rotary inertia ρI ∂
2ϕ(x,t)
∂2t

, these equations can be combined into one higher-order equation on the deflection of
the beam ω(x, t) as follow

EI
∂4ω(x, t)
∂4x

+ ρA
∂2ω(x, t)
∂2x

− EI
ρ

κG

∂4ω(x, t)
∂2t∂2x

+ kω(x, t) = p(x, t) (3)

Here, E is elastic modulus, G is shear modulus, I is the moment of interior of the rail cross sectional, κ is shear correction
coefficient, A is cross sectional of rail, k is the elastic constant of the elastic foundation, ρ is the density of rail material,
and p(x, t) is the intensity of load.

3. The analytical solution of equation

3.1 Using Detached Variable to resolve the General Solution of Equation

Let(Zhu, 2005)
ω(x, t) = θ(x)φ(t) (4)

Substituting (4) into the equation of (3) yields

EI
ω(4)(x)
θ(x)

+ m0
φ(2)(t)
φ(t)

− EI
ρ

κG

θ(2)(x)
θ(x)

+ k = 0 (5)

From (5), we assume

m0
φ(2)(t)
φ(t)

= −λ2(λ > 0) (6)

EI
ω(4)(x)
θ(x)

− EI
ρ

κG

θ(2)(x)
θ(x)

+ k − m0λ
2 = 0 (7)

with β4 =
m0
EI

(λ2 − k
m0

), α2 =
ρ

2κG

and
θ(4)(x) − 2α2θ(2)(x) − β4θ(x) = 0 (8)

Solution of (6) and (8) can be expressed as:(Zhu, 2005)

φ(t) = A cos λt + B sin λt (9)

θ(x) = C1 cosh mx +C2 sinh mx +C3 cosh nx +C4 sinh nx (10)

where m =

√
α2 − √

α4 + β4, n =

√
α2 +

√
α4 + β4

According to the actual situation of bound(Chen, 2004), the boundary condition can be represented by

at x = 0

⎧⎪⎪⎨⎪⎪⎩θ(x) = 0
∂θ(x)
∂x
= 0

and at x = L

⎧⎪⎪⎨⎪⎪⎩ ∂
2θ(x)
∂2 x
= 0

∂3θ(x)
∂3 x
= 0

The solution of the Equation (10) can be expressed by

θi(x) = cosh mix − cosh nix +
n2

i cosh niL − m2
i cosh miL

m2
i

sinh miL − mini sinh niL
(sinh mix − mi

ni

sinh nix) (11)

So

ω(x, t) =
∑

i

θi(x)φi(t) =
∑

i

cosh mix−cosh nix+
n2

i cosh niL − m2
i cosh miL

m2
i

sinh miL − mini sinh niL
(sinh mix−mi

ni

sinh nix)×(Ai cos λit+Bi sin λit)

(12)
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The series ω(x, t) is uniform convergence and itemized differentiable(Zhu, 2006, 6), at t = 0

ω(x, 0) =
∑

i

θi(x)φi(0) =
∑

i

θi(x)Ai = ϕ(x) (13)

∂ω(x, 0)
∂t

=
∑

i

θi(x)
∂φ(0)
∂t
=
∑

i

θi(x)Bi = ψ(x) (14)

The normal modes θi(x) are the orthogonal functions, which should satisfy

∫ L

0
θiθ j =

⎧⎪⎪⎨⎪⎪⎩0, i � j,

1, i = j
(15)

We integrate to (13) and (14) respectively, then substitute (15), so we could determine the constants and from

Ai =

∫ L

0
θi(x)ϕ(x)dx (16)

Bi =
1
λ i

∫ L

0
θi(x)ψ(x)dx (17)

Substituting Ai and Bi into the equation (12), the series solution of equation is obtained. However, Ai and Bi are integral
forms, so the solution are only forms solution of equations.

3.2 Analytical Solution

Under the conditions of integrity constraints, the differential equations of beam can be expressed with the generalized
coordinates. Usually, that is Lagrange s equation as follows

d

dt

⎛⎜⎜⎜⎜⎜⎝∂T∂φi

∂t

⎞⎟⎟⎟⎟⎟⎠ − ∂(T − U)
∂φi

= Qi (18)

Where T is the kinetic energy of the system, and can be expressed as

T =
1
2

∫ L

0
m0(
∂ω

∂t
)2dx =

1
2

∑
i

∑
j

∂φi

∂t

∂φ j

∂t

∫ L

0
m0θiθ jdx (19)

Recall the orthogonal function defined in Equation (17), we can rewrite T as

T =
1
2

∑
i

Mi(
∂φi

∂t
)2 (20)

Where

Mi =

∫ L

0
m0θ

2
i (x)dx (21)

The total potential of the beam U consists of Ub, the strain energy of the beam, and U f , the strain energy of the elastic
foundation, and Ug, the strain energy of the shear deformation(S. Thmoshenko, 1999),

Where Ub =
1
2

∫ L

0 EI( ∂
2ω(x,t)
∂2t

)2dx = 1
2
∑

i EIφ2
i

∫ L

0 θ
(4)(x)θ(x)dx

=
EI

2

∑
i

φ2
i

∫ L

0
(2α2θ(2)(x) + β4θ(x))θ(x)dx =

EI

2m0

∑
i

β4
i Miφ

2
i +

EI

2

∑
i

φ2
i

∫ L

0
2α2[θ(1)(x)]2dx (22)

U f =
1
2

∫ L

0
kω2dx =

k

2

∫ L

0
(
∑

i

θiφi)2dx =
k

2

∑
i

∑
j

φiφ j

∫ L

0
θiθ jdx =

k

2m0
Mi

∑
i

φ2
i (23)

