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Abstract

A new machine learning method so called Relevant Vector Machine (RVM) is an efficiently learning technique for classi-
fication and regression problems, including financial time series forecasting. One of the main advantages is that the model
is treated by Bayesian approach and its functional form is identical to a powerful prediction tool Support Vector Machine.
In this paper, we propose a new recurrent algorithm of the relevant vector machine to predict GARCH (1,1) based volatil-
ity of Shanghai composite index. The recurrent support vector machine, recurrent least square support vector machine and
normal GARCH (1,1) models are also employed to make a comparison with the proposed model. Our empirical results
show that the proposed approach generates superior forecasting performance.
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1. Introduction

Volatility is important for pricing derivatives, calculating measure of risk and hedging. A large number of time series
based volatility models have been developed since the introduction of ARCH model of Engle (1982). See Poon and
Granger (2003) for review and references. Ability of predicting volatility accurately is a crucial job for stock market
researchers and practitioners. Recently, machine learning approaches have been introduced to predict volatility based on
various models of GARCH family since they are expected to generate high accuracy of prediction. The empirical results
also show that using machine learning approaches combined with GARCH models yield better results. For instance
the improved results of forecasting performances by some machine learning techniques can be found in Donaldson and
Kamstra (1997) for Neural Network based GJR model, Perez-Cruz et al (2003): SVM based GARCH, Tang et al (2008,
2009) for SVM based GARCH with wavelet and spline wavelet kernels, and Bildirici and Ersin (2009) for Neural Network
based on nine different models of GARCH family.

Chen et al (2008b) applied SVM to model and forecast GARCH(1,1) volatility based on the concept of recurrent SVM
in Chen et al (2008a), following from the recurrent algorithm of neural network and least square support vector machine
of Suykens and Vandewalle (2000). The model was shown to be a dynamic process and capture longer memory of past
information than the feed-forward SVM which is just static.

Based on the recurrent SVM result of Chen et al (2008a, 2008b), in this paper we propose the recurrent algorithm for
relevant vector machine (RRVM). The RVM, an alternative method of SVM, is a probabilistic model introduced by
Tipping in 2000. The RVM has recently become a powerful tool for prediction problems. One of the main advantages
is that the RVM has functional form identical to SVM and hence it enjoys various benefits of SVM based techniques:
generalization and sparsity. On the other hand, RVM avoids some disadvantages faced by SVM such as the requirement
to obtain optimal value of regularized parameter, C, and epsilon tube; SVM needs to use Mercer’s kernel function and
it can generate point prediction but not distributional prediction in RVM (Tipping, 2001). Our goal here is to compare
the proposed recurrent RVM model with other competitive approaches including recurrent SVM, recurrent LSSVM and
normal GARCH(1,1) to forecast volatility of Shanghai composite index. It is important for us to forecast the China stock
market volatility more accurately. Recently the potential growth of China stock market has attracted foreign and local
investors. Annual rate of return for the Shanghai composite index was 81.7% during 2006 and the rapid growth of the rate
of return has led to the increasing volatility of this emerging China stock market.
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The remainder of the paper is organized as follow. Next section summarizes LSSVM and RVM formulations as well as
their recurrent algorithms. Section 3 deals with empirical analysis. The last section of the paper is for conclusion.

2. Literature review

2.1 Least Square Support Vector Machines

LSSVM approximates the data {xi, yi} of the form yi = f (xi) + ei for i = 1, · · · , n by a nonlinear function defined as

yi = wTφ(xi) + b + ei (1)

The model parameter w is called weight and ei is random noise. Output yi ∈ R can be referred as volatility, while the input
vector xi ∈ Rn may consist of lagged volatility. Mapping φ(·) : Rn → F is nonlinear function that maps the input vector x

into a higher dimensional feature space. Estimating the function by the LSSVM is involved in the optimization problem
formulated as, Suykens (2000),

objective function

min
w,b,e

J(w, e) =
1
2

wT w +
1
2

y

n∑
i=1

e2
i

subject to the constraints
ei = yi − (wTφ(xi) + b) i = 1, · · · , n

Here the equality constraint is used in LSSVM instead of the inequality constraint in SVM. Lagrangian can be defined to
solve the above minimization problem as

L(w, b, e;α) = J(w, e) −
∑
i=1n

αi(wTφ(xi) + b + ei − yi)

where αi denotes Lagrange multipliers (also called support values). From the Karush-Kuhn-Tucker theory, a system of
equations is obtained as the following⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w
= 0 → w =

n∑
i=1
αiφ(xi)

∂L
∂b
= 0 → n∑

i=1
αi = 0

∂L
∂ei
= 0 → αi = yiei i = 1, · · · , n

∂L
∂αi
= 0 → b = yi − wTφ(xi) − ei, i = 1, · · · , n.

