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Abstract

Quasi-arithmetic means are defined for continuous, strictly monotone functions. In the case that functions are twice
differentiable, we obtained criteria for inequalities between finite number of quasi-arithmetic means in additional and
multiplicative case. Applications for Hölder and Minkowski type inequalities are given.

1. Introduction

The quasi-arithmetic mean in discrete instance is defined for a continuous and monotone function φ : Jx ⊆ R → R, real
sentence x = (x1, . . . , xn) ∈ Jx and a probability weight sentence of non-negative real numbers a = (a1, . . . , an), with

n∑
k=1

ak = 1 by the formula:

Mφ(x; a) = φ−1

 n∑
k=1

akφ(xk)

 . (1)

If φ is a differentiable function, then we call it differentiable quasi-arithmetic mean in this article. Here the twice differ-
entiability is considered.

For continuous and monotone functions ψ : Jy → R and χ : Jw → R that are defined on intervals Jy, Jw ⊆ R, sentence
y = (y1, . . . , yn) ∈ Jy and f : Jx × Jy → Jw, the inequality

f (Mφ(x; a),Mψ(y; a)) ≥ Mχ(f(x,y); a) (2)

was investigated by E. Beck in 1970 for additive case where f(x,y) = x+y and multiplicative case with f(x,y) = xy =
(x1y1, . . . , xnyn). Criteria were obtained for φ, ψ and χ being twice differentiable.

Enlargement with differentiable, continuous and monotone function ρ : Jz → R, where Jz ⊆ R and sentence z =
(z1, . . . , zn) ∈ Jz, for a function f : Jx × Jy × Jz → Jw, was given in (Ivanković, 2015). The conditions for inequality

f
(
Mφ(x; a),Mψ(y; a),Mρ(z; a)

)
≥ Mχ(f(x,y,z); a) (3)

were proven in additive and multiplicative cases.

The inequality (3) is equivalent with inequality

H

 n∑
i=1

aisi,

n∑
i=1

aiti,
n∑

i=1

airi

 ≥ n∑
i=1

aiH(si, ti, ri), (4)

where H(s, t, r) = χ f
(
φ−1(s), ψ−1(t), ρ−1(r)

)
, s = φ(x), t = ψ(y) and r = ρ(z). Direction in (4) depends on convexity of

H(s, t, r) and tendency of χ.

In this article, conditions for m quasi-arithmetic means inequality are given in additive and multiplicative case.
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2. Fundamental Condition

The inequality (3) is enlarged for m continuous, strictly monotone functions φi : Ji → R generating m quasi-arithmetic
means:

Mφi (xi; a) = φ−1
i

 n∑
j=1

a j · φi(xi j)

 , i = 1, . . . ,m.

The means are calculating for real sequences xi = (xi1, . . . , xin), i = 1, . . . ,m, belonging to Ji ⊆ R. For given n-
tuples, the function values f : J1 × J2 × · · · × Jm → R are constituting new n-tuple by calculating: f(x1, x2 . . . , xm) =
( f (x11, x21, . . . , xm1), f (x12, x22, . . . , xm2), . . . , f (x1n, x2n, . . . , xmn))

If f : J1 × J2 × · · · × Jm → Jw, then the quasi-arithmetic mean is defined properly:

Mχ(f(x1, . . . , xm); a) = χ−1

 n∑
j=1

a j · χ f (x1 j, x2 j, . . . , f (xm j))

 . (5)

For just defined terms the next proposition is declared.

Proposition 2.1. With respect to the terms defined above, for strictly increasing function χ the inequality

f
(
Mφ1 (x1; a), . . . , Mφm (xm; a)

)
≥ Mχ(f(x1, . . . , xm); a) (6)

states if and only if the function

H(s1 j, . . . , sm j) = χ f
(
φ−1

1 (s1 j), . . . , φ−1
m (sm j)

)
, si j = φi(xi j), j = 1, . . . , n (7)

is concave and χ increases or if (7) is convex and χ decreases.

The inequality (6) is opposite if the function H defined by (7) is convex and χ increases or if H(s1 j, . . . , sm j) is concave
and χ decreases. Function (7) is defined as well.

