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Abstract

Let P(n) = F2[x1, . . . , xn] be the polynomial algebra in n variables xi, of degree one, over the field F2 of two elements.
The mod-2 Steenrod algebra A acts on P(n) according to well known rules. A major problem in algebraic topology is
that of determining A+P(n), the image of the action of the positively graded part of A. We are interested in the related
problem of determining a basis for the quotient vector space Q(n) = P(n)/A+P(n). Both P(n) =

⊕
d≥0 Pd(n) and Q(n)

are graded, where Pd(n) denotes the set of homogeneous polynomials of degree d. Q(n) has been explicitly calculated for
n = 1, 2, 3, 4 but problems remain for n ≥ 5. In this note we show that if u = xm1

1 · · · x
mk
k ∈ Pd(k) and v = xe1

1 · · · x
er
r ∈ Pd′(r)

are an admissible monomials, (that is, u and v meet a criterion to be in a certain basis for Q(k) and Q(r) respectively),
then for each permutation σ ∈ S k+r for which σ(i) < σ( j), i < j ≤ k and σ(s) < σ(t), k < s < t ≤ k + r, the monomial
xm1
σ(1) · · · x

mk
σ(k)x

e1
σ(k+1) · · · x

er
σ(k+r) ∈ Pd+d′(k + r) is admissible. As an application we consider a few cases when n = 5.

Keywords: steenrod squares, polynomial algebra, hit problem.

1. 1. Introduction

For n ≥ 1 let P(n) be the mod-2 cohomology group of the n-fold product of RP∞ with itself. Then P(n) is the polynomial
algebra

P(n) = F2[x1, . . . , xn]

in n variables xi, each of degree 1, over the field F2 of two elements. The mod-2 Steenrod algebra A is the graded
associative algebra generated over F2 by symbols S qi for i ≥ 0, called Steenrod squares subject to the Adem relations
(Adem, 1957) and S q0 = 1. Let Pd(n) denote the homogeneous polynomials of degree d. The action of the Steenrod
squares S qi : Pd(n)→ Pd+i(n) is determined by the formula:

S qi(u) =


u, i = 0
u2, deg(u) = i
0, deg(u) < i,

and the Cartan formula

S qi(uv) =
i∑

r=0

S qr(u)S qi−r(v).

A polynomial u ∈ Pd(n) is said to be hit if it is in the image of the action ofA on P(n), that is, if

u =
∑
i>0

S qi(ui),

for some ui ∈ P(n) of degree d − i. Let A+P(n) denote the subspace of all hit polynomials. The problem of determining
A+P(n) is called the hit problem and has been studied by several authors, (Singer, 1991) and (Wood, 1989). We are
interested in the related problem of determining a basis for the quotient vector space

Q(n) = P(n)/A+P(n)

which has also been studied by several authors, (Kameko, 1990, 2003), (Peterson, 1987) and (Sum, 2007). Some of the
motivation for studying these problems is mentioned in (Nam, 2004). It stems from the Peterson conjecture proved in
(Wood, 1989) and various other sources (Peterson,1989) and (Singer, 1989).

The following result is useful for determiningA-generators for P(n). Let α(m) denote the number of digits 1 in the binary
expansion of m.

In (Wood, 1989)[Theorem 1], R.M.W. Wood proved that:
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Theorem 1 (Wood, 1989). Let u ∈ P(n) be a monomial of degree d. If α(n + d) > n, then u is hit.

Thus Qd(n) is zero unless α(n + d) ≤ n or, equivalently, unless d can be written in the form, d =
∑n

i=1(2λi − 1) where
λi ≥ 0. Thus Qd(n) , 0 only if Pd(n) contains monomials v = x2λ1−1

1 · · · x2λn−1
n called spikes.

