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Abstract

The main purpose of this article is to show that there are non logsymplectic Poisson structures whose Poisson cohomology
groups are isomorphic to corresponding logarithmic Poisson cohomology groups.
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1. Introduction

Symplectic geometry was discoved in 1780 by Joseph Louis Lagrange when he considered the non constants variable and
defined the bracket of two such elements. From symplectic manifold, Poisson defined his brackets as tool for classical
dynamics. Charles Gustave Jacobi realized the importance of those bracket and elucidated their algebraic properties.
Sophus Lie and others authors began the study of their geometry. Connection of poisson geometry with numbers of
areas including harmonic analytic, mechanics of particles and continua; completely integrable systems, justify this recent
development. It is interested to recall that number of proprieties and results in this theory was developed in the case of
differential manifold. Too few authors have worked in the case of singular varieties. J. Huebschmann in (Huebschmann, J.,
1990) study in 1990 Poisson algebra and apply its Lie-Rinehart cohomology in the study of their geometric quantization.
A. Polishchuk in (Pichereau, A., 2006) study in 1997 the Poisson brackets in algebraic framework.

In 2002 Ryushi Goto (Goto, R., 2002), with the aim of generalizing the approach of the symplectic, Atiyah class to the
construction of the invariants of knots, defined the logsymplectic manifold and study several examples. The notion of
logsymplectic manifold is based on the theory of logarithmic differential forms extensively study in (Saito, K., 1980).
Logsymplectic manifold is simply a complex manifold X equipped with a symplectic form ω that has simple poles along
a hypersurface D ⊂ X. In other words, Poisson structures defined on X − D by any logsymplectic form ω extends to a
Poisson bracket on all X whose pfaffian in a reduced defining equation for D. Logsymplectic manifolds can arise when
one attempts to compactify symplectic manifolds. Many modulis space in algebraic geometry and gauge theory come
equipped with logsymplectic structure. Such Poisson structure can then play an important role in geometric quantization
of many classical observable. According to I. Vaisman in (Vaisman, I., 1991), obstruction of quantization of such classical
space is measure by Poisson cohomology. But it style very difficult to determine explicit form of Poisson cohomology as
we can see in (Pichereau, A., 2006) and (Monnier, Ph., 2002).

In other to propose an alternative method in the computation of such Poisson cohomology, the first author introduce in
(Dongho, J., 2012) the notion of logarithmic principal Poisson structure and prove that such Poisson structure induced a
Lie-Rinehart structure on the module of logarithmic differential form along a finite generated ideal I, from which he intro-
duce the notion of logarithmic Poisson cohomology, and prove that such logarithmic Poisson cohomology are in general
different to the associated Poisson cohomology. It was also prove in (Dongho, J., 2012) that when logarithmic Poisson
structure are logsymplectic one, the two, Poisson cohomology and logarithmic Poisson cohomology are equivalent. The
main objectif of this paper is to prove that there are non logsymplectic Poisson structure with isomorphic Poisson and
logarithmic Poisson cohomology.

Recently in (Dongho, J. & Yotcha, S. R., 2016), the Differential Point of view of such cohomology has been study and
and apply in the prequantization of such Poisson manifold.

More general theory of logarithmic Poisson cohomology and logarithmic Poisson algebra is in preparation in (Dongho,
J., et al.).
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The main results of this paper are:

Proposition 1 The Poisson cohomology groups of the Poisson algebra
(A = C[x, y], {x, y} = xn) , (n ∈ N∗) are

H0
P � C, H1

P � C, Hk
P � 0 ∀k ≥ 2 when n = 1

and for all n ≥ 2,

H0
P(xn) � C

H1
P(xn) � Cn−1[x] ⊕C[y] ⊕ xC[y] ⊕ · · · ⊕ xn−2C[y]

H2
P(xn) � C[y] ⊕ xC[y] ⊕ · · · ⊕ xn−2C[y]

Hk
P(xn) � 0 ∀k ≥ 3

and

Proposition 2 The logarithmic Poisson cohomology groups of the Poisson structure defined by the logarithmic Poisson
2-form π = xn∂x ∧ ∂y, which is logarithmic along the ideal I = xnC[x, y] are

Hn
PS (xn) ≃ 0 f or n ≥ 3

H2
PS (xn) w

n−2
⊕

i=0
xiC[y]

H1
PS (xn) ≃ Cn−1[x] ⊕

n−2
⊕

i=0
xiC[y]

Those can be generalize to the case of any algebra with two generator over a non zero characteristic ring.

