Quasi-arithmetic Means Inequalities Criteria for Differentiable Functions

Božidar Ivanković ${ }^{1}$
${ }^{1}$ Faculty of Transport and Traffic Engineering, University of Zagreb, Vukelićeva 4, Zagreb, Croatia
Correspondence: Božidar Ivanković, Faculty of Transport and Traffic Sciences, University of Zagreb, Croatia. E-mail: ivankovb@fpz.hr

Received: October 8, 2015
doi:10.5539/jmr.v7n4p130

Accepted: October 21, 2015 Online Published: November 6, 2015
URL: http://dx.doi.org/10.5539/jmr.v7n4p130

The research is financed by Faculty of Transport and Traffic Engineering

Abstract

Quasi-arithmetic means are defined for continuous, strictly monotone functions. In the case that functions are twice differentiable, we obtained criteria for inequalities between finite number of quasi-arithmetic means in additional and multiplicative case. Applications for Hölder and Minkowski type inequalities are given.

1. Introduction

The quasi-arithmetic mean in discrete instance is defined for a continuous and monotone function $\varphi: J_{x} \subseteq \mathbb{R} \rightarrow \mathbb{R}$, real sentence $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in J_{x}$ and a probability weight sentence of non-negative real numbers $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, with $\sum_{k=1}^{n} a_{k}=1$ by the formula:

$$
\begin{equation*}
M_{\varphi}(\mathbf{x} ; \mathbf{a})=\varphi^{-1}\left(\sum_{k=1}^{n} a_{k} \varphi\left(x_{k}\right)\right) \tag{1}
\end{equation*}
$$

If φ is a differentiable function, then we call it differentiable quasi-arithmetic mean in this article. Here the twice differentiability is considered.
For continuous and monotone functions $\psi: J_{y} \rightarrow \mathbb{R}$ and $\chi: J_{w} \rightarrow \mathbb{R}$ that are defined on intervals $J_{y}, J_{w} \subseteq \mathbb{R}$, sentence $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in J_{y}$ and $f: J_{x} \times J_{y} \rightarrow J_{w}$, the inequality

$$
\begin{equation*}
f\left(M_{\varphi}(\mathbf{x} ; \mathbf{a}), M_{\psi}(\mathbf{y} ; \mathbf{a})\right) \geq M_{\chi}(\mathbf{f}(\mathbf{x}, \mathbf{y}) ; \mathbf{a}) \tag{2}
\end{equation*}
$$

was investigated by E. Beck in 1970 for additive case where $\mathbf{f}(\mathbf{x}, \mathbf{y})=\mathbf{x}+\mathbf{y}$ and multiplicative case with $\mathbf{f}(\mathbf{x}, \mathbf{y})=\mathbf{x y}=$ $\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$. Criteria were obtained for φ, ψ and χ being twice differentiable.
Enlargement with differentiable, continuous and monotone function $\rho: J_{z} \rightarrow \mathbb{R}$, where $J_{z} \subseteq \mathbb{R}$ and sentence $\mathbf{z}=$ $\left(z_{1}, \ldots, z_{n}\right) \in J_{z}$, for a function $f: J_{x} \times J_{y} \times J_{z} \rightarrow J_{w}$, was given in (Ivanković, 2015). The conditions for inequality

$$
\begin{equation*}
f\left(M_{\varphi}(\mathbf{x} ; \mathbf{a}), M_{\psi}(\mathbf{y} ; \mathbf{a}), M_{\rho}(\mathbf{z} ; \mathbf{a})\right) \geq M_{\chi}(\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) ; \mathbf{a}) \tag{3}
\end{equation*}
$$

were proven in additive and multiplicative cases.
The inequality (3) is equivalent with inequality

$$
\begin{equation*}
H\left(\sum_{i=1}^{n} a_{i} s_{i}, \sum_{i=1}^{n} a_{i} t_{i}, \sum_{i=1}^{n} a_{i} r_{i}\right) \geq \sum_{i=1}^{n} a_{i} H\left(s_{i}, t_{i}, r_{i}\right) \tag{4}
\end{equation*}
$$

where $H(s, t, r)=\chi f\left(\varphi^{-1}(s), \psi^{-1}(t), \rho^{-1}(r)\right), s=\varphi(x), t=\psi(y)$ and $r=\rho(z)$. Direction in (4) depends on convexity of $H(s, t, r)$ and tendency of χ.
In this article, conditions for m quasi-arithmetic means inequality are given in additive and multiplicative case.