Q(n) has been explicitly calculated by Peterson in (Peterson,1987) for n = 1, 2, by Kameko in his thesis (Kameko, 1990)
for n = 3 and independently by Kameko in (Kameko, 2003) and Sum in (Sum, 2007) for n = 4. In this work we shall,
unless otherwise stated, be concerned with a basis for Q(n) consisting of ‘admissible monomials’, as defined below. Thus
when we write u ∈ Qd(n) we mean that u is an admissible monomial of degree d.

We define what it means for a monomial b = xe1
1 · · · x

en
n ∈ P(n) to be admissible. Write ei =

∑
j≥0 α j(ei)2 j for the binary

expansion of each exponent ei. The expansions are then assembled into a matrix β(b) = (α j(ei)) of digits 0 or 1 with α j(ei)
in the (i, j)-th position of the matrix. We then associate with b, two sequences,

w(b) = (w0(b),w1(b), . . . ,w j(b), . . .),
e(b) = (e1, e2, . . . , en),

where w j(b) =
∑n

i=1 α j(ei) for each j ≥ 0. w(b) is called the weight vector of the monomial b and e(b) is called the
exponent vector of the monomial b.

Given two sequences p = (u0, u1, . . . , ul, 0, . . .), q = (v0, v1, . . . , vl, 0, . . .), we say p < q if there is a positive integer k such
that ui = vi for all i < k and uk < vk. We are now in a position to define an order relation on monomials.

Definition 1. Let a, b be monomials in P(n). We say that a < b if one of the following holds:

1. w(a) < w(b),

2. w(a) = w(b) and e(a) < e(b).

Note that the order relation on the set of sequences is the lexicographical one.

Following Kameko, (Kameko, 1990) we define:

Definition 2. A monomial b ∈ P(n) is said to be inadmissible if there exist monomials b1, b2, . . . , br ∈ P(n) with b j < b
for each j, 1 ≤ j ≤ r, such that

b ≡
 r∑

j=1

b j

 mod A+P(n).

b is said to be admissible if it is not inadmissible.

Clearly the set of all admissible monomials in P(n) form a basis for Q(n).

Our main result is:

Theorem 2. If u = xm1
1 · · · x

mk
k ∈ Pd(k) and v = xe1

1 · · · x
er
r ∈ Pd′(r) are admissible monomials, then for each permutation

σ ∈ S k+r for which σ(i) < σ( j), i < j ≤ k and σ(s) < σ(t), k < s < t ≤ k+r, the monomial xm1
σ(1) · · · x

mk
σ(k)x

e1
σ(k+1) · · · x

er
σ(k+r) ∈

Pd+d′(k + r) is admissible.

Theorem 2 is a generalization of the following result of the author and Uys proved in (Mothebe and Uys, 2015).

Let u = xm1
1 · · · x

mn−1
n−1 ∈ P(n − 1) be a monomial of degree d′. Given any pair of integers ( j, λ), 1 ≤ j ≤ n, λ ≥ 0, let hλj (u)

denote the monomial xm1
1 · · · x

m j−1

j−1 x2λ−1
j xm j

j+1 · · · x
mn−1
n ∈ Pd′+(2λ−1)(n).

Theorem 3. Let u ∈ P(n − 1) be a monomial of degree d′, where α(d′ + n − 1) ≤ n − 1. If u is admissible, then for each
pair of integers ( j, λ), 1 ≤ j ≤ n, λ ≥ 0, hλj (u) is admissible.

As our main application of Theorem 2 we consider a few cases when n = 5. The relevant result in this case is Theorem 4
stated below. To explain the table that appears in the theorem we note that given any explicit admissible monomial basis
for Q(s), 1 ≤ s ≤ n − 1, one may compute GLB(n, d), the dimension of the subspace of Qd(n) generated by all degree
d monomials of the form xm1

