Quasi-arithmetic Means Inequalities Criteria for Differentiable Functions

Božidar Ivanković¹

¹ Faculty of Transport and Traffic Engineering, University of Zagreb, Vukelićeva 4, Zagreb, Croatia

Correspondence: Božidar Ivanković, Faculty of Transport and Traffic Sciences, University of Zagreb, Croatia. E-mail: ivankovb@fpz.hr

Received: October 8, 2015Accepted: October 21, 2015Online Published: November 6, 2015doi:10.5539/jmr.v7n4p130URL: http://dx.doi.org/10.5539/jmr.v7n4p130

The research is financed by Faculty of Transport and Traffic Engineering

Abstract

Quasi-arithmetic means are defined for continuous, strictly monotone functions. In the case that functions are twice differentiable, we obtained criteria for inequalities between finite number of quasi-arithmetic means in additional and multiplicative case. Applications for Hölder and Minkowski type inequalities are given.

1. Introduction

The quasi-arithmetic mean in discrete instance is defined for a continuous and monotone function $\varphi : J_x \subseteq \mathbb{R} \to \mathbb{R}$, real sentence $\mathbf{x} = (x_1, \dots, x_n) \in J_x$ and a probability weight sentence of non-negative real numbers $\mathbf{a} = (a_1, \dots, a_n)$, with $\sum_{k=1}^n a_k = 1$ by the formula:

$$M_{\varphi}(\mathbf{x}; \mathbf{a}) = \varphi^{-1} \left(\sum_{k=1}^{n} a_k \varphi(x_k) \right).$$
(1)

If φ is a differentiable function, then we call it differentiable quasi-arithmetic mean in this article. Here the twice differentiability is considered.

For continuous and monotone functions $\psi : J_y \to \mathbb{R}$ and $\chi : J_w \to \mathbb{R}$ that are defined on intervals $J_y, J_w \subseteq \mathbb{R}$, sentence $\mathbf{y} = (y_1, \dots, y_n) \in J_y$ and $f : J_x \times J_y \to J_w$, the inequality

$$f(M_{\varphi}(\mathbf{x}; \mathbf{a}), M_{\psi}(\mathbf{y}; \mathbf{a})) \ge M_{\chi}(\mathbf{f}(\mathbf{x}, \mathbf{y}); \mathbf{a})$$
⁽²⁾

was investigated by E. Beck in 1970 for additive case where $\mathbf{f}(\mathbf{x},\mathbf{y}) = \mathbf{x}+\mathbf{y}$ and multiplicative case with $\mathbf{f}(\mathbf{x},\mathbf{y}) = \mathbf{x}\mathbf{y} = (x_1y_1, \dots, x_ny_n)$. Criteria were obtained for φ, ψ and χ being twice differentiable.

Enlargement with differentiable, continuous and monotone function $\rho : J_z \to \mathbb{R}$, where $J_z \subseteq \mathbb{R}$ and sentence $\mathbf{z} = (z_1, \ldots, z_n) \in J_z$, for a function $f : J_x \times J_y \times J_z \to J_w$, was given in (Ivanković, 2015). The conditions for inequality

$$f\left(M_{\varphi}(\mathbf{x};\mathbf{a}), M_{\psi}(\mathbf{y};\mathbf{a}), M_{\rho}(\mathbf{z};\mathbf{a})\right) \ge M_{\chi}(\mathbf{f}(\mathbf{x},\mathbf{y},\mathbf{z});\mathbf{a})$$
(3)

were proven in additive and multiplicative cases.

The inequality (3) is equivalent with inequality

$$H\left(\sum_{i=1}^{n} a_{i}s_{i}, \sum_{i=1}^{n} a_{i}t_{i}, \sum_{i=1}^{n} a_{i}r_{i}\right) \ge \sum_{i=1}^{n} a_{i}H(s_{i}, t_{i}, r_{i}),$$
(4)

where $H(s,t,r) = \chi f(\varphi^{-1}(s), \psi^{-1}(t), \rho^{-1}(r))$, $s = \varphi(x), t = \psi(y)$ and $r = \rho(z)$. Direction in (4) depends on convexity of H(s,t,r) and tendency of χ .

