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Abstract

In this paper the Bargmann space is denoted by F. This space’s roots can be found in mathematical problem of relativistic
physics or in quantum optics. In physics the Bargmann space contains the canonical coherent states, so it is the main
tool for studying the bosonic coherent state theory of radiation field and for other application .This paper deals with the
unilateral backward shift operator T on a Bargmann space F. We provide a sufficient condition for an unbounded operator
to be non-wandering operator, and then apply the condition to give a necessary and sufficient condition in order that T be
a non-wandering operator.
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1. Introduction

It is well known that linear operators in finite-dimensional linear spaces can’t be chaotic but the nonlinear operator may be.
Only in infinite-dimensional linear spaces can linear operators have chaotic properties. This has attracted widely attention
(Godefroy G, 1991; Lixin Tian, 2005; Jiangbo Zhou, 2001; Shaoguang Shi, 2006; Lixin Tian, 2006). Lixin Tian and
other researchers introduced non-wandering operators in infinite-dimensional Banach space, which are the generalization
of Axiom A dynamic system but different from it. They are new linear chaotic operators and relative to hypercyclic
operators, but different from them (Lixin Tian, 2005). In recent years, Jiangbo Zhou discussed the hereditayily hypercyclic
decomposition of non-wandering operators in infinite dimensional Frechet space (Jiangbo Zhou, 2001); Shaoguang Shi
obtained non-wandering operator sequences on Banach space (Shaoguang Shi, 2006) ; Lihong Ren studied n-multiple
non-wandering operator (Lixin Tian, 2006); Minggang Wang studied the pseudo orbit tracing property of invertible non-
wandering operator (Lixin Tian, 2007) and Non-wandering Property of Differentiation Operator(Minggang Wang, 2008).

In this paper the Bargmann space is denoted by F . This space have been studied by many authors(I.E. Segal, 1963; J.R.
Klauder, 1968; J.R. Klauder, 1985; H.Emamirad, 1997). Bargmann space’s roots can be found in mathematical problem of
relativistic physics (I.E. Segal, 1963) or in quantum optics (J.R. Klauder, 1968). In physics the Bargmann space contains
the canonical coherent states, so it is the main tool for studying the bosonic coherent state theory of radiation field (J.R.
Klauder, 1985) and for other application (H.Emamirad, 1997).

In finite-dimensional separable Banach space, for the bounded linear operators, Lixin Tian and other researchers have
given the definition of non-wandering operator (Lixin Tian, 2005). However, this definition is restricted for the bounded
linear operators. In this paper, we consider the non-wandering property of the unbounded operators. Let Tbe an un-
bounded operator on a separable infinite dimensional Banach space X. It may happen that a vector xis in the domain of T ,
but T xfails to be in the domain of T . For this reason, in order to consider the non-wandering property of the unbounded
operator, we should firstly suppose that if x in the domain of T then for every integer n ≥ 1the vector T nxis in the domain
of T .

On the basis of the above research, in this paper, we first provide a sufficient condition for an unbounded operator to be
non-wandering operator(see Theorem 1), and then apply the condition to give a necessary and sufficient condition in order
that T be a non-wandering operator. (see Theorem 2)

2. Basic notation and definitions

Definition 2.1(Lixin Tian, 2005) Let(X, ‖·‖) be an infinite dimensional separable Banachspace. Suppose T ∈ L (X)

(1) Assume that there exists a closed subspace E ⊂ X, which has hyperbolic structure:E = Eu ⊕ Es,T Eu = Eu,T Es =

Es,where Eu, Esare closed subspaces. In addition, there exists constants τ (0 < τ < 1) and C > 0, such that for any
ξ ∈ Eu, k ∈ N,

∥∥∥T kξ
∥∥∥ ≥ Cτ−k ‖ξ‖, and for any η ∈ Es, k ∈ N,

∥∥∥T kη
∥∥∥ ≤ Cτk ‖η‖ ;
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(2) Assume also that Per (T ) is dense inE. Then T is said to be a non-wandering operator relative toE.

definition 2.2 Suppose T ∈ L (X) and {ei}∞1 is a basis inX, then T is called a unilateral backward shift operator relative to
{ei}∞1 if Ten = en−1 (n > 1) and Te1 = 0.