(2)

By eliminating w and ei, the linear system is written as follow

[
0
1v

| 1T
v

Ω + D−1
γ

][
b

α
] = [

0
y

] (3)

where y = [y1, · · · , yn], 1v = [1, · · · , 1], e = [e1, · · · , en], α = [α1, · · · , αn], Dγ = diag([γ1, · · · , γn]).,

Matrix Ωi j = φ(xi)Tφ(x j) = K(xi, x j) for i, j = 1, · · · , n satisfies Mercer’s condition. By solving (3), the LS-SVM model
for estimating function is shown to be

f (x) = wTφ(x) + b =

n∑
i=1

αiK(x, xi) + b. (4)

In this case the complexity of computing the nonlinear mapping φ is avoided. Gaussian kernel or RBF (radial basis
function) K(x1, x2) = exp(− 1

σ2 ‖x1 − x2‖2) is used in our experiment as it tends to give a good performance under general
smoothing assumptions.

2.2 Relevance Vector Machines

For a given training data {xi, ti}ni=1, the goal is to seek a function indexed by parameter w:

y(x; w) =
m∑

j=1

ω jφ j(x) = wTφ(x). (5)

where φ(x) = (φ1(x), · · · , φm(x))T is nonlinear basis function and w = (ω1, · · · , ωm)T is weight vector.
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Note that, the function in (5) is identical to SVM based function and it describes the mapping relation between the input
vector x and target t with ti = 〈xi,w〉 + εi, where ε1, · · · , εn are assumed to be independent Gaussian distribution with
mean zero and variance σ2.

In notation, p(ε) =
n∏

i=1
N(ε/0, σ2).

Thus the likelihood of the complete dataset can be written as

p(t/w, σ2) = 2πσ2− n
2 exp{− 1

2σ2 ‖t − Φw‖2} (6)

where t = (t1, · · · , tn)T , w = (ω1, · · · , ωm)T and Φ is (n × m) design matrix with Φ = [φ(x1), · · · , φ(xn)]T and φ(xi) =
[1, K(xi, x1), · · · , K(xi, xn)]T .

Maximum likelihood estimation of w and σ2 from (6) will generally lead to overfitting problem. To avoid this advantage,
zero mean Gaussian prior over the weights is introduced,

p(w/α) =
n∏

i=1

N(wi/o, α
−1
i ) (7)

where αi is the ith element of vector hyperparameter α assigned to each model parameter wi.

By Bayes rule,

p(w, α, σ2/t) =
p(t/w, α, σ2)p(w, α, σ2)

p(t)
(8)

But p(w, α, σ2/t) = p(w/t, α, σ2)p(α, σ2/t) and p(w/t, α, σ2) = p(t/w,σ2)p(w/α)
p(t/α,σ2) is Gaussian distribution N(μ,

∑
) with co-

variance ∑
= (σ−2ΦTΦ + A)−1 (9)

and mean
μ = σ−1

∑
ΦT t (10)

where
A = diag(α0, α1, · · · , αn).

To evaluate μ and
∑

, we need to obtain α and σ2 which maximize

p(α, σ2/t) ∝ p(t/α, σ2)p(α)p(σ2)

By using uniform prior, the problem is to maximize the term p(t/α, σ2) with respect to α and σ2: . The hyperparameters
are estimated by iterative algorithm and can be obtained as αnew

i
=
γi

μ2
i

and (σ2)new =
‖t−Φμ‖2

n−∑
i
γi

where μi is ith posterior mean

weight from (10) and γi ≡ 1 − αi

∑
ii ∈ [0, 1] can be interpreted as a measure of well determinedness of each parameter

wi. Whereas
∑

ii is ith diagonal element of the posterior weight covariance in (9).

During the re-estimation, many αi tend to infinity such that w will have a few nonzero weights that will be considered as
relevance vectors and analogous to the support vectors of SVM. Thus the resulting model enjoys the properties of SVM
such as sparsity and generalization.