2. A-module of Differential Form

It follows that, A = C[x, y], ΩA is the A-module of differential form on A and DerA the A-module on derivations of A.
Then, ΩA = ⟨dx, dy⟩A and DerA = ⟨∂x, ∂y⟩A.

For any k ∈ N∗, Altk(ΩA, A) denote the A-module of k-multilinear skew symmetric form on ΩA. By convention,
Alt0(ΩA, A) = A and then Altk(ΩA, A) � ∧kDerA. Then,

Alt1(ΩA, A) � DerA � A × A

Alt2(ΩA, A) � DerA ∧ DerA = ⟨∂x ∧ ∂y⟩A � A

Altk(ΩA, A) � 0 pour tout k ≥ 3

We deduce the following cochain complex

0 // A d0
// A × A d1

// A d2
// 0

where di, i = 0, 1, 2 are associated Poisson differential and there are defined by

d0φ(α) = H(α)φ for φ ∈ A

d1φ(α1, α2) = H(α1)φ(α2) − H(α2)φ(α1) − φ([α1, α2]) for φ ∈ Alt1(ΩA, A), α1, α2 ∈ ΩA

dk = 0 for every k ≥ 2

H : ΩA −→ DerA is the Hamiltonian map defined by H(da) = {a,−}. It induce on ΩA a bracket [, ] defined by
[da, db] = d{a, b}. In particular, (ΩA, [, ],H) is a Lie-Rinehart-Poisson algebra. The cohomology groups are given by
Hk

P = ker dk/Im dk−1 (k ∈ N). It therefore follows that

Hk
P � 0 ∀k ≥ 3

For a better understanding, we address the cases n = 1 and n = 2 and we end with a generalization.

3. The Case n = 1

3.1 Associated Poisson Differential

Let φ ∈ Alt0(ΩA, A) = A, d0φ ∈ Alt1(ΩA, A) � DerA that is d0φ = φ1∂x + φ2∂y with φ1, φ2 ∈ A. But d0φ(α) = H(α)φ for
α ∈ ΩA. Taking successively α = dx and dy we obtain φ1 = H(dx)φ and φ2 = H(dy)φ.
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On the other hand, H(dx) ∈ DerA i.e; H(dx) = α1∂x + α2∂y, α1, α2 ∈ A. So, H(dx)(x) = α1 = 0 and H(dy)(x) = α2 =

{x, y} = x. Therefore H(dx) = x∂y. Similarly we can show that H(dy) = −x∂x therefore

d0φ = x
∂φ

∂y
∂x − x

∂φ

∂x
∂y ≈ (x

∂φ

∂y
,−x

∂φ

∂x
)

For φ = φ1∂x + φ2∂y ∈ Alt1(ΩA, A), d1φ ∈ Alt2(ΩA, A) � ∧2DerA i.e;

d1φ = ψ∂x ∧ ∂y, ψ ∈ A. Or d1φ(α1, α2) = H(α1)φ(α2) − H(α2)φ(α1) − φ([α1, α2]) for φ ∈ Alt1(ΩA, A), α1, α2 ∈ ΩA. In

particular, for α1 = dx and α2 = dy, we get ψ = H(dx)φ(dy) − H(dy)φ(dx) − φ([dx, dy]) = x
∂φ2

∂y
+ x

∂φ1

∂x
− φ1. Therefore,

d1φ = (x
∂φ1

∂x
+ x

∂φ2

∂y
− φ1)∂x ∧ ∂y

3.2 Calculation of Cohomological Groups

3.2.1 Expression of H0
P(x)

By definition H0
P = ker d0/Im d−1 with d−1 : 0 −→ A i.e; H0 = ker d0. Let φ ∈ A, d0φ = 0 If and only if x

∂φ

∂x
= x

∂φ

∂y
= 0

That is φ ∈ C. Therefore,
H0

P � C

3.2.2 Expression of H2
P = ker d2/Im d1

Obviously, ker d2 = A Let φ ∈ A, we can write

φ = −(−φ) + x
∂(−φ)
∂x

+ x
∂

∂y
(
∫

∂φ

∂x
dy) = d1(−φ,

∫
∂φ

∂x
dy)

d1 is an epimorphism and we have
H2

P � 0

3.2.3 Expression of H1
P(x)

(φ1, φ2) ∈ ker d1 if and only if φ1 = x(
∂φ2

∂y
+
∂φ1

∂x
). Thus, we can write φ1 = xu, u ∈ A therefore φ2 = −x

∫ ∂u
∂x

dy + b(x)

with b(x) ∈ C[x]. It was therefore

ker d1 = {(xu,−x
∫

∂u
∂x

dy) + (0, b(x)); u ∈ A, b(x) ∈ C[x]}

Let

β : A −→ xA × A

u 7−→ (xu,−x
∫

∂u
∂x

dy)