3. Main results

Theorem 1 Let(X, ‖·‖) be an infinite dimensional separable Banachspace.T is an unbounded operator, if for ∀n ≥ 1, T nis
the closed operator and T satisfy (1) there exists a closed subspace E ⊂ X, which has hyperbolic structure; (2) Per (T ) is
dense inE. Then T is a non-wandering operator relative toE.

Proof By the Closed Graph Theorem, we can easily obtain this result.

Remark In fact, from Theorem 1, if an unbounded operator T has non-wandering property, then T need to satisfy: (1)
T nis the closed operator, ∀n ≥ 1 ; (2) there exists a closed subspace E ⊂ X, which has hyperbolic structure relative to T ;
(3) Per (T ) = E

In the following, we will apply Theorem 1 to the unilateral backward shift operator T on a Bargmann space F.

3.1 Non-wandering operator in Bargmann space

Let {wn}n∈N be an arbitrary weight sequence, we define the iterated unbounded back-ward shift T nin Bargmann space by

T n

⎛⎜⎜⎜⎜⎜⎜⎝∑
k≥0

Ck

xk

√
k!

⎞⎟⎟⎟⎟⎟⎟⎠ =∑
k≥0

⎛⎜⎜⎜⎜⎜⎜⎝n+k−1∏
j=k

w j

⎞⎟⎟⎟⎟⎟⎟⎠Cn+k

xk

√
k!

with its domain in F, and we define

D (T n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ f (x) =
∑
k≥0

Ck

xk

√
k!

∣∣∣∣∣∣∣∣∣
∑
k≥0

|Ck |2 < ∞;
∑
k≥0

∣∣∣∣∣∣∣∣
m+k−1∏

j=k

w j

∣∣∣∣∣∣∣∣
2

|Ck+m|2 < ∞
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

for all m ∈ N, 1 ≤ m ≤ n.

Theorem 2 A linear unbounded backward shift operator T :F → F is non-wandering operator if the positive series

∞∑
n=0

n−1∏
j=0

1
|wj|2

converges.

Proof From Theorem 1, we need three steps to proof the theorem:

Firstly, we proof that for ∀n ∈ N, T nis closed.

By the definition, we choose
{
f j

}
∈ D (T n) ,since F is a Hilber space, then

{
f j

}
→ f0 in F, so f j (x) =

∑
k≥0

Ck, j
xk√
k!

→
f0 (x) =

∑
k≥0

C0
k

xk√
k!

j → ∞

⇒
⎛⎜⎜⎜⎜⎜⎜⎝n+k−1∏

j=k

w j

⎞⎟⎟⎟⎟⎟⎟⎠Cn+k, j →
⎛⎜⎜⎜⎜⎜⎜⎝n+k−1∏

j=k

w j

⎞⎟⎟⎟⎟⎟⎟⎠C0
n+k,

Let T n f j → g0, then g0 (x) =
∑
k≥0
ξ0

k
xk√
k!

We can conclude that

ξ0k =

⎛⎜⎜⎜⎜⎜⎜⎝n+k−1∏
j=k

w j

⎞⎟⎟⎟⎟⎟⎟⎠C0
n+k

This proves that f0 ∈ D (T n) and T n f0 = g0.

(2)Since the positive series
∞∑

n=0

n−1∏
j=0

1
|w j|2 converges, then

n−1∏
j=0

1
|wj|2 → 0, that is,

n∏
j=0

wj → ∞ n → ∞

We choose wjis an increasing sequence.
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For ∀λ ∈ C , let fλ (x) =
∑
k≥0

(
k−1∏
j=0

λ
w j

)
xk√
k!

, then for ∀0 < υ < 1 and n ∈ Nlarge enough, we have|λ| ≤ υ |wn|, so

∑
k≥0

k−1∏
j=0

∣∣∣∣∣∣ λwj

∣∣∣∣∣∣2 = n∑
k=0

k−1∏
j=0

∣∣∣∣∣∣ λwj

∣∣∣∣∣∣2 + ∞∑
k=n+1

k−1∏
j=0

∣∣∣∣∣∣ λwj

∣∣∣∣∣∣
2

≤
n∑

k=0

k−1∏
j=0

∣∣∣∣∣∣ λwj

∣∣∣∣∣∣2 +
(

1
1 − υ

) n∏
j=0

∣∣∣∣∣∣ λwj

∣∣∣∣∣∣2 < ∞

Thus we get fλ (x) ∈ F and

T fλ (x) =
∑
k≥0

wk

⎛⎜⎜⎜⎜⎜⎜⎝ k∏
j=0

λ

wj

⎞⎟⎟⎟⎟⎟⎟⎠ xk

√
k!
= λ

∑
k≥0

⎛⎜⎜⎜⎜⎜⎜⎝ k−1∏
j=0

λ

wj

⎞⎟⎟⎟⎟⎟⎟⎠ xk

√
k!
= λ fλ (x)