The predictive distribution for a new input x∗ is p(t∗/t, αMP. σ
2
MP) =

∫
p(t∗/w, σ2

MP)p(w/t, αMP, σ
2
MP)dw = N(t∗/y∗, σ2∗)

which is easily computed due to the fact that both integrated terms are Gaussian, implying a Gaussian form too with mean
y∗ = μTφ(x∗) and variance σ2∗ = σ2

MP + φ(x∗)T ∑ φ(x∗). So the predictive mean is y(x∗; μ) and the predictive variance
composes of two variance components.

2.3 Recurrent Relevance Vector Machines

The recurrent input/output model which is nonlinear output error model is defined as

ỹt = f (ỹt−1, ỹt−2, · · · , ỹt−p, ut−1, ut−2, · · · , ut−p) (11)

where ỹt denotes the estimated output and f is a smooth nonlinear mapping. ut ∈ R is input of any deterministic nonlinear
dynamic system and yt ∈ R is output.

The corresponding feed-forward input/output model is represented as

ỹt = f (yt−1, yt−2, · · · , yt−p, ut−1, ut−2, · · · , ut−p) (12)
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The models in (11) and (12) can be trained by algorithm of SVM and LSSVM (Suykens and Vandewalle 2000) and hence
they can be further trained by the algorithm of RVM since the RVM is of identical form to SVM (Tipping, 2001). Thus we
denote RRVM, RSVM and RLSSVM to be the recurrent vector machines obtained by fitting model in (11) by algorithm
of RVM, SVM and LSSVM respectively.

The parameterization of f in (12) by the RVM (or LSSVM) is static because there is no recursion in the variable ỹt.
Hence the recurrent models act as nonlinear dynamic process and capture longer memory of past information than the
feed-forward models and the parametric models. See (Suykens and Vandewalle, 2000; and Chen et al, 2008a) for detailed
discussion on Dynamic system acted by the recurrent LSSVM and recurrent SVM respectively. For simplicity, ARMA
model is illustrated as follow:

Linear ARMA(1,1) model estimated by MLE (Maximum likelihood estimation) is described as

yt = μ + φyt−1 + et + θet−1 (13)

The nonlinear ARMA(1,1) model estimated by the RRVM (or RLSSVM) can be expressed

yt = f (yt−1, et−1) + et (14)

Then the feed-forward RVM (or LSSVM) corresponding to nonlinear AR(1) is written as

yt = f (yt−1) + et (15)

Now we turn to GARCH model which is the volatility modeling for asset return. GARCH(1,1) is the most popular form
for modeling and forecasting the conditional variance of return or volatility, (Hansen & Lunde, 2005). Therefore, we
consider GARCH(1,1) model throughout our paper.

Let Pt be stock price at time. Then yt = 100.(ln Pt − ln Pt−1) denotes the continuously compounded daily returns of the
underlying assets at time t.

AR(1)-GARCH(1,1) is defined as
yt = μ + φ1yt−1 + εt, εt = σtzt (16)

σ2
t = ω + β1σ

2
t−1 + α1ε

2
t−1 (17)

Note that conditional variance of εt is given by σ2
t = E[ε2

t /Ft−1] = ε̂2
t/t−1. By Bollerslev (1986), the conditional variance

of ε2
t is the ARMA process given as

ε2
t = ω + (α1 + β1)ε2

t−1 + wt − βwt−1 (18)

by letting wt = ε
2
t − ε̂2

t/t−1 = ε
2
t − σ2

t .

Here wt can be shown to be white noise (or error). The parameters are assumed to be positive to guarantee positive
conditional variance: ω > 0 α1 ≥ 0, β1 ≥ 0 and the stationary condition of the covariance requires α1 + β1 < 0. {zt} is
a sequence of (iid) independent identically distributed random variables with mean 0 and variance 1. Its one step ahead
forecast is σ2

t+1 = ω + α1 + ε
2
t + β1σ

2
t .

From (16) and (18), the corresponding nonlinear GARCH model can be formulated as the following:

yt = h(yt−1) + εt

ε2
t = f (ε2

t−1, wt−1) + wt

where the functions h(.) and f(.) are estimated by feed-forward RVM and by recurrent RVM respectively. Below is the
illustration of recurrent algorithm of RVM (or LSSVM) for modeling and forecasting GARCH model.