Proof. For the benefit of better understanding, the proof with increasing χ is following. Suppose (7) is a concave function.
Then for every collection of n-tuples given bellow

si = (φi(xi)) = (φi(xi1), φi(xi2), . . . , φi(xin)) = (si1, si2, . . . , sin), i = 1, . . . ,m (8)

and every choice of probability weights a, the well-known Jensen-McShane inequality (Pečarić, et al., 1992, p.48-49)
holds for m-tuples:

H

 n∑
j=1

a j(s1 j, s2 j, . . . , sm j)

 ≥ n∑
j=1

a jH(s1 j, s2 j, . . . , sm j). (9)

Linear combination calculating obtains the following

H

 n∑
j=1

a js1 j,

n∑
j=1

a js2 j, . . . ,

n∑
j=1

a jsm j)

 ≥ n∑
j=1

a jH(s1 j, s2 j, . . . , sm j).

According the definiton’s relations (8), if si j = φi(xi j), j = 1, . . . , n, then φ−1
i (si j) = xi j. From functon’s definition

H = χ f (φ−1
1 , . . . , φ−1

m ) it follows:

H

 n∑
j=1

a js1 j,

n∑
j=1

a js2 j, . . . ,

n∑
j=1

a jsm j

 = χ f

φ−1
1

 n∑
j=1

a j · s1 j

 , φ−1
2

 n∑
j=1

a js2 j

 , . . . , φ−1
m

 n∑
j=1

a jsm j


 .

Consequently H(s1 j, s2 j, . . . , sm j) = χ f
(
φ−1

1 (s1 j), φ−1
2 (s2 j), . . . , φ−1

m (sm j)
)
. Now, the (9) states as

χ f

φ−1
1

 n∑
j=1

a js1 j

 , φ−1
2

 n∑
j=1

a js2 j

 , . . . , φ−1
m

 n∑
j=1

a jsm j


 ≥ n∑

j=1

a jχ f
(
φ−1

1 (s1 j), φ−1
2 (s2 j), . . . , φ−1

m (sm j)
)
.

The consequence of χ being increasing is that χ−1 increase itself:

f

φ−1
1

 n∑
j=1

a jφ1(x1 j)

 , φ−1
2

 n∑
j=1

a jφ2(x2 j)

 , . . . , φ−1
m

 n∑
j=1

a jφm(xm j)


 ≥ χ−1

 n∑
j=1

a jχ f (x1 j, x2 j, . . . , xm j)

 .
The inequality above is in fact the inequality (6). So the reverse proof is end. �
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For twice differentiable m-variables function’s convexity and concavity the criteria exist. Noting the second partial deriva-

tives by Hi j =
∂2H
∂si∂s j

, i, j = 1, . . . ,m, there is a Theorem from general mathematical analysis given here as Remark.

Remark 2.1. Function H(s1, s2, . . . , sm) is convex if and only if the next m inequalities are satisfied:

H11 > 0,

∣∣∣∣∣∣ H11 H12
H21 H22

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣
H11 H12 H13
H21 H22 H23
H31 H32 H33

∣∣∣∣∣∣∣∣ > 0, . . . ,

∣∣∣∣∣∣∣∣∣∣
H11 · · · H1m
...

. . .
...

Hm1 · · · Hmm

∣∣∣∣∣∣∣∣∣∣ > 0. (10)

In opposite, function H(s1, s2, . . . , sm) is concave if and only if the next m inequalities are satisfied:

H11 < 0,

∣∣∣∣∣∣ H11 H12
H21 H22

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣
H11 H12 H13
H21 H22 H23
H31 H32 H33

∣∣∣∣∣∣∣∣ < 0, . . . , (−1)m ·

∣∣∣∣∣∣∣∣∣∣
H11 · · · H1m
...

. . .
...

Hm1 · · · Hmm

∣∣∣∣∣∣∣∣∣∣ > 0. (11)

Inequalities (10) and (11) will be of crucial interest in what is followning.

3. Additive Case

The additive case appears when function from (6) is an addition: f (x1, . . . , xm) = x1 + · · · + xm. The criteria for inequality
(6) are proven through the next Theorem.