Therefore, fλ (x)is the eigenvector corresponding to the eigenvalue λ, furthermore, by the arbitrarily of λ, we can construct
the sets:

V1 = {λ : |λ| > 1 λ ∈ δP (T )}
V2 = {λ : 0 < |λ| < 1 λ ∈ δP (T )} , where δp (T ) is the spectrum of T .

Let Eu = span { fλ; λ ∈ V1} for ∀ξ ∈ Eu , then ξ =
∞∑

i=1
αi fλi

=
∞∑

i=1
αi

∑
k≥0

(
k−1∏
j=0

λi

w j

)
xk√
k!

and for ∀k ∈ N, we have

∥∥∥T k (ξ)
∥∥∥ = ∥∥∥∥∥∥∥T k

⎛⎜⎜⎜⎜⎜⎝ ∞∑
i=1

αi fλi

⎞⎟⎟⎟⎟⎟⎠
∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
∞∑

i=1

αiλ
k
i

∑
k≥0

⎛⎜⎜⎜⎜⎜⎜⎝ k−1∏
j=0

λi

w j

⎞⎟⎟⎟⎟⎟⎟⎠ xk

√
k!

∥∥∥∥∥∥∥∥
≥ μk

∣∣∣∣∣∣∣∣
∞∑

i=1

∑
k≥0

⎛⎜⎜⎜⎜⎜⎜⎝ k−1∏
j=0

λi

w j

⎞⎟⎟⎟⎟⎟⎟⎠ xk

√
k!

∣∣∣∣∣∣∣∣ = μk |ξ| (1)

where μ = min {|λi| λi ∈ V1} > 1. Let τ = 1
μ
, then we can easily get 0 < τ < 1. So by (1) we have

∥∥∥T k (ξ)
∥∥∥ =∥∥∥∥∥∥T k

( ∞∑
i=1
αi fλi

)∥∥∥∥∥∥ =
∥∥∥∥∥∥ ∞∑

i=1
αiλ

k
i fλi

∥∥∥∥∥∥ ≥ τ−k |ξ|.

Next, we will prove Eu is the invariant subspace of T .

Since for ∀ξ ∈ Eu , then ξ =
∞∑

i=1
αi fλi

= T
∞∑

i=1

αi

λi
fλi
= T Eu ⇒ ξ ∈ T Eu, so Eu ⊂ T Eu. In the other hand, for ∀η ∈ T Eu, then

there exists ϕ ∈ Eu ⇒ ϕ = ∞∑
i=1
βi fλi

, such that, η = Tϕ =
∞∑

i=1
λiβi fλi

∈ Eu. So we can get T Eu ⊂ Eu, therefore, T Eu = Eu.

Similarly, let Es = span { fλ; λ ∈ V2} , then T Es = Es, for ∀η ∈ Es,we have η =
∞∑

i=1
βi fλi

=
∞∑

i=1
βi

∑
k≥0

(
k−1∏
j=0

λ
wj

)
xk√
k!

, so for

∀k ∈ N ,
∥∥∥T k (η)

∥∥∥ = ∥∥∥∥∥∥T k

( ∞∑
i=1
βi fλi

)∥∥∥∥∥∥ =
∥∥∥∥∥∥ ∞∑

i=1
βiλ

k
i fλi

∥∥∥∥∥∥ ≤ τk |η|where 0 < τ = max {|λi| λi ∈ V2} < 1and T Es = Es

Let E = Eu ⊕ Es, then we can easily get E has hyperbolic structure.

(3) From the definition, we have T n

(∑
k≥0

Ck
xk√
k!

)
=

∑
k≥0

(
n+k−1∏

j=k
w j

)
Cn+k

xk√
k!