β is a monomorphism and we have

ker d1 = β(A) ⊕ (0 ×C[x]) = β(A) ⊕ (0 × xC[x]) ⊕ (0 ×C)

in other hand, β(A) ⊕ (0 × xC[x]) ⊆ d0(A) and d0(A) ∩ (0 × C) = 0. Therefore, ker d1 = β(A) ⊕ (0 × xC[x]) ⊕ (0 × C) ⊆
d0(A) ⊕ (0 ×C) ⊆ ker d1. We deduce that ker d1 = d0(A) ⊕ (0 ×C); that is

H1
P � C

4. The Case n = 2

In this section, we recall and generalize the methods and results obtained in (Dongho, J., 2012). By using the reasoning
above, the associated Poisson differential are:

d0φ = x2 ∂φ

∂y
∂

∂x
− x2 ∂φ

∂x
∂

∂y
, φ ∈ A

and
d1(φ1, φ2) = x2 ∂φ1

∂x
+ x2 ∂φ2

∂y
− 2xφ1, φ1, φ2 ∈ A
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4.1 Explicit Expression of Associated Cohomological Groups

4.1.1 Expression of H0
P(x2) and H1

P(x2)

By direct computation, we have:
H0

P � C

By definition, we have ker d2 = A and Im d1 ⊆ xA. For φ ∈ A, we have

xφ = −2x(−1
2
φ) + x2∂x(−1

2
φ) + x2∂y

(∫
∂x(

1
2
φ)dy

)
= d1

(
−1

2
φ,

∫
∂x(

1
2
φ)dy

)
.

That is Im d1 = xA. In other hand A = C[y] ⊕ xA. Therefore

H2
P(x2) � C[y]

4.1.2 Expression of H1
P(x2)

Let φ1, φ2 ∈ A; (φ1, φ2) is a 1-cocycle if and only if 2φ1 = x(
∂φ1

∂x
+
∂φ2

∂y
). We deduce that φ1 = xu, u ∈ A and consequently

φ2 =
∫

(1 − x∂x)udy + b(x) with b(x) ∈ C[x] i.e;

ker d1 = {(xu,
∫

(1 − x∂x)udy) + (0, b(x)), u ∈ A, b(x) ∈ C[x]}

Let

β : A −→ xA × A

u 7−→ (xu,
∫

(1 − x∂x)udy)

β is a monomorphism and we have ker d1 = β(A) ⊕ (0 ×C[x]). Since A = C[y] ⊕ xA, we obtain

ker d1 = β(C[y]) ⊕ β(xA) ⊕ (0 × x2C[x]) ⊕ (0 ×C1[x])

where C1[x] = {a0 + a1x; a0, a1 ∈ C} is the vector space of polynomials of degree less than or equal to 1. In other hand,
we have β(xA) ⊕ (0 × x2C[x]) ⊆ d0(A) et d0(A) ∩ [

(0 ×C1[x]) ⊕ β(C[y])
]
= 0. Therefore

ker d1 ⊆ d0(A) ⊕ β(C[y]) ⊕ (0 ×C1[x]) ⊆ ker d1

i.e;
ker d1 = d0(A) ⊕ β(C[y]) ⊕ (0 ×C1[x])

then
H1

P � C1[x] ⊕C[y]

5. Generalization (n ≥ 2)

At this stage, the calculation of differentials is no longer a secret. We therefore obtains

d0φ = (xn ∂φ

∂y
,−xn ∂φ

∂x
)

d1(φ1, φ2) = xn ∂φ1

∂x
+ xn ∂φ2

∂y
− nxn−1φ1

with φ, φ1, φ2 ∈ A.

5.1 Calculation of Associated Poisson Cohomological Groups

In this section, we compute all Poisson cohomological groups associated to the above Poisson complex.

