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Abstract

The current study concerns, the effect of a horizontal magnetic field on the stability of three horizontal finite layers of

immiscible fluids in porous media. The problem examines few representatives of porous media, in which the porous media

are assumed to be uniform, homogeneous and isotropic. The dispersion relations are derived using suitable boundary and

surface conditions in the form of two simultaneous Mathieu equations of damping terms having complex coefficients. The

stability conditions of the perturbed system of linear evolution equations are investigated both analytically and numerically

and stability diagrams are obtained. The stability diagrams are discussed in detail in terms of various parameters governing

the flow on the stability behavior of the system such as the streaming velocity, permeability of the porous medium and the

magnetic properties. In the special case of uniform velocity, the fluid motion has been displayed in terms of streamlines

concept, in which the streamlines contours are plotted. In the uniform velocity motion, a fourth order polynomial equation

with complex coefficients is obtained. According to the complexity of the mathematical treatments, when the periodicity

of the velocity is taken into account, the method of multiple scales is applied to obtain stability solution for the considered

system. It is found that a stability effect is found for increasing, the magnetic permeability ratio, the magnetic field, and

the permeability parameter while the opposite influence is observed for increasing the upper layer velocity.

Keywords: liner stability behavior, liquid layers, magnetic field, porous media, streamlines contours.

1. Introduction

The flow instability of a plane interface between two superposed fluids of different densities through porous media is of

considerable interest for petroleum engineers and in geophysical fluid dynamicists. On the other hand, the phenomenon

of resonance is a fundamental one in mathematics and physics. This phenomenon is obtained from nonlinear interactions

among a few (two or three) wavetrains that was initially pointed out by (Phillips, 1960) and (Longuet-Higgins, 1962),

followed by experimental verifications (Mcgoldrick et al., 1966) and (Longuent-Higgins & Smith, 1966). They indicated

that, under certain conditions, conspicuous energy transfer takes place from primary waves to a tertiary wave, produced

through the third-order interaction. A series of studies for hydrodynamics stability have been initiated by many authors,

for example, the weakly nonlinear stability is employed to analyze the interfacial phenomenon of two magnetic fluids in

porous media. has investigated in paper (El-Dib & Ghaly, 2003). The method of multiple scale expansion is employed in

order to obtain a dispersion relation for the first-order problem and nonlinear Ginzburg-Landau equation, for the higher-

order problem, describing the behavior of the system in a nonlinear approach. In paper (Zakaria et al., 2009), the instability

properties of streaming superposed conducting fluids through porous media under the influence of uniform magnetic field

have been investigated, where the system is composed of a middle fluid sheet of finite thickness embedded between two

semi-infinite fluids.

A good account of hydrodynamic stability problems has also been given in papers (Drazin & Reid, 1981), (Joseph, 1976),

(Sisoev et al., 2009), (Sadiq et al., 2010) and (Rosensweig, 1985). The authors in the paper (Funada & Joseph, 2001)

have discussed the instability of viscous potential flow in a horizontal rectangular channel. Bhatia (1974) has studied the

influence of viscosity on the stability of the plane interface separating two incompressible superposed fluids of uniform

densities, when the whole system is immersed in a uniform horizontal magnetic field. He has developed the stability

analysis for two fluids of equal kinematic viscosities and different uniform densities. Li et al., (2007) have examined the

electrohydrodynamic stability of the interface between two superposed viscous fluids in a channel subjected to a normal

electric field. The long wave linear stability analysis is performed within the generic OrrSommerfeld framework for both

perfect and leaky dielectrics. The approach proposed in paper (Tseluiko & Blyth, 2008) is limited to study the gravity-

driven flow of a liquid film down an inclined wall with periodic indentations in the presence of a normal electric field.

Kumar and Singh (2006) have investigated the stability of a plane interface separating two viscoelastic (Rivlin-Ericksen)
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superposed fluids in the presence of suspended particles. They concluded that the system is stable for stable configuration

and unstable for unstable configuration in the presence of suspended particles. Khan et al., (2007) have demonstrated the

analytical solutions for the magnetohydrodynamic flow of an Oldroyd-B fluid through a porous medium. They obtained

the expressions for the velocity field and the tangential stress by means of the Fourier sine transform. In his study of

hydromagnetic parametric resonance instability of two superposed conducting fluids in porous medium El-Sayed (2007)

illustrated Rayleigh-Taylor instability of a heavy fluid supported by a lighter one through porous medium, in the presence

of a uniform, horizontal and oscillating magnetic field . The fluids are taken as viscous (obeying Darcy’s law), uniform,

incompressible, and infinitely conducting, where he amplitude of the oscillating part of the field is taken to be small

compared with its steady part.