Ug =

∫ L

0

∫ k
2

−k
2

1
2G

[
P

2I
(
h2

4
− y2)]2dxdy +

L2h2

20GI
(qvt)2 (24)
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So, the total potential energy U is obtained as

U = Ub + U f + Ug =
∑

i

Miφ
2
i λ

2
i +

EI

2

∑
i

φ2
i

∫ L

0
2α2[θ(1)(x)]2dx +

P2L2h2

20GI
=

L2h2

20GI
(qvt)2 (25)

For a given virtual displacement δφi, the virtual work done by the electromagnetic force p(x, t) = q[1 − H(x − vt)] can be
expressed as:

∂W =

∫ L

0
p(x, t)δwidx =

∑
i

∂φ1Qi (26)

Where we define Qi as the generalized force, and

Qi =
∫ L

0 p(x, t)θi(x)dx =
∫ L

0 q[1 − H(x − vt)]θi(x)dx =
∫ vt

0 qθi(x)dx

= q[(
1
mi

sinh mivt − 1
ni

sinh nivt) +
n2

i cosh niL − m2
i cosh miL

m2
i

sinh miL − mini sinh niL
× (

1
mi

cosh mivt − mi

n2
i

cosh nivt) − 1
mi

+
mi

n2
i

)] (27)

Substituting T , U, Qi into the Equation (18), the ordinary differential with second order is obtained in terms of φi(t) as
follows

∂2φi

∂2t
+

Miλ
2
i +

1
m0
α2EI

Mi

φi =
Qi(t)
Mi

(28)

Let

η2
i = λ

2
i +
α2EI

m0Mi

(29)

So the equation (30) can be expressed as
∂2φi

∂2t
+ η2

i φi =
Qi(t)
Mi

(30)

Assuming that the initial conditions are as at t = 0

⎧⎪⎪⎨⎪⎪⎩φ(0) = 0
∂φ(0)
∂t

The solution of equation (28) is

φi(t) =
q

Miηi

∫ L

0 ( 1
mi

sinh mivσ − 1
ni

sinh nivσ) + n2
i cosh niL−m2

i cosh miL

m2
i

sinh miL−mini sinh niL
× ( 1

mi
cosh mivσ − mi

n2
i

cosh nivσ) − 1
mi
+ mi

n2
i

)×(sin ηi(t − σ))dσ

=
q

Miηi

(I1 + I2 + I3 + I4 + I5 + I6) (31)

Where

I1 =

∫ L

0

1
mi

sinh mivσ sin ηi(t − σ)dσ =
1
mi

(m2
i v2 + η2

i ) × (ηi sinh mivt − miv sin ηit) (32)

I2 = −
∫ L

0

1
ni

sinh nivσ sin ηi(t − σ)dσ = − 1
ni

(n2
i v2 + η2

i ) × (ηi sinh nivt − niv sin ηit) (33)

I3 =
n2

i cosh niL−m2
i cosh miL

m2
i

sinh miL−mini sinh niL

∫ L

0
1
mi

cosh mivσ sin ηi(t − σ)dσ

=
n2

i cosh niL − m2
i cosh miL

m2
i

sinh miL − mini sinh niL

ηi

mi(m2
i
v2 + η2

i
)
× (cosh mivt − cos ηit) (34)

I4 = − n2
i cosh niL−m2

i cosh miL

m2
i

sinh miL−mini sinh niL

∫ L

0
mi

n2
i

cosh nivσ sin ηi(t − σ)dσ

= − n2
i cosh niL − m2

i cosh miL

m2
i

sinh miL − mini sinh niL

ηimi

n2
i
(m2

i
v2 + η2

i
)
× (cosh nivt − cos ηit) (35)
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I5 = − n2
i cosh niL − m2

i cosh miL

m2
i

sinh miL − mini sinh niL

∫ L

0

1
mi

sin ηi(t − σ)dσ = − n2
i cosh niL − m2

i cosh miL

m2
i

sinh miL − mini sinh niL

1
miηi

× (1 − cos ηit) (36)

I6 =
n2

i cosh niL − m2
i cosh miL

m2
i

sinh miL − mini sinh niL

∫ L

0

mi

n2
i

sin ηi(t − σ)dσ =
n2

i cosh niL − m2
i cosh miL

m2
i

sinh miL − mini sinh niL

mi

n2
i
ηi

× (1 − cos ηit) (37)

The analytical solution can be obtained by substituting (32)-(37) into (31), then substituting (31) into (12). So we obtain
the solution of the equation (3).

4. Numerical example

There are material parameters of rail[10] with E = 120GPa, I = 2.5 × 10−9m4, ρ = 8320kg/m3, G = 47GPa, A =

3 × 10−4m2, K = 2.5 × 107N/m2, L = 1m. Since the beginning speed of the projectile is 1000m/s, movement-time
of the projectile is 0. 01 seconds in the chamber. The curve change of the rail deflection are given only in 0. 4ms
as follow[11][12] Considering the influence of the speed [13] of load, the shear modified coefficient and the time on
the deflection, Figure 3 and Figure 4 show that the deflection change dramatically in 0. 2 milliseconds, follow slowly.
Figure4 illustrates the shear modified coefficient make a full impact on the deflections, so we can not overlook the shear
deformation of the rail.

5. Conclusion

(1) The rail is a cantilever beam sitting on the elastic fountion. So we establish the mathematical model, and consider the
shear deformation of the beam.
(2) Using the detached variable and Lagrange equation of generalized coordinate, the analytical solution of governing
equation is deduced.
(3) Making use of the Matlab software, we analysis the impact of the load speed and shear modified coefficient on dynamic
response of the rail which is is more significant. The shear modified coefficient is the greater, deformation of the beam is
the more obvious. The effect of the shear to rail can’t be ignored.
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