5.1.1 Calculation of H0
P

For any φ ∈ A, we have d0φ = 0 if and only if φ = cte ∈ C. We deduce that

H0
P � C
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5.1.2 Calculation of H2
P

By definition, ker d2 = A and Im d1 ⊆ xn−1A. For u ∈ A, we have

xn−1u = −nxn−1(−1
n

u) + xn ∂

∂x
(−1

n
u) + xn ∂

∂y
(
∫

∂

∂x
(
1
n

u)dy)

We deduce that Im d1 = xn−1A. In addition,

A = C[y] ⊕ xC[y] ⊕ · · · ⊕ xn−2C[y] ⊕ xn−1A.

Therefore
H2

P � C[y] ⊕ xC[y] ⊕ · · · ⊕ xn−2C[y]

5.1.3 Calculation of H1
P

Let (φ1, φ2) ∈ A2, d1(φ1, φ2) = 0 if and only if nφ1 = x(
∂φ1

∂x
+
∂φ2

∂y
). Thus φ1 = xu with u ∈ A and consequently

φ2 =
∫

(n − 1 − x
∂

∂x
)udy + b(x) with b(x) ∈ C[x]. Therefore,

ker d1 = {(xu,
∫

(n − 1 − x
∂

∂x
)udy) + (0, b(x)), u ∈ A, b(x) ∈ C[x]}

Consider the application

β : A −→ xA × A

u 7−→ (xu,
∫

(n − 1 − x
∂

∂x
)udy)

β is a monomorphism and we have ker d1 = β(A)⊕(0×C[x]). On the other hand, A = C[y]⊕ xC[y]⊕· · ·⊕ xn−2C[y]⊕ xn−1A.
Therefore

ker d1 = β(C[y]) ⊕ β(xC[y]) ⊕ · · · ⊕ β(xn−2C[y]) ⊕ β(xn−1A) ⊕ (0 × xnC[x]) ⊕ (0 ×Cn−1[x])

with Cn−1[x] = {a0 + a1x + a2x2 + · · · + an−1xn−1; a0, · · · , an−1 ∈ C} denoting the vector space of polynomials of degree
less than n − 1. Let us show now that β(xn−1A) ⊕ (0 × xnC[x]) ⊆ d0(A). Let u ∈ A and b(x) ∈ C[x],

β(xn−1u) + (0, xnb(x)) =

(
xnu,

∫
(n − 1 − x

∂

∂x
)(xn−1u)dy + xnb(x)

)
=

(
xnu,−xn

∫
∂u
∂x

dy + xnb(x)
)

=

(
xnu,−xn ∂

∂x

[∫ ∫
∂u
∂x

dydx −
∫

b(x)dx
])

=

(
xn ∂

∂y

[∫
udy −

∫
b(x)dx

]
,−xn ∂

∂x

[∫
udy −

∫
b(x)dx

])
= d0

(∫
udy −

∫
b(x)dx

)
By a simple computation, we have

d0(A) ∩
(
β(C[y]) ⊕ β(xC[y]) ⊕ · · · ⊕ β(xn−2C[y]) ⊕ (0 ×Cn−1[x])

)
= 0

Furthermore, β(C[y]), β(xC[y]),· · · , β(xn−2C[y]), (0 ×Cn−1[x]), d0(A) are parts of ker d1. We deduce that

ker d1 ⊆ d0(A) ⊕ β(C[y]) ⊕ β(xC[y]) ⊕ · · · ⊕ β(xn−2C[y]) ⊕ (0 ×Cn−1[x]) ⊆ ker d1

and then,
ker d1 = d0(A) ⊕ β(C[y]) ⊕ β(xC[y]) ⊕ · · · ⊕ β(xn−2C[y]) ⊕ (0 ×Cn−1[x])

since β is a monomorphism, we have

H1
P � Cn−1[x] ⊕C[y] ⊕ xC[y] ⊕ · · · ⊕ xn−2C[y]
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Proposition 3 The Poisson cohomology groups of the Poisson algebra (A = C[x, y], {x, y} = xn) , (n ∈ N∗) are

H0
P � C, H1

P � C, Hk
P � 0 ∀k ≥ 2 when n = 1

and for all n ≥ 2,

H0
P � C

H1
P � Cn−1[x] ⊕C[y] ⊕ xC[y] ⊕ · · · ⊕ xn−2C[y]

H2
P � C[y] ⊕ xC[y] ⊕ · · · ⊕ xn−2C[y]

Hk
P � 0 ∀k ≥ 3

6. Associated Logarithmic Poisson Cohomology

The Poisson 2-form remain π = xn∂x ∧ ∂y and the module of 1-form logarithmic along xnA is ΩA(LogI) =
dx
x