In view of these, the goal here is to develop a mathematical model for a streaming fluid sheet embedded between two

bounded fluid layers in the presence of porous media. The fluids are subjected to a horizontal magnetic field. The results

illustrated in this work may be of interest for the fluid dynamic aspects of an aquifer or an oil well and in petroleum

reservoirs, spray coating process, plastics manufacture, metal powder production and in microchips fabrication. The rest

of this paper is organized as follows. The next section lays down geometry and mathematical formulation of the problem

and a sketch of the system under consideration. Also in this section the equations of motion and boundary conditions are

derived. The third section is prepared to linear stability analysis. In the fourth, the dispersion relations, for a periodic

velocity, have been derived to control the surface wave propagation and the streamlines contours are plotted an discussed.

Also, in this section, the perturbation scheme using the multiple scales analysis, and numerical estimation for stability

configuration have been discussed. The results and some important conclusions are outlined in last section of this work.

2. Geometry and Mathematical Formulation

The physical configuration is shown in Fig. 1. We consider a parallel flow consists of a model of a liquid sheet sandwiched

between two bounded fluid layers, fully saturated, uniform, homogeneous and isotropic porous media with constant

permeability. The co-ordinates x and y spans the horizontal and vertical directions.

Figure 1. The physical model and coordinate system.

In order to relax the mathematical calculations, we consider that the fluids are assumed to be immiscible incompressible

and have constant properties. The system is considered to be influenced by the gravity force which acts in the negative

y-direction. The upper fluid is referred to as fluid 1, while the lower one is denoted by fluid 3, whereas the middle layer is

distinguish by fluid 3. Fluid r (r = 1, 2, 3) is assumed to have density ρr, a pressure function of the fluids pr and magnetic

permeability μr .

There are two parallel interfaces between the three fluids are assumed to be well defined and initially flat and forms the

plane y = (−1)l+1L, l = 1, 2 and the instantaneous perturbed interface height is y=hl(x, t) is along the y direction. Suppose

that the layers are moving with velocity V0r = V0r cos�t î, where V0r and � are constants. The unit vectors î and ĵ are in

x− and y− directions. In addition, the system is initially assumed to be stressed by a uniform magnetic field of intensity

H0r along the direction tangential to the flat interface y = L.

Fluid motion is governed by a set of nonlinear partial differential equations expressing conservation of mass, momentum

and the field energy. On the other hand, flow in a porous medium is described by Darcy’s law that relates the movement of

fluid to the pressure gradients acting on a parcel of fluid and we consider media that are initially uniform so that motion is

of homogeneous fluids in a homogeneous medium. Hence, the basic equations governing the motion of an incompressible

liquid through porous medium are comes from the combination of the momentum equation and Darcy’s law (see (Sisoev
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et al., 2009), (Sadiq et al., 2010), (Rosensweig, 1985), (Funada & Joseph, 2001) and (Bhatia, 1974) ):

ρr

(∂Vr

∂t
+ (Vr · ∇)Vr

)
= −∇pr − μ0rVr + ρrg, r = 1, 2, 3. (1)

For incompressible fluid flow, the continuity equation is based on the principle of conservation of mass, which reads

∇ · Vr = 0. (2)

Here, in these equations the symbol ∇ ≡ (∂x, ∂y) is the horizontal gradient operator, the vector g = (0,−g) is the acceler-

ation due to gravity. The resistance is modelled by the ratio μ0r = μ̃0r/Qr, where the permeability Qr describes the ability

of the fluid to flow through the porous medium and μ̃0r is the fluid viscosity measures the resistance of fluid to shearing

that is necessary for flow. In addition, it should be noticed that Qr and μ̃0r are assumed to be constant. Introducing the

velocity potential ϕr(x, y, t) of the perturbed motion such that the total fluid velocity is given by

Vr(x, y, t) = ∇(V0r x cos�t − ϕr
)
, (3)

where, ur = −∂xϕr and vr = −∂yϕr are the velocity components due to disturbances, thus ϕr will satisfy Laplace’s equation

∂2
xϕr + ∂

2
yϕr = 0. (4)

We will assume that there are no free currents at the surface of separation in the equilibrium state, and hence in a magneto-

quasi-static system with negligible displacement current, Maxwell’s equations will be reduced to Gauss and Ampére laws,

which can be expressed as

∇. (μr Hr) = 0 and ∇ ×Hr = 0. (5)

Here, Hr refers to the magnetic field intensity vector and μrHr is defined as the magnetic induction vector. Since, in

magnetic fluids the magnetic energy greatly exceeds electric energy storage and where the propagation times of electro-

magnetic waves are complete in relatively short times compared to those of interest to us. Thus, the construction of a

potential function χr(x, y, t), can be representable as the gradient of the scalar potential such that

Hr =
{
H0r − ∂xχr,−∂yχr

}
. (6)

So, we can introduce the magnetic potential χr that satisfies zero curl for a constant permittivity and therefore this potential

satisfies the Laplace’s equation:

∂2
xχr + ∂

2
yχr = 0. (7)

The above equations are general governing equations of motion for flow of a homogeneous fluid in an isotropic medium

with constant viscosity and permeability. These equations can be solved to investigate a magnetic fluid flow through

a porous medium. To complete the formulation of the problem, we must supplement of the momentum and magnetic

field equations with the corresponding boundary conditions. These constraints are information about the solutions at the

upper and lower boundaries and at the interfaces between the fluids and thus the system adopted here meets the following

boundary conditions (see (Joseph, 1976), (Sisoev et al., 2009), (Sadiq et al., 2010) and (Rosensweig, 1985) ).