2. Fundamental Condition

The inequality (3) is enlarged for m continuous, strictly monotone functions $\varphi_{i}: J_{i} \rightarrow \mathbb{R}$ generating m quasi-arithmetic means:

$$
M_{\varphi_{i}}\left(\mathbf{x}_{\mathbf{i}} ; \mathbf{a}\right)=\varphi_{i}^{-1}\left(\sum_{j=1}^{n} a_{j} \cdot \varphi_{i}\left(x_{i j}\right)\right), i=1, \ldots, m .
$$

The means are calculating for real sequences $\mathbf{x}_{\mathbf{i}}=\left(x_{i 1}, \ldots, x_{i n}\right), i=1, \ldots, m$, belonging to $J_{i} \subseteq \mathbb{R}$. For given n tuples, the function values $f: J_{1} \times J_{2} \times \cdots \times J_{m} \rightarrow \mathbb{R}$ are constituting new n-tuple by calculating: $\mathbf{f}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}} \ldots, \mathbf{x}_{\mathbf{m}}\right)=$ $\left(f\left(x_{11}, x_{21}, \ldots, x_{m 1}\right), f\left(x_{12}, x_{22}, \ldots, x_{m 2}\right), \ldots, f\left(x_{1 n}, x_{2 n}, \ldots, x_{m n}\right)\right)$
If $f: J_{1} \times J_{2} \times \cdots \times J_{m} \rightarrow J_{w}$, then the quasi-arithmetic mean is defined properly:

$$
\begin{equation*}
M_{\chi}\left(\mathbf{f}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{m}}\right) ; \mathbf{a}\right)=\chi^{-1}\left(\sum_{j=1}^{n} a_{j} \cdot \chi f\left(x_{1 j}, x_{2 j}, \ldots, f\left(x_{m j}\right)\right)\right) \tag{5}
\end{equation*}
$$

For just defined terms the next proposition is declared.
Proposition 2.1. With respect to the terms defined above, for strictly increasing function χ the inequality

$$
\begin{equation*}
f\left(M_{\varphi_{1}}\left(\boldsymbol{x}_{1} ; \boldsymbol{a}\right), \ldots, M_{\varphi_{m}}\left(\boldsymbol{x}_{\boldsymbol{m}} ; \boldsymbol{a}\right)\right) \geq M_{\chi}\left(f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right) ; \boldsymbol{a}\right) \tag{6}
\end{equation*}
$$

states if and only if the function

$$
\begin{equation*}
H\left(s_{1 j}, \ldots, s_{m j}\right)=\chi f\left(\varphi_{1}^{-1}\left(s_{1 j}\right), \ldots, \varphi_{m}^{-1}\left(s_{m j}\right)\right), s_{i j}=\varphi_{i}\left(x_{i j}\right), j=1, \ldots, n \tag{7}
\end{equation*}
$$

is concave and χ increases or if (7) is convex and χ decreases.
The inequality (6) is opposite if the function H defined by (7) is convex and χ increases or if $H\left(s_{1 j}, \ldots, s_{m j}\right)$ is concave and χ decreases. Function (7) is defined as well.

Proof. For the benefit of better understanding, the proof with increasing χ is following. Suppose (7) is a concave function. Then for every collection of n-tuples given bellow

$$
\begin{equation*}
\mathbf{s}_{\mathbf{i}}=\left(\varphi_{i}\left(x_{i}\right)\right)=\left(\varphi_{i}\left(x_{i 1}\right), \varphi_{i}\left(x_{i 2}\right), \ldots, \varphi_{i}\left(x_{i n}\right)\right)=\left(s_{i 1}, s_{i 2}, \ldots, s_{i n}\right), \quad i=1, \ldots, m \tag{8}
\end{equation*}
$$

and every choice of probability weights a, the well-known Jensen-McShane inequality (Pečarić, et al., 1992, p.48-49) holds for m-tuples:

$$
\begin{equation*}
H\left(\sum_{j=1}^{n} a_{j}\left(s_{1 j}, s_{2 j}, \ldots, s_{m j}\right)\right) \geq \sum_{j=1}^{n} a_{j} H\left(s_{1 j}, s_{2 j}, \ldots, s_{m j}\right) \tag{9}
\end{equation*}
$$

Linear combination calculating obtains the following

$$
\left.H\left(\sum_{j=1}^{n} a_{j} s_{1 j}, \sum_{j=1}^{n} a_{j} s_{2 j}, \ldots, \sum_{j=1}^{n} a_{j} s_{m j}\right)\right) \geq \sum_{j=1}^{n} a_{j} H\left(s_{1 j}, s_{2 j}, \ldots, s_{m j}\right) .
$$