σ(1) · · · x
mk
σ(k)x

e1
σ(k+1) · · · x

er
σ(k+r) for all triples (k, r, σ) where k + r = n and σ ∈ S k+r satisfies the

hypothesis of the theorem. In general GLB(n, d) ≤ dim(Qd(n)) but there are cases where equality holds.
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In (Sum, 2007) Sum gives an explicit admissible monomial basis for Q(4) and in addition recalls the results of Kameko
(Kameko, 1990) for Q(3). In this paper we make use of these results to compute GLB(5, d), 1 ≤ d ≤ 30, and compare
these values with dim

(
Qd(5)

)
in the given range. The results are given in Table A in Theorem 4. The table is incomplete

as dim
(
Qd(5)

)
has not yet, in general, been calculated for d ≥ 13. As can be seen from Table A there are cases where

GLB(5, d) = dim(Qd(5)). This is demonstrated with the aid of known results for dim(Qd(5)) (cited in Table A). The results
also show an improvement from the results obtained in (Mothebe and Uys, 2015) by application of Theorem 3.

Theorem 4. Table A gives lower bounds, GLB(5, d), for the dimension of Qd(5), 1 ≤ d ≤ 30.

Table A

d dim(Qd(5)) Ref GLB(5, d) d dim(Qd(5)) Ref GLB(5, d)
1 5 5 16 418
2 10 10 17 543
3 25 25 18 680
4 45 (Sum and Phuc, 2013) 45 19 912 (Tin, 2014) 780
5 46 (Mothebe and Uys, 2015) 46 20 591
6 74 (Mothebe and Uys, 2015) 74 21 780
7 110 (Mothebe and Uys, 2015) 110 22 819
8 174 (Tin, 2014) 174 23 993
9 191 (Mothebe and Uys, 2015) 191 24 925
10 280 (Mothebe and Uys, 2015) 280 25 1073
11 315 (Mothebe 2009) 315 26 1024 (Walker and Wood, 2007) 1003
12 190 (Sum and Phuc, 2013) 190 27 315 315
13 - 250 28 480 (Sum and Phuc, 2013) 480
14 - 302 29 491
15 432 (Sum, 2014) 404 30 785

While this approach remains to be explored in general these test results suffice for our purpose in this paper and we hope
to make a more general account in subsequent work. We are thus only required to prove Theorem 2. This is the subject of
the next section which is also our concluding section.

2. Proof of Theorem 2

In this section we prove Theorem 2. It shall suffice to show that if u = xm1
1 · · · x

mk
k ∈ Pd(k) and v = xe1

1 · · · x
er
r ∈ Pd′ (r) are

admissible monomials, then xm1
1 · · · x

mk
k xe1

k+1 · · · x
er
k+r ∈ Pd+d′ (k+ r) is admissible. We first note that for any given monomial

u = xm1
1 · · · x

mk
k ∈ Pd(k) we have a mapping

hu : Pd′ (r)→ Pd+d′(k + r)

given on monomials by hu(xe1
1 · · · x

er
r ) = xm1

1 · · · x
mk
k xe1

k+1 · · · x
er
k+r. Unless otherwise stated, we shall use product notation uv

for hu(v). In this way we see that each monomial u ∈ Pd(k) determines a subspace (namely hu(Pd′ (r))) of Pd+d′ (k + r)
isomorphic to Pd′(r). Similarly each monomial v = xe1

1 · · · x
er
r ∈ Pd′ (r) determines a mapping

gv : Pd(k)→ Pd+d′ (k + r)

given on monomials by gv(xm1
1 · · · x

mk
k ) = xm1

1 · · · x
mk
k xe1

k+1 · · · x
er
k+r. Let πu : Pd+d′(k + r) → hu(Pd′(r)) denote the projection

of Pd+d′(k + r) onto the summand hu(Pd′ (r)) of Pd+d′(k + r). Our aim is to show that hu induces an isomorphism from
A+P(r) ∩ Pd′ (r) to πu(A+P(k + r) ∩ Pd+d′ (k + r)), given by S qb(z) 7→ uS qb(z). In other words we claim that πu(A+P(k +
r) ∩ Pd+d′ (k + r)) is generated by polynomials of the form uS qb(z) where