Theorem 3.1. Suppose that φ1, . . . , φm and χ are twice differentiable strictly monotone functions with second derivations
differ from zero on their domains J1, . . . , Jm and Jw. Suppose that each n-tuple xi is assembled by values from Ji, i =

1, . . . ,m and suppose that sum
m∑

i=1

xi j belongs to Jw for every j = 1, . . . , n. Then there exist functions:

Fi =
φ′i
φ′′i
, i = 1, . . . ,m and F =

χ′

χ′′
. (12)

Take a = (a1, . . . , an), ai ≥ 0 and
n∑

i=1

ai = 1. Connote n-tuple:
m∑

i=1

xi =

 m∑
i=1

xi1,

m∑
i=1

xi2, . . . ,

m∑
i=1

xin

 . The inequality

m∑
i=1

Mφi (xi; a) ≥ Mχ

 m∑
i=1

xi; a
 , (13)

holds if and only if any of the following conditions is fulfilled:

(i) all F, F1, . . . , Fm are positive and F ≥ F1 + F2 + · · · + Fm.

(ii) F is negative and all F1, . . . , Fm are positive

The inequality in (13) is opposite if and only if any of the following is fulfilled:

(i) all F, F1, . . . , Fm are negative and F ≤ F1 + F2 + · · · + Fm.

(ii) F is positive and all F1, . . . , Fm are negative

Proof. Since the Proposition 2.1 is proven, it is enough to prove concavity for the function H(s1 j, s2 j, . . . , sm j) =

χ
(
φ−1

1 (s1 j) + . . . + φ−1
m (sm j)

)
, respecting Remark 2.1. Elements in (10) and (11) are given with Hii =

∂2H
∂s2

i

=
χ′

(φ′i )
2

(
χ′′

χ′ −
φ′′i
φ′i

)
=
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χ′

(φ′i )
2

(
1
F −

1
Fi

)
and Hi j =

∂2H
∂si∂s j

=
χ′′

φ′iφ
′
j
=

χ′

φ′iφ
′
j

1
F

for i , j. The condition on the k-th determinant in (11) is:

(−1)k ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ′

(φ′1)2

(
1
F
− 1

F1

)
χ′

φ′1φ
′
2

1
F

χ′

φ′1φ
′
3

1
F

· · · χ′

φ′1φ
′
k

1
F

χ′

φ′2φ
′
1

1
F

χ′

(φ′2)2

(
1
F
− 1

F2

)
χ′

φ′2φ
′
3

1
F

· · · χ′

φ′2φ
′
k

1
F

χ′

φ′3φ
′
1

1
F

χ′

φ′3φ
′
2

1
F

χ′

(φ′3)2

(
1
F
− 1

F3

)
· · · χ′

φ′3φ
′
k

1
F

...
...

...
. . .

...

χ′

φ′kφ
′
1

χ′

φ′kφ
′
2

χ′

φ′nφ
′
3

· · · χ′

(φ′k)2

(
1
F
− 1

Fk

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0.

From every, k-th row, the fraction
χ′

φ′1 · · · (φ′k)2 · · ·φ′m
could be extracted. Their product is

(χ′)m

(φ′1)m+1 · · · (φ′m)m+1 . After that,

each k-th column contains factor φ1 · · ·φk−1 · φk+1 · · ·φm that could be extracted. Their product is (φ′1)m−1 · · · (φ′m)m−1.

Multiplying the product together, we have new condition with factor
(χ′)m

(φ′1)2 · · · (φ′m)2 .

Elementary determinant transformations and some algebra entail the following conditions:

(χ′)k
(

F
FF1 · · · Fk

− F1

FF1 · · · Fk
− F2

FF1 · · · Fk
− · · · − F

FF1 · · · Fk

)
≥ 0, k = 1, . . . ,m. (14)

The proof of the convex case is analogue and we obtain conditions:

(−χ′)k
(

F
FF1 · · · Fk

− F1

FF1 · · · Fk
− F2

FF1 · · · Fk
− · · · − F

FF1 · · · Fk

)
≥ 0, k = 1, . . . ,m. (15)

Conditions for inequality in (13) were obtained after discussion when χ′ > 0 in (14) or when χ′ < 0 in (15).