According the definiton's relations (8), if $s_{i j}=\varphi_{i}\left(x_{i j}\right), j=1, \ldots, n$, then $\varphi_{i}^{-1}\left(s_{i j}\right)=x_{i j}$. From functon's definition $H=\chi f\left(\varphi_{1}^{-1}, \ldots, \varphi_{m}^{-1}\right)$ it follows:

$$
H\left(\sum_{j=1}^{n} a_{j} s_{1 j}, \sum_{j=1}^{n} a_{j} s_{2 j}, \ldots, \sum_{j=1}^{n} a_{j} s_{m j}\right)=\chi f\left(\varphi_{1}^{-1}\left(\sum_{j=1}^{n} a_{j} \cdot s_{1 j}\right), \varphi_{2}^{-1}\left(\sum_{j=1}^{n} a_{j} s_{2 j}\right), \ldots, \varphi_{m}^{-1}\left(\sum_{j=1}^{n} a_{j} s_{m j}\right)\right) .
$$

Consequently $H\left(s_{1 j}, s_{2 j}, \ldots, s_{m j}\right)=\chi f\left(\varphi_{1}^{-1}\left(s_{1 j}\right), \varphi_{2}^{-1}\left(s_{2 j}\right), \ldots, \varphi_{m}^{-1}\left(s_{m j}\right)\right)$. Now, the (9) states as

$$
\chi f\left(\varphi_{1}^{-1}\left(\sum_{j=1}^{n} a_{j} s_{1 j}\right), \varphi_{2}^{-1}\left(\sum_{j=1}^{n} a_{j} s_{2 j}\right), \ldots, \varphi_{m}^{-1}\left(\sum_{j=1}^{n} a_{j} s_{m j}\right)\right) \geq \sum_{j=1}^{n} a_{j} \chi f\left(\varphi_{1}^{-1}\left(s_{1 j}\right), \varphi_{2}^{-1}\left(s_{2 j}\right), \ldots, \varphi_{m}^{-1}\left(s_{m j}\right)\right) .
$$

The consequence of χ being increasing is that χ^{-1} increase itself:

$$
f\left(\varphi_{1}^{-1}\left(\sum_{j=1}^{n} a_{j} \varphi_{1}\left(x_{1 j}\right)\right), \varphi_{2}^{-1}\left(\sum_{j=1}^{n} a_{j} \varphi_{2}\left(x_{2 j}\right)\right), \ldots, \varphi_{m}^{-1}\left(\sum_{j=1}^{n} a_{j} \varphi_{m}\left(x_{m j}\right)\right)\right) \geq \chi^{-1}\left(\sum_{j=1}^{n} a_{j} \chi f\left(x_{1 j}, x_{2 j}, \ldots, x_{m j}\right)\right)
$$

The inequality above is in fact the inequality (6). So the reverse proof is end.

For twice differentiable m-variables function's convexity and concavity the criteria exist. Noting the second partial derivatives by $H_{i j}=\frac{\partial^{2} H}{\partial s_{i} \partial s_{j}}, \quad i, j=1, \ldots, m$, there is a Theorem from general mathematical analysis given here as Remark.

Remark 2.1. Function $H\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ is convex if and only if the next m inequalities are satisfied:

$$
H_{11}>0,\left|\begin{array}{cc}
H_{11} & H_{12} \tag{10}\\
H_{21} & H_{22}
\end{array}\right|>0,\left|\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
H_{21} & H_{22} & H_{23} \\
H_{31} & H_{32} & H_{33}
\end{array}\right|>0, \ldots,\left|\begin{array}{ccc}
H_{11} & \cdots & H_{1 m} \\
\vdots & \ddots & \vdots \\
H_{m 1} & \cdots & H_{m m}
\end{array}\right|>0 .
$$

In opposite, function $H\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ is concave if and only if the next m inequalities are satisfied:

$$
H_{11}<0,\left|\begin{array}{cc}
H_{11} & H_{12} \tag{11}\\
H_{21} & H_{22}
\end{array}\right|>0,\left|\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
H_{21} & H_{22} & H_{23} \\
H_{31} & H_{32} & H_{33}
\end{array}\right|<0, \ldots,(-1)^{m} \cdot\left|\begin{array}{ccc}
H_{11} & \cdots & H_{1 m} \\
\vdots & \ddots & \vdots \\
H_{m 1} & \cdots & H_{m m}
\end{array}\right|>0 .
$$

Inequalities (10) and (11) will be of crucial interest in what is followning.