Step 1: Fit RVM (or LSSVM) to the return yt as AR(1) format in the full sample period N,

yt = h(yt−1) + εt for t = 1, · · · , N to obtain residuals ε1, ε2, · · · , εN .

Step 2: recursively run the recurrent RVM (or LSSVM) for squared residuals

ε2
1, · · · , ε2

N1
(N1 < N) with updating, ε2

t = f (ε2
t−1, wt−1) + wt

to obtain n one-step-ahead forecasted volatilities:

1st sample: t = 1, · · · , N1 → ε̂2
N1+1,

2nd sample: t = 1, · · · , N1 + 1 → ε̂2
N1+1+1,

· · · · · ·
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nth sample: t = 1, · · · , N1 + n − 1 → ε̂2
N1+n.

For each of n estimations, set the residuals of wt−1 to be zero at the first time in the Step 2, and then run the feed-forward
RVM (or LSSVM) to obtain estimated residuals. Using the estimated residuals as new wt−1 inputs, this process can be
carried out repeatedly until the stopping criterion is satisfied. Unlike the parametric case, by using the proposed approach
we don’t need any assumption on the model parameters for stationary condition.

3. Empirical results

3.1 Data description

We examine Shanghai Composite Index (SSECI) of China Stock Market in the experiment. The stock index price is
collected from Yahoo Finance and is transformed into log return before making analysis. The whole sample of size 1564,
spanned from 01 Jan. 2001 to 29 Dec. 2006, is used in the experiment to check the predictive capability and reliability
of the proposed models. The sub-sample of size 1305, from 04 Jan. 2001 to 31 Dec. 2005, is taken for the in-sample
estimation and full one year of 260 points spanned from 02 Jan. to 29 Dec. 2006 is reserved for out of sample forecasting.
Table 1 displays the descriptive statistics of the return series of SSECI. The mean of the return is close to zero. The series
is positive skewed though the skewness coefficient is not so large in magnitude. The kurtosis value (5.6896) indicates
the return has excess kurtosis than the normal value, 3. The large value of Jarque Bera statistic also claims that the
return is non-normally distributed. Finally, Ljung Box test of squared return strongly rejects the hypothesis of no ARCH
effect. Based on the diagnosis, we can conclude that the return series exhibit volatility clustering and leptokurtic pattern.
Therefore it is very suitable to model and forecast the return series by GARCH(1,1) model. We will in next subsection fit
this return series by normal GARCH and nonlinear GARCH models.

3.2 In sample estimation or training results

We first fit the return series to equations (16) and (17) to obtain GARCH(1,1) model. The estimation result obtained from
Maximum likelihood estimation on GARCH(1,1) with normal innovation is given below:

σ2
t = 0.1818 + 0.7367σ2

t−1 + 0.1648ε2
t−1

[0.028] [0.025] [0.015]

The stationary condition holds and the MLE estimates with their corresponding standard errors (0.028, 0.025, 0.015) are
all significant. These imply that the model is appropriate and can be further applied for out-of sample forecasting.

Now we turn to consider our proposed model recurrent relevance vector machine, recurrent support vector machine and
recurrent least square support vector machine. The proposed models must be trained using the above algorithm stated in
Step 1 and Step 2. Table 2, 3, 4 illustrate the training results by RRVM, RLSSVM and RSVM respectively. From the
Table 2 the RRVM produces 0.46203 as smallest training error and 0.50961, the variance, as well as 3.7291 to be the
optimal value of RBF kernel parameter. The RVM requires 136 relevant vectors with the same number of alphas while
training. Figure 1 plots the values of 136 alphas (left) and the values of 136 relevant vectors (right).

By considering Table 3, RLSSVM needs 108.0387 as the optimal value of the regularized parameter and 6.55708 as the
RBF kernel parameter while training. But it just generates 0.2744 as the smallest training error. The value of 8.1306 is
the constant term of the estimated function by LSSVM.

Finally, Table 4 visualizes the training process of RSVM. Gridsearch technique is used to select the optimal values of
cost, C, and RBF kernel parameter, γ which are in the same range [2−5, 25]. The optimal parameters are obtained to be
(C, γ) = (25, 2−4) which corresponds to the smallest training error 1.425. Here the epsilon tube is taken to be 0.005.