Conditions for the opposite inequality in (13) followed after discussion when χ′ < 0 in (14) or when χ′ > 0 in (15). �

4. Multiplicative Case

In the multiplicative case the function from (6) is a multiplication: f (x1, . . . , xm) = x1 · · · xm. The criteria for inequality
(6) are proven through the next Theorem.

Theorem 4.1. Suppose that φ1, . . . , φm and χ are twice differentiable strictly monotone functions on their domains
J1, . . . , Jm and Jw. Suppose that each n-tuple (xi) = (xi1, . . . , xin) is positive and consists values from Ji, i = 1, . . . ,m

such that product
m∏

i=1

xi j belongs to Jw for every j = 1, . . . , n. Presume functions

Di(xi) =
1

1 + xi
φ′′i (xi)
φ′i(xi)

, i = 1, . . . ,m and D(u) =
1

1 + u
χ′′(u)
χ′(u)

(16)

are definable for u = x1 · · · xm. Take a = (a1, . . . , an), ai ≥ 0 with
n∑

i=1

ai = 1 and connote n-tuple

m∏
i=1

xi =

 m∏
i=1

xi1,

m∏
i=1

xi2, . . . ,

m∏
i=1

xin

 . Then the inequality

m∏
i=1

Mφi (xi; a) ≥ Mχ

 m∏
i=1

xi; a
 , (17)

holds if and only if any of the following conditions is fulfilled:
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(i) all D,D1, . . . ,Dm are positive and D ≥ D1 + D2 + · · · + Dm.

(ii) D is negative and all D1, . . . ,Dm are positive

The inequality in (17) is opposite if and only if any of the following is fulfilled:

(i) all D,D1, . . . ,Dm are negative and D ≤ D1 + D2 + · · · + Dm.

(ii) D is positive and all D1, . . . ,Dm are negative

Proof. In the case that χ increases, the inequality in (17) is based on the concavity of the function H(s1 j, s2 j, . . . , sm j) =
χ
(
φ−1

1 (s1 j) · · ·φ−1
m (sm j)

)
and opposite inequality is based on its convexity. When χ decreases, inequalities are vice versa.

Here we give the proof for (17) according Remark 2.1. From H(s1 j, s2 j, . . . , sm j) it follows that Hii =
∂2H
∂s2

i

=
x1 · · · xmχ

′

x2
i (φ′i)

2
·(

1
D
− 1

Di

)
and Hi j =

∂2H
∂s j∂si

=
x1 · · · xmχ

′

xix jφ
′
iφ
′
j

1
D

. The conditions (11) is explored on the k-th determinant:

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 · · · xmχ
′

x2
1(φ′1)2

(
1
D
− 1

D1

)
x1 · · · xmχ

′

x1x2φ
′
1φ
′
2

1
D

· · · x1 · · · xmχ
′

x1xmφ
′
1φ
′
m

1
D

x1 · · · xmχ
′

x2x1φ
′
2φ
′
1

1
D

x1 · · · xmχ
′

x2
2(φ′2)2

(
1
D
− 1

D2

)
· · · x1 · · · xmχ

′

x2xmφ
′
2φ
′
m

1
D

...
...

. . .
...

x1 · · · xmχ
′

xmx1φ′mφ
′
1

1
D

x1 · · · xmχ
′

xmx2φ′mφ
′
2

1
D

· · · x1 · · · xmχ
′

x2
m(φ′m)2

(
1
D
− 1

Dm

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0.

Elementary determinant transformations and simple algebra entails

(χ′)m(x1 · · · xm)m
(

D
DD1 · · ·Dm

− D1

DD1 · · ·Dm
− D2

DD1 · · ·Dm
− · · · − Dm

DD1 · · ·Dm

)
> 0. (18)

Discussing

To prove the opposite inequality in (17) it is enough to divide the left hand side of the previous condition (18) by (−1)m

and here it is:

(−χ′)m(x1 · · · xm)m
(

D
DD1 · · ·Dm

− D1

DD1 · · ·Dm
− D2

DD1 · · ·Dm
− · · · − Dm

DD1 · · ·Dm

)
> 0. (19)