3. Additive Case

The additive case appears when function from (6) is an addition: $f\left(x_{1}, \ldots, x_{m}\right)=x_{1}+\cdots+x_{m}$. The criteria for inequality (6) are proven through the next Theorem.

Theorem 3.1. Suppose that $\varphi_{1}, \ldots, \varphi_{m}$ and χ are twice differentiable strictly monotone functions with second derivations differ from zero on their domains J_{1}, \ldots, J_{m} and J_{w}. Suppose that each n-tuple \boldsymbol{x}_{i} is assembled by values from $J_{i}, i=$ $1, \ldots, m$ and suppose that sum $\sum_{i=1}^{m} x_{i j}$ belongs to J_{w} for every $j=1, \ldots, n$. Then there exist functions:

$$
\begin{equation*}
F_{i}=\frac{\varphi_{i}^{\prime}}{\varphi_{i}^{\prime \prime}}, i=1, \ldots, m \quad \text { and } \quad F=\frac{\chi^{\prime}}{\chi^{\prime \prime}} \tag{12}
\end{equation*}
$$

Take $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right), a_{i} \geq 0$ and $\sum_{i=1}^{n} a_{i}=1$. Connote n-tuple: $\sum_{i=1}^{m} \boldsymbol{x}_{i}=\left(\sum_{i=1}^{m} x_{i 1}, \sum_{i=1}^{m} x_{i 2}, \ldots, \sum_{i=1}^{m} x_{i n}\right)$. The inequality

$$
\begin{equation*}
\sum_{i=1}^{m} M_{\varphi_{i}}\left(\boldsymbol{x}_{i} ; \boldsymbol{a}\right) \geq M_{\chi}\left(\sum_{i=1}^{m} \boldsymbol{x}_{i} ; \boldsymbol{a}\right), \tag{13}
\end{equation*}
$$

holds if and only if any of the following conditions is fulfilled:
(i) all F, F_{1}, \ldots, F_{m} are positive and $F \geq F_{1}+F_{2}+\cdots+F_{m}$.
(ii) F is negative and all F_{1}, \ldots, F_{m} are positive

The inequality in (13) is opposite if and only if any of the following is fulfilled:
(i) all F, F_{1}, \ldots, F_{m} are negative and $F \leq F_{1}+F_{2}+\cdots+F_{m}$.
(ii) F is positive and all F_{1}, \ldots, F_{m} are negative

Proof. Since the Proposition 2.1 is proven, it is enough to prove concavity for the function $H\left(s_{1 j}, s_{2 j}, \ldots, s_{m j}\right)=$ $\chi\left(\varphi_{1}^{-1}\left(s_{1 j}\right)+\ldots+\varphi_{m}^{-1}\left(s_{m j}\right)\right)$, respecting Remark 2.1. Elements in (10) and (11) are given with $H_{i i}=\frac{\partial^{2} H}{\partial s_{i}^{2}}=\frac{\chi^{\prime}}{\left(\varphi_{i}^{\prime}\right)^{2}}\left(\frac{\chi^{\prime \prime}}{\chi^{\prime}}-\frac{\varphi_{i}^{\prime \prime}}{\varphi_{i}^{\prime}}\right)=$
$\frac{\chi^{\prime}}{\left(\varphi_{i}^{\prime}\right)^{\prime}}\left(\frac{1}{F}-\frac{1}{F_{i}}\right)$ and $H_{i j}=\frac{\partial^{2} H}{\partial s i \partial s_{j}}=\frac{\chi^{\prime \prime}}{\varphi_{i}^{\prime} \varphi_{j}^{\prime}}=\frac{\chi^{\prime}}{\varphi_{i}^{\prime} \varphi_{j}^{\prime}} \frac{1}{F}$ for $i \neq j$. The condition on the k-th determinant in (11) is:

$$
(-1)^{k} \cdot\left|\begin{array}{cccc}
\frac{\chi^{\prime}}{\left(\varphi_{1}^{\prime}\right)^{2}}\left(\frac{1}{F}-\frac{1}{F_{1}}\right) & \frac{\chi^{\prime}}{\varphi_{1}^{\prime} \varphi_{2}^{\prime}} \frac{1}{F} & \frac{\chi^{\prime}}{\varphi_{1}^{\prime} \varphi_{3}^{\prime}} \frac{1}{F} & \cdots \\
\frac{\chi^{\prime}}{\varphi_{2}^{\prime} \varphi_{1}^{\prime}} \frac{1}{F} & \frac{\chi^{\prime}}{\left(\varphi_{2}^{\prime}\right)^{2}}\left(\frac{1}{F}-\frac{1}{F_{2}}\right) & \frac{\chi^{\prime}}{\varphi_{2}^{\prime} \varphi_{3}^{\prime}} \frac{1}{F} & \cdots \\
\frac{\chi^{\prime}}{\varphi_{3}^{\prime} \varphi_{1}^{\prime}} \frac{1}{F} & \frac{\chi^{\prime}}{\varphi_{3}^{\prime} \varphi_{2}^{\prime}} \frac{1}{F} & \frac{\chi_{k}^{\prime}}{\left(\varphi_{3}^{\prime}\right)^{2}}\left(\frac{1}{F}-\frac{1}{F_{3}}\right) & \cdots \\
\vdots & \vdots & \frac{\chi^{\prime}}{\varphi_{2}^{\prime} \varphi_{k}^{\prime}} \frac{1}{F} \\
\frac{\chi^{\prime}}{\varphi_{k}^{\prime} \varphi_{1}^{\prime}} & \frac{\chi^{\prime}}{\varphi_{k}^{\prime} \varphi_{2}^{\prime}} & \vdots & \ddots \\
F & \frac{\chi^{\prime}}{\varphi_{n}^{\prime} \varphi_{3}^{\prime}} & \cdots & \frac{\chi^{\prime}}{\left(\varphi_{k}^{\prime}\right)^{2}}\left(\frac{1}{F}-\frac{1}{F_{k}}\right)
\end{array}\right|>0
$$

From every, k-th row, the fraction $\frac{\chi^{\prime}}{\varphi_{1}^{\prime} \cdots\left(\varphi_{k}^{\prime}\right)^{2} \cdots \varphi_{m}^{\prime}}$ could be extracted. Their product is $\frac{\left(\chi^{\prime}\right)^{m}}{\left(\varphi_{1}^{\prime}\right)^{m+1} \cdots\left(\varphi_{m}^{\prime}\right)^{m+1}}$. After that, each k-th column contains factor $\varphi_{1} \cdots \varphi_{k-1} \cdot \varphi_{k+1} \cdots \varphi_{m}$ that could be extracted. Their product is $\left(\varphi_{1}^{\prime}\right)^{m-1} \cdots\left(\varphi_{m}^{\prime}\right)^{m-1}$. Multiplying the product together, we have new condition with factor $\frac{\left(\chi^{\prime}\right)^{m}}{\left(\varphi_{1}^{\prime}\right)^{2} \cdots\left(\varphi_{m}^{\prime}\right)^{2}}$.
Elementary determinant transformations and some algebra entail the following conditions:

$$
\begin{equation*}
\left(\chi^{\prime}\right)^{k}\left(\frac{F}{F F_{1} \cdots F_{k}}-\frac{F_{1}}{F F_{1} \cdots F_{k}}-\frac{F_{2}}{F F_{1} \cdots F_{k}}-\cdots-\frac{F}{F F_{1} \cdots F_{k}}\right) \geq 0, k=1, \ldots, m \tag{14}
\end{equation*}
$$

The proof of the convex case is analogue and we obtain conditions:

$$
\begin{equation*}
\left(-\chi^{\prime}\right)^{k}\left(\frac{F}{F F_{1} \cdots F_{k}}-\frac{F_{1}}{F F_{1} \cdots F_{k}}-\frac{F_{2}}{F F_{1} \cdots F_{k}}-\cdots-\frac{F}{F F_{1} \cdots F_{k}}\right) \geq 0, k=1, \ldots, m . \tag{15}
\end{equation*}
$$

Conditions for inequality in (13) were obtained after discussion when $\chi^{\prime}>0$ in (14) or when $\chi^{\prime}<0$ in (15).
Conditions for the opposite inequality in (13) followed after discussion when $\chi^{\prime}<0$ in (14) or when $\chi^{\prime}>0$ in (15).

4. Multiplicative Case

In the multiplicative case the function from (6) is a multiplication: $f\left(x_{1}, \ldots, x_{m}\right)=x_{1} \cdots x_{m}$. The criteria for inequality (6) are proven through the next Theorem.