On the interface y = (−1)l+1L + hl(x, t), l = 1, 2 it is natural to impose the kinematic boundary conditions, the kinematic

condition expresses the fact that the interface always comprises the same fluid particles, and therefore the function hl(x, t)
whose graph defines the interface satisfies simultaneously

∂thl + ∂yϕr,r+1 + V0(r,r+1) cos�t∂xhl = 0. (8)

In addition kinematic relation follows from the assumption that the normal component of the velocity vector in each of

the phases of the system is continuous at the dividing surface:

nl · (Vl − Vl+1) = 0 at y = (−1)l+1L + hl(x, t). (9)

Here, nl is the exterior pointing normal unit vector to the interfaces which has the form nl = ∇Fl/|∇Fl| = (−∂xhl î +
ĵ)/(
√

1 + (∂xhl)2), where Fl(x, y, t) is the surface geometry defined by the locus of points satisfying the relation Fl =

y−[(−1)l+1L+hl(x, t)
]
. The boundary conditions on the upper and lower plates, in which the plates are assumed to be rigid

and kept constant, this implies that:

V1 = 0 at y = L + L1 and V2 = 0 at y = −(L + L2). (10)
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Since we are dealing with the case of pure magnetization effects, the continuity of the normal and the tangential compo-

nents of the magnetic displacement at the interface obeyed Maxwell’s conditions, and thus we have

μl∂yχl − μl+1∂yχl+1 + (μlH0l − μl+1H0(l+1))∂xh(x, t) = 0, (11)

∂xχl − ∂xχl+1 = 0. (12)

The surface force that accounted by the stress tensor is the Maxwell tensor that describes the stress field induced in the

material due to electrostatic forces whose expression is

Mr = μr

(
HrHr − 1

2

(
Hr.Hr

)
I
)
, (13)

where, I is the identity tensor. Furthermore the dynamical boundary condition, where the normal stresses are balanced by

the amount of the surface tension is

n . ‖ − pI +Mr‖(l+1)
l . n = −γl(l+1) ∇. n, y = (−1)l+1L + hl(x, t), (14)

where, it is assumed that the fluid interfaces have surface tension coefficient γl(l+1). In deed, sharp interfaces between the

fluids may not exist. Rather, there is an ill-defined transition region in which the two fluids intermix. The width of this

transition zone is usually small compared with the other characteristic length of the motion; hence, for the purpose of the

mathematical analysis, we will assume that the fluids are separated by sharp interfaces. In addition, the above boundary

conditions are prescribed at the interface y = (−1)l+1L + hl(x, t). It is necessary to express all the physical quantities

involved in terms of Taylor series expansion about y = (−1)l+1L.

3. Stability Analysis and the Solution Method

In illustrating the problem in the light of linear perturbation, the second order as well as the higher-orders terms contain-

ing the elevation parameter hl(x, t) are neglected. So, to treat the stabilization of the problem under consideration, the

amplitude of waves formed on the fluid sheet is assumed to be small and a finite disturbances are introduced into the

equation of motion and continuity equation as well as the above boundary conditions. Hence, for a small departure from

the equilibrium state, every physical perturbed quantity may be expressed as functions of both the horizontal and vertical

co-ordinates as well as time:

S (x, y, t) = Ŝ (y, t) exp(ikx) + c.c. (15)

Here, this analysis based on a normal modes technique, where k is the wave number, which is assayed to be real and

positive and c.c. represents complex conjugate of the preceding terms and S stands for ϕ and χ. These, expansions are

introduced into the governing equations and the relevant boundary conditions. The linearized terms in these perturbed

quantities are only maintained in view of the linear stability theory (Chandrasekhar, 1961) and (Moatimid, 2003). To

perform a linear stability analysis of the present problem, the interfaces between the three fluids will be assumed to be

perturbed about their equilibrium locations to cause displacements of the material particles of the fluid system. Consider

the effect of small wave disturbances to the interfaces y = (−1)l+1L, propagating in the positive x−direction. Assuming

that the surface deflections are given by

y = (−1)(l+1)L + hl(x, t), (16)

where

hl(x, t) = ξl(t) exp(ikx), (17)

and ξ1 and ξ2 are arbitrary time-dependent functions which determine the behavior of the amplitude of the disturbances

on the interfaces. It should be noted here the linear term, which comes from the nonlinear term that appear in the left

hand side in Eq. (1) is neglected in this analysis. This is because of the averaging process through which Darcy’s Eq.