C[x, y] ⊕

C[x, y]dy and the associated logarithmic Hamiltonian map is H(
dx
x

) = xn−1∂y,H(dy) = −xn∂x. This Hamiltonian map in-

duced the following complex 0 // A ∂0
//// A ⊗ A ∂1

// A // 0. Where ∂0 f = xn−1(∂y f ,−x∂x f ) and ∂1( f1, f2) =

xn−1(∂y f2 + x∂x f1 − (n − 1) f1). It follow that The order zero logarithmic Poisson cohomology group is H0
PS w C. In

order to determine H1
PS and H2

PS , A is decomposed as follows: A = C[y] ⊕ xC[y] ⊕ ... ⊕ xn−2 ⊕ xn−1C[x, y]. So; for all
g0(y) + xg1(y) + ... + xn−2g(y) + xn−1gn−1(x, y) = g(x, y) ∈ A, we have, g ∈ ∂1(A) if and only if gn−1(y) = ∂y f2 + x∂x f1 − f1
and gi = 0 for all i ∈ {0, ..., n − 2, n}; for some f1, f2 ∈ A. Therefore, given f1 ∈ A, there exist a(x) ∈ C[x] such that
f2 =

∫
(gn−1 + (n − 1) f1 − x∂x f1)dy + a(x). In particular, for f1 = gn−1 and a(x) = 0, we have f2 =

∫
(ngn−1 − x∂xgn−1)dy.

Moreover, for all 0 , g0(y) + xg1(y) + ... + xn−2g(y), the following equation

xn−1(∂y f2 + x∂x f1 − (n − 1) f1) = g0(y) + xg1(y) + ... + xn−2g(y).

haven’t solution in A ⊗ A. This implies that A w ∂1(A ⊗ A) ⊕
n−2
⊕

i=0
xiC[y]. Therefore

H2
PS w

n−2
⊕

i=0
xiC[y]

Let ( f1, f2) ∈ A ⊗ A. It is an element of Ker(∂1) if and only if ∂y f2 = (n − 1) f1 − x∂x f1. That is f2 =
∫

((n − 1) f1 −
x∂x f1)dy+ b(x). We define the following map A

η // A ⊗ A by η(u) = (u,
∫

((n− 1)u− x∂xu)dy). It is a monomorphism

of C-modules and it follows from the above description of Ker∂1 that

Ker∂1 ≃ η(A) ⊕C[x]

≃ η(
n−2
⊕

i=0
xiC[y]) ⊕ η(xn−1C[x, y]) ⊕ xnC[x] ⊕Cn−1[x]

In addition, for all g ∈ η(xn−1C[x, y] ⊕ (OA × xnC[x])), there exist u ∈ C[x, y] and v ∈ C[x] such that g = η(xn−1u) +
(0, xnv(x)) = xn−1(u,−x(

∫
∂yudy − v)). This element is in ∂0(A) if and only if, there exist a ∈ A such that ∂0(a) = g. This

imply that there exist c(x) ∈ C[x] such that a =
∫

udy+c(x) and ∂x(a) = ∂xudy−v(x). But this imply that c(x) = −
∫

v(x)dx
and then a =

∫
udy−

∫
v(x)dx and η(xn−1C[x, y]⊕ (OA × xnC[x])) ⊂ ∂0(A). In other hand the following equation in u have

no solution in C[x, y]


xn−1∂yu =

n−2∑
i=0

xigi(y)

xn∂xu =
n−2∑
i=0

xi
∫

gi(y)dy +
n−1∑
i=0

aixi

Therefore Ker∂1 ≃ Cn−1[x] ⊕ η(
n−2
⊕

i=0
xiC[y]) ⊕ ∂0(A) and then

H1
PS (xn) ≃ Cn−1[x] ⊕ η(

n−2
⊕

i=0
xiC[y])
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This complete the proof of the following proposition
Proposition 3 The logarithmic Poisson cohomology groups of the Poisson structure defined by the logarithmic Poisson
2-form π = xn∂x ∧ ∂y, which is logarithmic along the ideal I = xnC[x, y] are

Hn
PS ≃ 0 f or n ≥ 0

H2
PS w

n−2
⊕

i=0
xiC[y]

H1
PS (xn) ≃ Cn−1[x] ⊕ η(

n−2
⊕

i=0
xiC[y])
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