Theorem 4.1. Suppose that $\varphi_{1}, \ldots, \varphi_{m}$ and χ are twice differentiable strictly monotone functions on their domains J_{1}, \ldots, J_{m} and J_{w}. Suppose that each n-tuple $\left(x_{i}\right)=\left(x_{i 1}, \ldots, x_{i n}\right)$ is positive and consists values from $J_{i}, i=1, \ldots, m$ such that product $\prod_{i=1}^{m} x_{i j}$ belongs to J_{w} for every $j=1, \ldots, n$. Presume functions

$$
\begin{equation*}
D_{i}\left(x_{i}\right)=\frac{1}{1+x_{i} \frac{\varphi_{i}^{\prime \prime}\left(x_{i}\right)}{\varphi_{i}^{\prime}\left(x_{i}\right)}}, i=1, \ldots, m \text { and } D(u)=\frac{1}{1+u \frac{\chi^{\prime \prime}(u)}{\chi^{\prime}(u)}} \tag{16}
\end{equation*}
$$

are definable for $u=x_{1} \cdots x_{m}$. Take $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right), a_{i} \geq 0$ with $\sum_{i=1}^{n} a_{i}=1$ and connote n-tuple

$$
\begin{align*}
& \prod_{i=1}^{m} \boldsymbol{x}_{\boldsymbol{i}}=\left(\prod_{i=1}^{m} x_{i 1}, \prod_{i=1}^{m} x_{i 2}, \ldots, \prod_{i=1}^{m} x_{i n}\right) . \text { Then the inequality } \\
& \qquad \prod_{i=1}^{m} M_{\varphi_{i}}\left(\boldsymbol{x}_{i} ; \boldsymbol{a}\right) \geq M_{\chi}\left(\prod_{i=1}^{m} \boldsymbol{x}_{i} ; \boldsymbol{a}\right), \tag{17}
\end{align*}
$$

holds if and only if any of the following conditions is fulfilled:
(i) all D, D_{1}, \ldots, D_{m} are positive and $D \geq D_{1}+D_{2}+\cdots+D_{m}$.
(ii) D is negative and all D_{1}, \ldots, D_{m} are positive

The inequality in (17) is opposite if and only if any of the following is fulfilled:
(i) all D, D_{1}, \ldots, D_{m} are negative and $D \leq D_{1}+D_{2}+\cdots+D_{m}$.
(ii) D is positive and all D_{1}, \ldots, D_{m} are negative

Proof. In the case that χ increases, the inequality in (17) is based on the concavity of the function $H\left(s_{1 j}, s_{2 j}, \ldots, s_{m j}\right)=$ $\chi\left(\varphi_{1}^{-1}\left(s_{1 j}\right) \cdots \varphi_{m}^{-1}\left(s_{m j}\right)\right)$ and opposite inequality is based on its convexity. When χ decreases, inequalities are vice versa. Here we give the proof for (17) according Remark 2.1. From $H\left(s_{1 j}, s_{2 j}, \ldots, s_{m j}\right)$ it follows that $H_{i i}=\frac{\partial^{2} H}{\partial s_{i}^{2}}=\frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{i}^{2}\left(\varphi_{i}^{\prime}\right)^{2}}$. $\left(\frac{1}{D}-\frac{1}{D_{i}}\right)$ and $H_{i j}=\frac{\partial^{2} H}{\partial s_{j} \partial s_{i}}=\frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{i} x_{j} \varphi_{i}^{\prime} \varphi_{j}^{\prime}} \frac{1}{D}$. The conditions (11) is explored on the k-th determinant:

$$
(-1)^{m}\left|\begin{array}{cccc}
\frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{1}^{2}\left(\varphi_{1}^{\prime}\right)^{2}}\left(\frac{1}{D}-\frac{1}{D_{1}}\right) & \frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{1} x_{2} \varphi_{1}^{\prime} \varphi_{2}^{\prime}} \frac{1}{D} & \cdots & \frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{1} x_{m} \varphi_{1}^{\prime} \varphi_{m}^{\prime}} \frac{1}{D} \\
\frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{2} x_{1} \varphi_{2}^{\prime} \varphi_{1}^{\prime}} \frac{1}{D} & \frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{2}^{2}\left(\varphi_{2}^{\prime}\right)^{2}}\left(\frac{1}{D}-\frac{1}{D_{2}}\right) & \cdots & \frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{2} x_{m} \varphi_{2}^{\prime} \varphi_{m}^{\prime}} \frac{1}{D} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{m} x_{1} \varphi_{m}^{\prime} \varphi_{1}^{\prime}} \frac{1}{D} & \frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{m} x_{2} \varphi_{m}^{\prime} \varphi_{2}^{\prime}} \frac{1}{D} & \cdots & \frac{x_{1} \cdots x_{m} \chi^{\prime}}{x_{m}^{2}\left(\varphi_{m}^{\prime}\right)^{2}}\left(\frac{1}{D}-\frac{1}{D_{m}}\right)
\end{array}\right|>0 .
$$