(1) has been derived. For low Reynolds number flows O(1) and thus this term can be ignored. So, in the hydrodynamic

description by inserting Eq. (3) into Eq. (1), we obtain the pressure in terms of the velocity potential such that

pr(x, y, t) =
(
ρr∂t + μ0r

)
ϕr(x, y, t) − (gy − V0r cos�t∂xϕr(x, y, t)

)
. (18)

Substituting Eqs. (13) and (18) into Eq. (14), the balance at the dividing surfaces can have the relation

ρl∂tϕl(x, y, t) − ρl+1∂tϕl+1(x, y, t) + cos�t
{
ρlV0l∂xϕl(x, y, t) − ρl+1V0(l+1)∂xϕ(l+1)(x, y, t)

}

−{μlH0l∂yχl(x, y, t) − μl+1H0(l+1)∂yχl+1(x, y, t)
}
+ μ0lϕl(x, y, t)

72



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 8, No. 2; 2016

−μ0(l+1)ϕl+1(x, y, t) + g(ρl − ρl+1))hl(x, t) − γl,l+1∂
2
xhl(x, t) = 0. (19)

Actually, the bulk solutions are written in accordance with the interface deflection given by (17) and in view of a standard

Fourier decomposition, these solutions can be similarly expressed as

ϕr(x, y, t) = ϕ̂r(y, t) exp(ikx) + c.c., (20)

χr(x, y, t) = χ̂r(y, t) exp(ikx) + c.c. (21)

To investigate and discuss the boundary-value problem cited above, we depend on the hydrodynamic stability analysis that

given in the book (Chandrasekhar, 1961). It constitutes a homogeneous system of equations and boundary conditions for

explaining the factors governing the surface wave’s propagation. In view of the above boundary conditions, the solution

of Laplace’s equation yields the distribution of the velocity potential ϕr and the magnetic potential χr in the three layers.

On substituting Eq. (20) into Laplace’s Eq. (4); the resulting solutions in the three fluid phases with the aid of the above

kinematic boundary conditions can be obtained as

ϕ1(x, y, t) = Ch1
(y)
{
k−1∂tξ1(t) + iV01 cos�t ξ1(t)

}
exp(ikx) + c.c., (22)

ϕ2(x, y, t) = k−1csch2k
{

cosh k(1 + y)∂tξ2(t) − cosh k(1 − y)∂tξ1(t) + ikV02 cos�t

×[ cosh k(1 + y)ξ2(t) − cosh k(1 − y)ξ1(t)
]}

exp(ikx) + c.c., (23)

ϕ3(x, y, t) = Ch2
(y)
{
k−1∂tξ2(t) + iV03 cos�t ξ2(t)

}
exp(ikx) + c.c., (24)

where,

Chl (y) = (−1)l cosh k
(
y + (−1)l+1Ll

)
cschk

(
1 + (l − 2)Ll − (l − 1)Ll

)
, l = 1, 2.

Inserting (21) into Laplace’s Eq. (7), the resulting solutions in view of the previous Maxwell’s conditions will give

χ1(x, y, t) = iH01 sinh k(y + L1)
{
Γ11(μ̂1 − 1)ξ1(t) + Γ12(μ̂2 − 1)ξ2(t)

}
exp(ikx) + c.c, (25)

χ2(x, y, t) = 2iH01

{[
Γ21 cosh k(1 − y) + Γ22 sinh k(1 − y)

]
ξ1(t)

+
[
Γ23 cosh k(1 + y) + Γ24 sinh k(1 + y)

]
ξ2(t)
}

exp(ikx) + c.c, (26)

χ3(x, y, t) = iH01 sinh k(y − L2)
{
Γ31(μ̂1 − 1)ξ1(t) + Γ32(μ̂2 − 1)ξ2(t)

}
exp(ikx) + c.c, (27)

where, the coefficients Γ′s that appear in these relations are clear from the context. These distribution are derived in

the light of the linearized form of the appropriate boundary conditions and it is equivalent to those obtained before by

Rosensweig (1985). On the other hand, the units in the above solutions are removed by using the dimensionless quantities

as, the stream velocity and the velocity potential function are made dimensionless using
√

Lg and L
√

Lg, while the

applied field and the magnetic potential are made dimensionless by
√

Lgρ2/μ2 and L
√

Lgρ2/μ2, respectively. In addition

the viscosity ρ2

√
L2g, permeability of the porous medium L2Q and the time by

√
L/g . And by using the symbols

μ̂1 = μ1/μ2, μ̂2 = μ3/μ2 the density ρ̂1 = ρ1/ρ2, ρ̂2 = ρ3/ρ2, the Weber number Wl = γl/L2gρ2, (l = 1, 2).