In this article, conditions for *m* quasi-arithmetic means inequality are given in additive and multiplicative case.

2. Fundamental Condition

The inequality (3) is enlarged for *m* continuous, strictly monotone functions $\varphi_i : J_i \to \mathbb{R}$ generating *m* quasi-arithmetic means:

$$M_{\varphi_i}(\mathbf{x_i}; \mathbf{a}) = \varphi_i^{-1} \left(\sum_{j=1}^n a_j \cdot \varphi_i(x_{ij}) \right), \ i = 1, \dots, m.$$

The means are calculating for real sequences $\mathbf{x}_i = (x_{i1}, \dots, x_{in}), i = 1, \dots, m$, belonging to $J_i \subseteq \mathbb{R}$. For given *n*-tuples, the function values $f : J_1 \times J_2 \times \dots \times J_m \to \mathbb{R}$ are constituting new *n*-tuple by calculating: $\mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m) = (f(x_{11}, x_{21}, \dots, x_{m1}), f(x_{12}, x_{22}, \dots, x_{m2}), \dots, f(x_{1n}, x_{2n}, \dots, x_{mn}))$

If $f: J_1 \times J_2 \times \cdots \times J_m \to J_w$, then the quasi-arithmetic mean is defined properly:

$$M_{\chi}(\mathbf{f}(\mathbf{x}_1,\ldots,\mathbf{x}_m);\mathbf{a}) = \chi^{-1} \left(\sum_{j=1}^n a_j \cdot \chi f(x_{1j},x_{2j},\ldots,f(x_{mj})) \right).$$
(5)

For just defined terms the next proposition is declared.

Proposition 2.1. With respect to the terms defined above, for strictly increasing function χ the inequality

$$f\left(M_{\varphi_1}(\boldsymbol{x}_1;\boldsymbol{a}),\ldots,M_{\varphi_m}(\boldsymbol{x}_m;\boldsymbol{a})\right) \ge M_{\chi}(f(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_m);\boldsymbol{a})$$
(6)

states if and only if the function

$$H(s_{1j},...,s_{mj}) = \chi f\left(\varphi_1^{-1}(s_{1j}),...,\varphi_m^{-1}(s_{mj})\right), \ s_{ij} = \varphi_i(x_{ij}), \ j = 1,...,n$$
(7)

is concave and χ increases or if (7) is convex and χ decreases.

The inequality (6) is opposite if the function H defined by (7) is convex and χ increases or if $H(s_{1j}, \ldots, s_{mj})$ is concave and χ decreases. Function (7) is defined as well.

Proof. For the benefit of better understanding, the proof with increasing χ is following. Suppose (7) is a concave function. Then for every collection of *n*-tuples given bellow

$$\mathbf{s}_{\mathbf{i}} = (\varphi_i(x_i)) = (\varphi_i(x_{i1}), \varphi_i(x_{i2}), \dots, \varphi_i(x_{in})) = (s_{i1}, s_{i2}, \dots, s_{in}), \quad i = 1, \dots, m$$
(8)

and every choice of probability weights **a**, the well-known Jensen-McShane inequality (Pečarić, et al., 1992, p.48-49) holds for *m*-tuples:

$$H\left(\sum_{j=1}^{n} a_j(s_{1j}, s_{2j}, \dots, s_{mj})\right) \ge \sum_{j=1}^{n} a_j H(s_{1j}, s_{2j}, \dots, s_{mj}).$$
(9)

Linear combination calculating obtains the following

$$H\left(\sum_{j=1}^{n} a_{j}s_{1j}, \sum_{j=1}^{n} a_{j}s_{2j}, \dots, \sum_{j=1}^{n} a_{j}s_{mj}\right) \ge \sum_{j=1}^{n} a_{j}H(s_{1j}, s_{2j}, \dots, s_{mj}).$$