Elementary determinant transformations and simple algebra entails

$$
\begin{equation*}
\left(\chi^{\prime}\right)^{m}\left(x_{1} \cdots x_{m}\right)^{m}\left(\frac{D}{D D_{1} \cdots D_{m}}-\frac{D_{1}}{D D_{1} \cdots D_{m}}-\frac{D_{2}}{D D_{1} \cdots D_{m}}-\cdots-\frac{D_{m}}{D D_{1} \cdots D_{m}}\right)>0 . \tag{18}
\end{equation*}
$$

Discussing

To prove the opposite inequality in (17) it is enough to divide the left hand side of the previous condition (18) by (-1$)^{m}$ and here it is:

$$
\begin{equation*}
\left(-\chi^{\prime}\right)^{m}\left(x_{1} \cdots x_{m}\right)^{m}\left(\frac{D}{D D_{1} \cdots D_{m}}-\frac{D_{1}}{D D_{1} \cdots D_{m}}-\frac{D_{2}}{D D_{1} \cdots D_{m}}-\cdots-\frac{D_{m}}{D D_{1} \cdots D_{m}}\right)>0 . \tag{19}
\end{equation*}
$$

Since all D_{1}, \ldots, D_{m} and $\chi^{\prime \prime}$ are negative, the sign of common denominator $D D_{1} \cdots D_{m}$ is $(-1)^{m+1}$. In cumulative, it is $(-1)^{2 m+1}=-1$ and the inequality in (18) would be opposite. It is equivalent with conditions that has to be proven. Exploring any smaller determinant in the Remark 2.1 gives the analogue.

5. Minkowski and Hölder Inequality Types

Minkowsky and Hölder inequality are originally given in (Pečarić, et al., 1992). Defining a power mean generalization $M_{n, a}(\mathbf{x})_{p}:=\left(\sum_{i=1}^{n} x_{i}^{a+p} / \sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{a}}$, author obtained a generalization of the Minkowski inequality in (Páles, 1982) and a generalization of the Hölder inequality in (Páles, 1983).

Well-known Minkowski inequality for non-negative n-tuples of real numbers is here enlarged for the case of several different potential means:

$$
\begin{equation*}
\left(\sum_{j=1}^{n} a_{j} x_{1 j}^{\mu_{1}}\right)^{\frac{1}{\mu_{1}}}+\cdots+\left(\sum_{j=1}^{n} a_{j} x_{m j}^{\mu_{m}}\right)^{\frac{1}{\mu_{m}}} \geq\left(\sum_{j=1}^{n} a_{i}\left(x_{1 j}+\cdots+x_{m j}\right)^{\lambda}\right)^{\frac{1}{\lambda}} \tag{20}
\end{equation*}
$$

According the (12), for $\mu_{i}, \lambda \neq 0$, there $m+1$ auxiliary functions are appearing:

$$
F_{i}\left(x_{i}\right)=\frac{x_{i}}{\mu_{i}-1}, i=1, \ldots, m \text { and } F\left(x_{1}+\cdots+x_{m}\right)=\frac{x_{1}+\cdots+x_{m}}{\lambda-1} .
$$

Proposition 5.1. The inequality (20) holds if $\lambda<1$ and all $\mu_{i}>1, i=1, \ldots, m$. If all $\mu_{i}, \lambda>1$, the (20) holds iffor every $j=1, \ldots, n$:

$$
\begin{equation*}
\frac{x_{1 j}+\cdots+x_{m j}}{\lambda-1} \geq \frac{x_{1 j}}{\mu_{1}-1}+\cdots+\frac{x_{m j}}{\mu_{m}-1} . \tag{21}
\end{equation*}
$$

The inequality (21) holds if one of the two following conditions is fulfilled:

- when $\mu_{i}>\lambda>1$ for every $i=1, \ldots, m$
- when the sequential queue $\mu_{1}>\mu_{2}>\cdots>\mu_{k}>\lambda>\mu_{k+1}>\cdots>\mu_{m}>1$ is interrupted by λ as shown and for every $j=1, \ldots, n$:

$$
\frac{\mu_{1}-\lambda}{\mu_{1}-1} x_{1 j}+\frac{\mu_{2}-\lambda}{\mu_{2}-1} x_{2 j}+\cdots+\frac{\mu_{k}-\lambda}{\mu_{k}-1} x_{k j}>\frac{\lambda-\mu_{k+1}}{\mu_{k+1}-1} x_{(k+1) j}+\cdots+\frac{\mu_{m}-\lambda}{\mu_{m}-1} x_{m j} .
$$