4. Derivation of the Dispersion Relations

Our goal in this section is to study effect of general surface deformations on the onset of a periodic velocity applied to

the fluid sheet. Equations that determine the surface deflections are called the characteristic equations. The whole system

will be reduced to a two coupled partial differential equations with periodic coefficients, in the elevation parameter ξl as

a dependent variable, by substituting Eqs. (22-27) into the normal stress tensor (19). The dependence on the potential

velocity ϕr, the magnetic potential function χr and the fluid pressure function pr is replace by their equivalence in terms

of the amplitude ξl, finally after a straightforward calculations, one obtains the coupled equations

D2
t ξ1 +

{
l(1)
1r + i

(
V01l(1)

1i + V02l(1)
2i
)

cos�t
}
Dtξ1 +

{
f (2)
1r + i

(
V02 f (2)

1i + V03 f (2)
2i
)

cos�t
}
Dtξ2
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+
{
s(1)

1r + H2
01s(1)

2r + (V01
2s(1)

3r + V02
2s(1)

4r ) cos2�t + i
(
[V01s(1)

1i − V02s(1)
2i ] cos�t

+[V01s(1)
3i − V02s(1)

4i ] sin�t
)}
ξ1 +
{
r(2)

1r + H2
01r(2)

2r + r(2)
3r [V02

2 − V03
2] cos2�t

+i
(
[V02r(2)

1i + V03r(2)
2i ] cos�t + r(2)

3r [V03 − V02] sin�t
)}
ξ2 = 0, (28)

D2
t ξ2 +

{
l(2)
1r + i

(
V01l(2)

1i + V02l(2)
2i
)

cos�t
}
Dtξ2 +

{
f (1)
1r + i

(
V02 f (1)

1i + V03 f (1)
2i
)

cos�t
}
Dtξ1

+
{
s(2)

1r + H2
01s(2)

2r + (V01
2s(2)

3r + V02
2s(2)

4r ) cos2�t + i
(
[V01s(2)

1i − V02s(2)
2i ] cos�t

+[V03s(2)
3i − V02s(2)

4i ] sin�
)}
ξ2 +
{
r(1)

1r + H2
01r(1)

2r + r(1)
3r [V02

2 − V03
2] cos2�t

+i
(
[V02r(1)

1i + V03r(1)
2i ] cos�t + r(1)

3r [V03 − V02] sin�t
)}
ξ1 = 0, (29)

where the symbol Dt = d/dt refers to the derivative with respect to time t. The coefficients that appear in these equations

are real and depend on the physical parameters of the problem. The mathematical formulas of these coefficients are lengthy

and not included here. However, they are available upon request from the author. Eqs. (28) and (29) are two coupled

Mathieu equations having damping terms and complex coefficients. By making use of these equations, the stability

behavior of the fluid sheet is controlled. For a uniform stream, the periodicity of the stream will be absent. Therefore,

wave propagation is excited by using the electro-capillarity technique. Hence, in the limiting case of� tending to zero in

the above system, the damped Mathieu equations then become a linear differential equations with constant coefficients. It

can be satisfied by a growth rate solution, which may be written as

ξl = ξ̃l exp(i�̂t), (30)

where ξ̃l is the constant of integration. Substituting this equation into the above system of Mathieu equations the dispersion

equation of the perturbed motion is then

D(�, k) = �̂4 + (α11 + iα12)�̂3 + (α21 + iα22)�̂2 + (α31 + iα32)�̂ + α41 + iα42 = 0, (31)

where the coefficients α’s are clear from the context. It should be noted that (31) represents a complex linear dispersion

relation that is satisfied by values of �̂ and k. In the limiting case of nonporous media, the above dispersion relation

will reduce to those obtained by Rosensweig (1985). It is clear that the surface waves propagating along the interfaces

separating between the inviscid fluids will only be stable if all the roots of (31) are real. Otherwise, there are at least two

roots (complex conjugate) and thereby the interfacial inviscid waves are unstable.

4.1 Streamlines Distribution

An important concept in the study of fluid dynamics concerns the idea of streamlines. Streamlines in the physical domain

are a family of curves (sometimes called curvilinear) that are instantaneously tangent to the velocity vector of the flow,

resulting in a rectangular computational region. These show the direction a massless fluid element will travel in at any

point in time. In other meaning a streamline is a path traced out by a massless particle as it moves with the flow. In order to

study the concept of these lines, let us define a stream function, ψr of the time and space coordinates, where the following

relationships between the velocity components (ur and vr) and stream function have been used ur = ∂yψr, vr = −∂xψr,
which automatically satisfies the continuity equation. Eq. (2) together with these equations give the relation between

the stream function and the velocity potential as ψr = −
∫
∂yϕrdx. In the following we plot the stream lines through the

stream function to show its concept on the stability of the movement of the waves, in which the streamlines are effective

tools to visualize a qualitative impression of the flow behavior during the motion.