S qb(z) ∈ A+P(r) ∩ Pd′(r)

Under this assumption, suppose that
p = u

∑
j

u j

is a polynomial generated by elements uS qb(z) ∈ πu(A+P(k + r) ∩ Pd+d′(k + r)). Since hu is order preserving it follows
that if uu jl is a term of highest order in p, then u jl is an inadmissible monomial in Pd′ (r). A parallel argument holds for the
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projection πv : Pd+d′(k + r)→ gv(Pd(k)) associated with the mapping gv. Clearly this shall suffice for a proof of Theorem
2.

Suppose therefore that a monomial u ∈ Pd(k) is given. The important thing to note is that for any integer s > 0,
S qs(y) ∈ A+P(k + r) ∩ Pd+d′(k + r) is a hit polynomial that has a monomial of the form hu(v) if and only if there exists
integers a ≥ 0 and b ≥ 0 and monomials w, z with a + b = s and wz = y such that S qa(w) ∈ A+P(k) ∩ Pd(k) is a hit
polynomial which has u as a term and S qb(z) ∈ A+P(r) ∩ Pd′(r) is a hit polynomial which has v as a term. This is an
immediate consequence of the Cartan formula for the action of the Steenrod algebra on polynomials. We then have, by
the Cartan formula, S qs(y) = S qa+b(wz) is equal to the sum

S qa(w)S qb(z) +
∑
t,b

S qa+b−t(w)S qt(z). (1)

Now πu(
∑

t,b S qa+b−t(w)S qt(z)) = 0 since, clearly, the polynomial∑
t,b

S qa+b−t(w)S qt(z)

has no terms of the form hu(c). Now suppose that b > 0 and that modulo hit monomials S qa(w) =
∑l

j=1 u j. Then
S qa(w)S qb(z) = (

∑l
j=1 u j)S qb(z) =

∑l
j=1 u jS qb(z).Monomials of the form uv then occur as terms of the part of S qa(w)S qb(z)

of the form uS qb(z).Note that if u j , u, then πu(u jS qb(z)) = 0.On the other hand uS qb(z) = S qb(uz)+
∑

t>0 S qt(u)S qb−t(z).
But

πu(
∑
t>0

S qt(u)S qb−t(z)) = 0.

Thus
πu(S qs(y)) = πu(S qb(uz)) = uS qb(z) = hu(S qb(z))

This establishes the isomorphism.

A similar analysis may be drawn to show that πv(A+P(k + r) ∩ Pd+d′(k + r)) is generated by polynomials of the form
(S qa(w))v where S qa(w) ∈ A+P(k) ∩ Pd(k). Now suppose that a polynomial q = (

∑
i vi)v is generated by elements

(S qa(w))v ∈ πv(A+P(k + r) ∩ Pd+d′ (k + r)). Since gv is order preserving it follows that if vil v is a term of highest order in
q, then vil is an inadmissible monomial in Pd(k).

It follows from our argument above that if u and v are admissible monomials then uv is admissible. Clearly the s-
tatement of the theorem remains true if we take any product σ(uv) = xm1

σ(1) · · · x
mk
σ(k)x

e1
σ(k+1) · · · x

er
σ(k+r) resulting from any

permutation σ ∈ S k+r that satisfies the hypothesis of the theorem. Note that if uv is a monomial of highest order in the
polynomial p generated by expressions of the form uS qb(z) then σ(uv) = xm1

σ(1) · · · x
mk
σ(k)x

e1
σ(k+1) · · · x

er
σ(k+r) is the monomial

of highest order in the polynomial σ(p) generated by expressions of the form xm1
σ(1) · · · x

mk
σ(k)S qb(xs1

σ(k+1) · · · x
sr
σ(k+r)) where

xm1
σ(1) · · · x

mk
σ(k)x

s1
σ(k+1) · · · x

sr
σ(k+r) = σ(uz). This completes the proof of the theorem.
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