The inequality in (20) is opposite if $\lambda>1$ and $\mu_{i}<1$ for all $i=1, \ldots, m$. If all $\mu_{i}, \lambda<1$, the opposite inequality in (20) holds if

$$
\begin{equation*}
\frac{x_{1 j}+\cdots+x_{m j}}{\lambda-1} \leq \frac{x_{1 j}}{\mu_{1}-1}+\cdots+\frac{x_{m}}{\mu_{m}-1} . \tag{22}
\end{equation*}
$$

The inequality (22) holds if one of the two followings is fulfilled:

- when $\mu_{i}<\lambda$ for every $i=1, \ldots, m$
- when the sequential queue $\mu_{1}<\mu_{2}<\cdots<\lambda<\mu<k+1<\cdots<\mu_{m}<1$ is interrupted as shown and:

$$
\frac{\mu_{1}-\lambda}{\mu_{1}-1} x_{1 j}+\frac{\mu_{2}-\lambda}{\mu_{2}-1} x_{2 j}+\cdots+\frac{\mu_{k}-\lambda}{\mu_{k}-1} x_{k j}<\frac{\lambda-\mu_{k+1}}{\mu_{k+1}-1} x_{(k+1) j}+\cdots+\frac{\mu_{m}-\lambda}{\mu_{m}-1} x_{m j}
$$

Proof. Apply Theorem 3.1 for the potential functions $\varphi_{i}\left(x_{i}\right)=x_{i}^{\mu_{i}}$. The statement follows immediately.

Generalized Hölder inequality is presented in the article as the inequality:

$$
\begin{equation*}
\left(\sum_{j=1}^{n} a_{j} x_{1 j}^{\mu_{1}}\right)^{\frac{1}{\mu_{1}}} \cdots\left(\sum_{j=1}^{n} a_{j} x_{m j}^{\mu_{m^{\prime}}}\right)^{\frac{1}{\mu_{1}}} \geq\left(\sum_{j=1}^{n} a_{j}\left(x_{1 j} \cdots x_{m j}\right)^{\lambda}\right)^{\frac{1}{\lambda}} . \tag{23}
\end{equation*}
$$

The suitable auxiliary functions are constants with given exponets as their values: $D_{i}\left(x_{i}\right)=\frac{1}{\mu_{i}}$ and $D\left(x_{1} \cdots x_{m}\right)=\frac{1}{\lambda}$
Proposition 5.2. The inequality (23) holds if $\lambda<0$ and $\mu_{i}>0$ for $i=1, \ldots$, . If all $\mu_{i}, \lambda>0$, then the (23) holds if

$$
\frac{1}{\lambda} \geq \frac{1}{\mu_{1}}+\cdots+\frac{1}{\mu_{m}}
$$

The inequality in (23) is opposite when $\lambda>0$ and $\mu_{i}<0$ for $i=1, \ldots, m$. If all $\mu_{i}, \lambda<0$ and

$$
\frac{1}{\lambda} \leq \frac{1}{\mu_{1}}+\cdots+\frac{1}{\mu_{m}}
$$

the inequality in (23) is opposite too.

Proof. According the Theorem 4.1, statement of Proposition slides immediately.

References

Beck, E. (1970). Ein Satzüber umerdnungs-ungleichungen. Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 320-328, 1-14.

Ivanković, B. (2015). Criteria Enlargement For An Inequality Between Quasi-Arithmetic Means. J. of Math. Sci.: Advances and Applications, 32(1), 17-35.
Losonczi, L., \& Páles, Z. (2008). Comparison of means generated by two vunctions and a measure. J. Math. Anal. Appl., 345, 135-146. http://dx.doi.org/10.1016/j.jmaa.2008.04.004

Losonczi, L., \& Páles, Z. (2011). Minkowski-type inequalities for means generated by two functions and a measure. Publ. Math. Debrecen, 78(3-4), 743-753. http://dx.doi.org/10.5486/PMD.2011.5017
Páles, Z. (1982). A Generalization of the Minkowski Inequality. J. Math. Anal. Appl., 90, 456-462. http://dx.doi.org/10.1016/0022-247X(82)90073-7

Páles, Z. (1983). On Hölder-Type Inequalities. J. Math. Anal. Appl., 95, 457-466. http://dx.doi.org/10.1016/0022-247X(83)90120-8

Pečarić, J. E., Proschan, F., \& Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications, Academic Press, Inc.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