In Figs. 2 and 3, the streamlines profile is plotted by fixing the value of all the physical parameters except for one

parameter has varying values for comparison, snapshots of instantaneous streamlines of the stream function, are shown in

these graphs.
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Figure 2. Streamlines contours for a system having the parameters V01 = 4, V02 = 1,H01=2, μ̂1 = 0.7, L1 = 0.6, L2 = 0.9,

ρ̂1 = 0.9, ρ̂2 = 0.7, Q1 = 0.5, Q2 = 0.3, Q2 = 0.5, k = 0.3 and t = 0.2, while μ̂2 = 0.2, 0.5 and 0.7 of the parts (a), (b) and

(c), respectively.

Figure 3. The same system as that considered in Fig. 2, while the velocity V01 = 3, 6 and 9 of the parts (a), (b), and (c),

respectively.

The influence of the magnetic permeability ratio μ̂2 is presented throughout the parts of Fig. 2 for a system having the

parameters given in the caption of Fig. 2. The inspection of Fig. 2(a), where μ̂2=0.2 reveals that the flow consists of three
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cells (contours) consisting of two clockwise (left and right, negative values of streamlines) and the middle contours is anti

clockwise ( positive values of streamlines) circulations. In part (b) of this graph, the value of the magnetic permeability

ratio μ̂2 is increased to be 0.5. It is worthwhile to notice that the three streamlines contours are shifted to the left side, until

reduce to two in the part 3, when μ̂2 is increased to the value 0.7. A conclusion that may be made from the comparison

among the parts (a-c) of Fig. 2 is that the magnetic permeability ratio μ̂2 leads to crowd in the concentration of the

streamlines in the movement of the fluids.

Fig. 3 illustrates streamlines under the same values considered in the above system of Fig. 2, but at H01=20, while the

velocity of the upper layer V01 has three different values for the sake of comparison. In Fig. 3(a), where V01 =3, it is

shown that the flow consists of three contours, the middle cell is clockwise has negative values of streamlines and left

and right contours are anti clockwise have positive values of streamlines. In the part (b) of this graph the velocity V01 is

increased to the value 6, it is observed from this figure that the increasing of the velocity leads to crowd of the streamlines

cells, which are shifted above and replaced by another three ones in different orientations. The value V01 =9 is added to

the part (c) of Fig. 3 , we noticed that the contours of the streamlines is contracted at the center, until it is divided into

three contours to the top of this graph. A general conclusion of Figs. 2 and 3 is that the magnetic permeability ratio μ̂2

has a stabilizing influence on the movement on the waves, while the opposite effect is found for increasing the upper layer

velocity.

4.2 Periodicity and Numerical Results

Due to the periodicity of the velocity, the stability picture has changed dramatically and hence we return to the general

form of dispersion relations (28) and (29). The nature of the solution of these equations will govern the fluctuations of

the amplitude of the interface deflection and will, therefore, determine the parametric excitation of the interfacial waves.

According to the complexity of the mathematical problem we use a perturbation technique, one of this technique is the

method of multiple time scales (Nayfeh, 1979) which has been successfully used to treat similar these equations, since

the solutions and the properties of Eqs. (28) and (29) are unknown. Applying the method of multiple scales, where the

independent variable t can be extended to introduce alternative independent variables: tn = εt ,n = 0, 1, 2, where the

parameter ε represents a small dimensionless parameter characterizing the steepness ratio of the wave. Thus, we define

t0 as the variables appropriate to fast variations and t1, t2 as the slow variables. The differential operators can now be

expressed as the derivative expansions:

∂t ≡ ∂t0 + ε∂t1 + ... and ∂2
t2 ≡ ∂2

t2
0

+ 2ε∂2
t0t1 + ..., (32)

where t0 is the time of the lowest order. For the small dimensionless parameter ε, we can characterize the amplitude of the

periodic force which is defined as V0r = εṼ0r. The analysis then follows the usual perturbation procedure and suppression

of the secular terms except that is now more convenient to write the solution in a complex form.

Now, let the dependent variables ξl be expanded in the form

ξl(t, ε) = ξ0l(t0, t1) + εξ1l(t0, t1) + ..., l = 1, 2. (33)

Inserting (32) and (33) into (28) and (29) and equating coefficients of like powers of ε (because each of the ξl are inde-

pendent of ε) yields simpler inhomogeneous equations, which can be solved successively with knowledge of the solutions

of the previous orders. Uniform solutions are required to eliminate the secular terms. This elimination produces the

solvability conditions corresponding to the terms containing the factor exp(i�̂t0), in which the solvability condition is

divided into two cases. The first is valid in the non-resonant case in which the frequency � is away from the frequency

�̂. Otherwise the resonance arises when the frequency� approaches the frequency �̂. Hence the solvability condition in

the non-resonant case is

( f (1)
1
+ i f (1)

2
)∂t1 A1 + (s(1)