, if T has the N−periodic point, then we have(
n+k−1∏

j=k
w j

)
Cn+k = Ck,∀k ≥ 0, so for ∀l = 0, 1 · · · n − 1, k ≥ 1, we have Ckn+l =

(
kn+l−1∏

j=l

1
w j

)
Cl, thus for ∀υ ≥ 0 n ≥ υ ,n ∈

N, we can construct

gv,n (x) =
xv

√
v!
+

∞∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎝kn+v−1∏
j=v

1
wj

⎞⎟⎟⎟⎟⎟⎟⎠ xkn+v

√
(kn + v)!

.

Since the series
∞∑

n=0

n−1∏
j=0

1
|w j|2 converges, then we have

∞∑
k=1

kn+v−1∏
j=v

1
w j
< ∞, so, we get gv,n ∈ F and
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T Ngv,n (x) = T N

⎛⎜⎜⎜⎜⎜⎜⎝ xv

√
v!
+

∞∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎝kn+v−1∏
j=v

1
wj

⎞⎟⎟⎟⎟⎟⎟⎠ xkn+v

√
(kn + v)!

⎞⎟⎟⎟⎟⎟⎟⎠ = xv

√
v!
+

∞∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎝kn+v−1∏
j=v

1
wj

⎞⎟⎟⎟⎟⎟⎟⎠ xkn+v

√
(kn + v)!

.

Thus gv,n (x) is the N−periodic point of T .

Let E0 = span
{
gv,n (x)

}
, in the following we will prove that E0 is dense on F.

Since for ∀ f (x) ∈ F, let f (x) =
m∑

v=0
Cv

xv√
v!

, by the definition of Bargmann space, we have

|Cv

v−1∏
j=0

wj| < ∞.

Suppose |Cv

∏v−1
j=0 wj| < 1 , then there exists g(x) ∈ E0 and

g(x) =
m∑

v=0

Cvgv,n (x)

so that

‖g − f ‖ = ‖
m∑

v=0

Cv(gv,n (x) − xv

√
v!

)‖ = ‖
m∑

v=0

(Cv

v−1∏
j=0

wj)
∞∑

k=1

(
kn+v−1∏

j=0

1
wj

xkv + n√
(kn + v)!

‖

≤
m∑

v=0

‖
∞∑

k=1

(
kn+v−1∏

j=0

1
wj

xkv + n√
(kn + v)!

‖ (2)

Furthermore, from the series
∞∑

n=0

n−1∏
j=0

1
|wj|2 converges, the there exists n ≥ m such that for ∀ε > 0 , we have

∑
k≥n+1

(
k∏

j=0

1
wj

εk

xk

√
k!
‖ < ε

m + 1

where εk taking values 0 or 1 , so we can get when n ≥ m , then (2) < ε.

Therefore, E0 is dense on F.

Corollary 1 The operator of differentiation D : f → f
′

defined on

δ =
{
f ∈ F

∣∣∣ f ′ ∈ F
}

is the non-wandering operator on F.

Proof Since xk√
k!

is an orthonormal basis in F, then we have

D

(
xk

√
k!

)
= k · xk−1

√
k!
=

√
k

xk−1

√
(k − 1)!

= wk−1
xk−1

√
(k − 1)!

wherewk =
√

k + 1,

So, we can get the operator of differentiation D : f → f
′

is the weighted backward shift operator, therefore,

D

⎛⎜⎜⎜⎜⎜⎜⎝∑
k≥0

Ck

xk

√
k!

⎞⎟⎟⎟⎟⎟⎟⎠ =∑
k≥0

wkCk+1
xk

√
k!
, wk =

√
k + 1

so the series
∞∑

n=0

n−1∏
j=0

1
|wj|2 =

∞∑
n=0

n−1∏
k=0

1
k + 1

converges in F, thus by the Theorem 2, we have D is the non-wandering operator on F.
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4. Conclusion

In this paper, we first extent the non-wandering operator theory to the unbounded operator. We provide a sufficient
condition for an unbounded operator to be non-wandering operator and get differentiation operator on the Bargmann
space be a non-wandering operator. Therefore, the non-wandering operator theory has been further improved, but also
enriched the research of the chaotic operator and the Hypercyclic operator.
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