Since all D1, . . . ,Dm and χ′′ are negative, the sign of common denominator DD1 · · ·Dm is (−1)m+1. In cumulative, it
is (−1)2m+1 = −1 and the inequality in (18) would be opposite. It is equivalent with conditions that has to be proven.
Exploring any smaller determinant in the Remark 2.1 gives the analogue. �

5. Minkowski and Hölder Inequality Types

Minkowsky and Hölder inequality are originally given in (Pečarić, et al., 1992). Defining a power mean generalization

Mn,a(x)p :=

 n∑
i=1

xa+p
i /

n∑
i=1

xp
i


1
a

, author obtained a generalization of the Minkowski inequality in (Páles, 1982) and a

generalization of the Hölder inequality in (Páles, 1983).

Well-known Minkowski inequality for non-negative n-tuples of real numbers is here enlarged for the case of several
different potential means:  n∑

j=1

a jx
µ1
1 j


1
µ1

+ · · · +
 n∑

j=1

a jx
µm
m j


1
µm

≥
 n∑

j=1

ai(x1 j + · · · + xm j)λ


1
λ

. (20)
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According the (12), for µi, λ , 0, there m + 1 auxiliary functions are appearing:

Fi(xi) =
xi

µi − 1
, i = 1, . . . ,m and F(x1 + · · · + xm) =

x1 + · · · + xm

λ − 1
.

Proposition 5.1. The inequality (20) holds if λ < 1 and all µi > 1, i = 1, . . . ,m. If all µi, λ > 1, the (20) holds if for every
j = 1, . . . , n:

x1 j + · · · + xm j

λ − 1
≥

x1 j

µ1 − 1
+ · · · +

xm j

µm − 1
. (21)

The inequality (21) holds if one of the two following conditions is fulfilled:

• when µi > λ > 1 for every i = 1, . . . ,m

• when the sequential queue µ1 > µ2 > · · · > µk > λ > µk+1 > · · · > µm > 1 is interrupted by λ as shown and for
every j = 1, . . . , n:

µ1 − λ
µ1 − 1

x1 j +
µ2 − λ
µ2 − 1

x2 j + · · · +
µk − λ
µk − 1

xk j >
λ − µk+1

µk+1 − 1
x(k+1) j + · · · +

µm − λ
µm − 1

xm j.

The inequality in (20) is opposite if λ > 1 and µi < 1 for all i = 1, . . . ,m. If all µi, λ < 1, the opposite inequality in (20)
holds if

x1 j + · · · + xm j

λ − 1
≤

x1 j

µ1 − 1
+ · · · + xm

µm − 1
. (22)

The inequality (22) holds if one of the two followings is fulfilled:

• when µi < λ for every i = 1, . . . ,m

• when the sequential queue µ1 < µ2 < · · · < λ < µ < k + 1 < · · · < µm < 1 is interrupted as shown and:

µ1 − λ
µ1 − 1

x1 j +
µ2 − λ
µ2 − 1

x2 j + · · · +
µk − λ
µk − 1

xk j <
λ − µk+1

µk+1 − 1
x(k+1) j + · · · +

µm − λ
µm − 1

xm j.

Proof. Apply Theorem 3.1 for the potential functions φi(xi) = xµi
i . The statement follows immediately. �

Generalized Hölder inequality is presented in the article as the inequality: n∑
j=1

a jx
µ1
1 j


1
µ1

· · ·
 n∑

j=1

a jx
µm
m j


1
µ1

≥
 n∑

j=1

a j(x1 j · · · xm j)λ


1
λ

. (23)

The suitable auxiliary functions are constants with given exponets as their values: Di(xi) =
1
µi

and D(x1 · · · xm) =
1
λ

Proposition 5.2. The inequality (23) holds if λ < 0 and µi > 0 for i = 1, . . . ,m. If all µi, λ > 0, then the (23) holds if

1
λ
≥ 1
µ1
+ · · · + 1

µm
.

The inequality in (23) is opposite when λ > 0 and µi < 0 for i = 1, . . . ,m. If all µi, λ < 0 and

1
λ
≤ 1
µ1
+ · · · + 1

µm
,

the inequality in (23) is opposite too.

Proof. According the Theorem 4.1, statement of Proposition slides immediately. �
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