1
+ is(1)

2
)A1 = 0. (34)

This condition show that the motion is stable if

f (1)
1

s(1)
1
+ f (1)

2
s(1)

2
≥ 0. (35)

In the resonance case when the frequency� approaches the frequency �̂, we introducing a detuning parameter λ(1) defined

by

� = 2�̂ + 2ελ(1), (36)

and hence the solvability conditions are

( f (1)
1
+ i f (1)

2
)∂t1 Al + (s(1)

1
+ is(1)

2
)Al + (h(1)

1
+ ih(1)

2
)Ā1 exp(2iλ(1)t1) = 0, (37)
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where Ā1 is the complex conjugate of A1. The solution of Eq. (37) imposes a dispersion relation. This dispersion relation

will be used to discuss the stability behavior in this resonant case. Let the solution of this equation has the form:

A1 = (x(1)
1
+ ix(1)

2
) exp[(�̃ + iλ(1))t1] (38)

with real �̃ and λ(1). Substituting equation (38) into Eq. (37) and separating the real and imaginary parts, if x(1)
1

and x(1)
2

are proportional to exp(�̃t1). Then the coefficients matrix must vanish for non-trivial solution. This yields the following

dispersion relation:

�̃2 + 2 f (1)( f (1)
1

s(1)
1
+ f (1)

2
s(1)

2

)
�̃ + λ(1)2

+ 2 f (1)( f (1)
1

s(1)
1
− f (1)

2
s(1)

2

)
λ(1)

+ f (1)(s(1)
1

2
+ s(1)

2

2 − h(1)
1

2 − h(1)
2

2)
= 0, (39)

where, f (1) = 1/( f (1)
1

2
+ f (1)

2

2
). An important feature of the waves is that the growth or decay is according to the sign of

�̃. In view of the Hurwitz criterion (Nayfeh, 1979), the stability of Eq. (39) arises when

f (1)
1

s(1)
1
+ f (1)

2
s(1)

2
≥ 0. (40)

λ(1)2
+ 2 f (1)( f (1)

1
s(1)

2
− f (1)

2
s(1)

1

)
λ(1) + f (1)(s(1)

1

2
+ s(1)

2

2 − h(1)
1

2 − h(1)
2

2) ≥ 0 (41)

are satisfied. Condition (40) is the same as condition (35) which satisfies in the non-resonant case and the values of λ(1)

are the roots of the Eq. (40), which are:

λ(1)
1,2 = − f (1)( f (1)

1
s(1)

2
− f (1)

2
s(1)

1

) ± F, (42)

where,

F =
(

f (1)2(
f (1)
1

s(1)
2
− f (1)

2
s(1)

1

)2 − f (1)(s(1)
1

2
+ s(1)

2

2 −h(1)
1

2 −h(1)
2

2)) 1
2

and the curves λ(1)
1

and λ(1)
2

represent the transition curves

in the plane (λ(1) − k) that separate the stable region from the unstable one. According to Fleque’s theory (Nayfeh, 1979)

of linear differential equations with periodic coefficients, the region bounded by the two branches λ(1)
1

and λ(1)
2

is unstable,

while the area outside them is stable along which ξ(l)(t) are periodic with a period of the other. It is clear that the two

branches λ(1)
1

and λ(1)
2

have common fixed points known as the resonant points. The emergence of these branches occurs

as ε tends to zero in Eq. (36).

In this part, the goal is to determine the numerical profiles for the stability pictures for interfacial waves propagating

between the three magnetic fluid layers through porous media. So, numerical computations are made for the resonant

cases discussed above. The stability characteristics are governed by equations (42) which require the specification of the

same parameters which we indicated in the case of the uniform stream. The resonant case of the frequency� approaching

the disturbance frequency �̂ is carried out. The numerical calculations for the transition and curves λ(1)
1

and λ(1)
2

in the

resonant case of � near �̂ are displayed in Figs. 4-6.

The parts of Fig. (4) show the variation of the parameter λ(1) with the wave number k, for a system having the parameters

given in the caption of Fig. (4). A numerical search was conducted to seek the regions of the stability and instability.

The stable region involved in these graphs was decided by satisfying the inequalities (40) and (41), where S represents

the stable region and U indicates the unstable case. The instability is due to the balance between the frequency� and the

disturbance frequency �̂. The influence of the velocity V03 is displayed in Fig. 4, the stability diagrams that are shown

in this graph represent two stable regions and other region that lies between the two transition curves λ(1)
1

and λ(1)
2

are

unstable, which coincides with Floquet’s theory. In Fig. 4(a), we choose the velocity V03 = 2 and select suitable values

of the other parameters which we indicated above. Inspection of the stability diagrams reveals that there is an unstable

regions bounded by the transition curves λ(1)
1

and λ(1)
2

and other outside them which is stable. The increasing of velocity

to the value V03 =5 under the same values of the other parameters is given in figure 4(b). The stability diagrams that are

shown in these graphs illustrate that the unstable area increase, while the stable regions decrease. Thus, we conclude that

the increase of the velocity has a destabilizing influence. In Fig. 4(c), the stability diagrams that are shown in these graphs

represent the same system as in the previous graphs while the velocity increases to the value V03 = 7, the unstable region

increase and the stable regions decrease. It is apparent from the comparison between the graphs of Fig. 4(a)-(c) that the

variation of the velocity in lower layer plays a destabilizing role in the motion of the fluids.
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Figure 4. Illustrated in the plane (λ(1) − k) according to equations (42), for a system having V01 = 4, V02 = 1, H01=2,