3.3 Out of sample forecasting

The following evaluation metrics are used to measure the performance and reliability of the proposed models while they
are applied to forecast Shanghai composite index volatility: Mean Absolute Deviation (MAD), and Normalized Mean
Square Error (NMSE), and Hit Rate which are defined as the following

MAD =
1
n′

n∑
t=1

|at − pt |, NMS E =
1

s2n′

n′∑
t=1

(at − pt)2 where s2 =
1

n′ − 1

n′∑
t=1

(at − at)2

Hit Rate =
1
n′

n′∑
t=1

dt where dt =

{
1 (yt − yt−1)(ŷt − ŷt−1)
0 otherwise

Here at = y2
t actual values, pt = σ̂

2
t forecasted volatility and n′ is out of sample size.
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Also linear regression technique is employed to evaluate the forecasting performance of the volatility models. We simply
regress square return on a constant and the forecasted volatility for out-of-sample time point, t = 1, 2, · · · , n′, y2

t =

c0 + c1σ̂
2
t + et. The square correlation is a measure of forecasting performance.

Table 4 summarizes the forecasting performance based on four measures defined above, MAD, NMSE, R square and
Hit Rate. From the table 4, we can see that recurrent RVM generates smallest values of MAD (1.3422) and NMSE
(0.7179) but largest value of R square (0.6696) and Hit Rate (0.8416), hence outperforms the other models. Whereas
recurrent LSSVM and SVM, they provide better performance than GARCH(1,1) for all cases. Yet, the two models are
still competitive. The recurrent SVM is better than recurrent LSSVM based on MAD and R square only, but in term of
NMSE and Hit Rate, the recurrent LSSVM is better than the recurrent SVM. Figure 2 plots one step ahead forecasts by the
proposed and normal GARCH(1,1) against actual values (upper plot) and the various forecasts by all forecasting models
(lower plot). From the bottom plots we can see that though the RVM approach generates better forecasting performances,
the difference among the other machine learning techniques is not large; that means the forecasting lines by the three
recurrent approaches are almost overlapped.

4. Conclusion

In this paper, we propose recurrent relevance vector machine based on GARCH to forecast volatility of Shanghai compos-
ite index. Other corresponding machine learning approaches including recurrent LSSVM and RSVM, as well as normal
GARCH(1,1) are employed to make a comparison with the proposed model. The experimental results suggest that the
recurrent RVM yields better predictive capability than the other models since it is a dynamic process and can capture
longer memory of past information compactly. Furthermore, the RVM takes more advantages than SVM and LSSVM.
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Table 1. Descriptive statistics of return series

Sample Min Max Mean Variance Skewness Kurtosis JB Q2(10)
1564 -6.543 9.4007 0.0163 1.6977 0.6377 5.6896 2224 63.715

Table 2. Training result from Recurrent RVM

Smallest Training Value of Variance Number of Optimal value of
error Relevant vectors RBF Kernel parameter

Recurrent RVM 0.46203 0.50961 136 3.7291

Table 3. Training result from Recurrent LSSVM

Smallest Optimal value of the Optimal value of The constant term of the
Training error regularized parameter RBF Kernel parameter LSSVM function “ b”

Recurrent LSSVM 0.2744 108.0387 6.55708 8.1306

Table 4. Training result from Recurrent SVM

Table 5. Forecasting performance based on evaluation metrics by different models

Models MAD NMSE R square Hit Rate
GARCH(1,1) 1.7446 0.7297 0.4928 0.7760

Recurrent SVM 1.3447 0.7281 0.6629 0.8223
Recurrent LSSVM 1.3636 0.7202 0.6646 0.8301

Recurrent RVM 1.3422 0.7179 0.6696 0.8416
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Figure 1. Plot of Alpha (left) and Relevance Vectors (right) obtained from Training RRVM

Note: The horizontal line shows the number of alphas (left figure) and the number of relevance vectors (right figure)
while the vertical axis indicates the values of the alpha and relevance vectors.

Figure 2. Plots of Volatility Forecasts by GARCH and Recurrent RVM against Actual values

Note: The small dot line is actual value. The dash line is the forecast values by GARCH model and the thick line is the
forecasts by recurrent relevance vector machine.
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Figure 3. Plots of Volatility Forecasts by GARCH against Recurrent RVM, Recurrent LSSVM, and Recurrent SVM

Note: the Recurrent Models (dash lines) exhibit forecasting points which are closer to the actual values than the
parametric GARCH model (dot line). The three recurrent models behave almost the same.
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