μ̂1 = 0.2, μ̂2 = 0.7, L1 = 0.6, L2 = 0.9, ρ̂1 = 0.9, ρ̂2 = 0.7, Q1 = 0.5, Q2 = 0.3, Q2 = 0.5, with V02 = 2, 5 and 7 of the

partitions (a), (b) and (c), respectively.

Figure 5. The graph is constructed for λ(1) versus k, for the same system given in Fig. 4, with with the permeability

parameter Q2= 2.5, 3.5 and 4.5 of the partitions (a), (b) and (c), respectively.
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In order to examine the effect of the permeability parameter in the middle layer Q2 on the stability criteria, numerical

calculations are made in the parts of Fig. 5 The graph shown in the plane (λ(1) − k) are achieved for three values of the

permeability parameter Q2 =2.5, 3.5, and 4.5, corresponding to the partitions (a), (b) and (c) respectively, where the other

quantities are held fixed. The inspection of the stability diagram of the parts of Fig.5 reveals that the increase of the

permeability parameter leads to increase in the width of the stability regions, while the unstable areas are decrease. The

conclusion that may be drawn here is that the permeability parameter has a stabilizing influence on the stability behavior

of the waves. In the parts (a), (b) and (c) of Fig. 6, we repeat the same diagrams as illustrated in Fig. 4, with a change

in the value of the effect of the magnetic field H01= 10, 20, 30, while the other parameters are fixed. Applying the above

stability constraints to separate the stable and the unstable regions, we notice that the magnetic field plays a stabilizing

role in the stability criteria. This influence may be physically interpreted as suggesting that some of the kinetic energy of

the waves has been transferred to the magnetic field.

Figure 6. The stability diagrams in the (λ(1) − k), with the same parameters given in Fig. 4 at H01= 10, 20 and 30 of the

partitions (a), (b) and (c), respectively.

5. Conclusions

Theoretical and numerical analysis of linear stability of a fluid sheet of finite thickness embedded between two bounded

layers of fluids through porous media are carried out. The system is under the influence of a horizontal magnetic field with

a periodic stream. Two linear dispersion equations of Mathieu type have been derived and involved parametric coefficients

as well as parametric imaginary damping term. These equations are used to control the stability of the fluid sheet motion.

The stability analyses have been investigated by using the multiple timescales method. Consequently, a mathematical

simplification is desired to relieve this complication for the Mathieu equation. The transition curves separating the stable

region from unstable regions are identified. The analysis recovers the key numerical findings and provides qualitative

understanding. Numerical calculation of the stability of the system are made where the physical parameters are put in the

dimensionless form. Stability diagrams are plotted and discussed for different sets of physical parameters. The stability

examination yields the following results. In the case of uniform velocity, the streamlines contours are plotted an discussed,

where the results show that the magnetic permeability ratio has a stabilizing influence on the movement on the waves,

while the opposite influence is found for increasing the velocity of the upper layer. When the periodicity of the velocity

is taken into accunt, the method of multiple scales is applied to obtain stability solution for the considered system. It is

found that the velocity of the lower layer has a destabilizing effect whereas the permeability parameter and the magnetic
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field play an opposite influence to the stability of the fluid layers. Finally, the results given in this paper may throw some

light on the fluid dynamic aspects of an aquifer or an oil well and in petroleum reservoirs, spray coating process, plastics

manufacture, metal powder production and in microchips fabrication.
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Nomenclature

∇ gradient operator

x, y coordinates system

î, ĵ unit vectors along x− and y− directions

Vr fluid velocity vector (r = 1, 2, 3)

g gravitational acceleration

t time variable

pr fluid pressure

ρr fluid density

μ̃0r fluid viscosity

Qr permeability of the porous media

Fl surface geometry (l = l, 2)

hl surface deflection

nl unit outward normal vector to the surface

tl the corresponding unit tangent

Hr magnetic field intensity

μr magnetic permeability

Mr Maxwell stress tensor

I identity tensor

� velocity frequency

ϕr velocity potential

χr magnetic potential

ψr stream function

Wl Weber number

k wave number

λ detuning parameter

c.c complex conjugate of the preceding terms

‖ ‖ jump across the interfaces
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