According the definiton's relations (8), if $s_{ij} = \varphi_i(x_{ij})$, j = 1, ..., n, then $\varphi_i^{-1}(s_{ij}) = x_{ij}$. From functon's definition $H = \chi f(\varphi_1^{-1}, ..., \varphi_m^{-1})$ it follows:

$$H\left(\sum_{j=1}^{n} a_{j}s_{1j}, \sum_{j=1}^{n} a_{j}s_{2j}, \dots, \sum_{j=1}^{n} a_{j}s_{mj}\right) = \chi f\left(\varphi_{1}^{-1}\left(\sum_{j=1}^{n} a_{j} \cdot s_{1j}\right), \varphi_{2}^{-1}\left(\sum_{j=1}^{n} a_{j}s_{2j}\right), \dots, \varphi_{m}^{-1}\left(\sum_{j=1}^{n} a_{j}s_{mj}\right)\right).$$

Consequently $H(s_{1j}, s_{2j}, ..., s_{mj}) = \chi f(\varphi_1^{-1}(s_{1j}), \varphi_2^{-1}(s_{2j}), ..., \varphi_m^{-1}(s_{mj}))$. Now, the (9) states as

$$\chi f\left(\varphi_1^{-1}\left(\sum_{j=1}^n a_j s_{1j}\right), \varphi_2^{-1}\left(\sum_{j=1}^n a_j s_{2j}\right), \dots, \varphi_m^{-1}\left(\sum_{j=1}^n a_j s_{mj}\right)\right) \ge \sum_{j=1}^n a_j \chi f\left(\varphi_1^{-1}(s_{1j}), \varphi_2^{-1}(s_{2j}), \dots, \varphi_m^{-1}(s_{mj})\right).$$

The consequence of χ being increasing is that χ^{-1} increase itself:

$$f\left(\varphi_{1}^{-1}\left(\sum_{j=1}^{n}a_{j}\varphi_{1}(x_{1j})\right),\varphi_{2}^{-1}\left(\sum_{j=1}^{n}a_{j}\varphi_{2}(x_{2j})\right),\ldots,\varphi_{m}^{-1}\left(\sum_{j=1}^{n}a_{j}\varphi_{m}(x_{mj})\right)\right) \geq \chi^{-1}\left(\sum_{j=1}^{n}a_{j}\chi f(x_{1j},x_{2j},\ldots,x_{mj})\right).$$

The inequality above is in fact the inequality (6). So the reverse proof is end.

For twice differentiable *m*-variables function's convexity and concavity the criteria exist. Noting the second partial derivatives by $H_{ij} = \frac{\partial^2 H}{\partial s_i \partial s_j}$, i, j = 1, ..., m, there is a Theorem from general mathematical analysis given here as Remark.

Remark 2.1. Function $H(s_1, s_2, ..., s_m)$ is convex if and only if the next m inequalities are satisfied:

$$H_{11} > 0, \left| \begin{array}{c} H_{11} & H_{12} \\ H_{21} & H_{22} \end{array} \right| > 0, \left| \begin{array}{c} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{array} \right| > 0, \dots, \left| \begin{array}{c} H_{11} & \cdots & H_{1m} \\ \vdots & \ddots & \vdots \\ H_{m1} & \cdots & H_{mm} \end{array} \right| > 0.$$
(10)

In opposite, function $H(s_1, s_2, \ldots, s_m)$ is concave if and only if the next m inequalities are satisfied:

$$H_{11} < 0, \left| \begin{array}{c} H_{11} & H_{12} \\ H_{21} & H_{22} \end{array} \right| > 0, \left| \begin{array}{c} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{array} \right| < 0, \dots, (-1)^m \cdot \left| \begin{array}{c} H_{11} & \cdots & H_{1m} \\ \vdots & \ddots & \vdots \\ H_{m1} & \cdots & H_{mm} \end{array} \right| > 0.$$
(11)

Inequalities (10) and (11) will be of crucial interest in what is followning.

3. Additive Case

The additive case appears when function from (6) is an addition: $f(x_1, \ldots, x_m) = x_1 + \cdots + x_m$. The criteria for inequality (6) are proven through the next Theorem.

Theorem 3.1. Suppose that $\varphi_1, \ldots, \varphi_m$ and χ are twice differentiable strictly monotone functions with second derivations differ from zero on their domains J_1, \ldots, J_m and J_w . Suppose that each n-tuple \mathbf{x}_i is assembled by values from J_i , $i = 1, \ldots, m$ and suppose that sum $\sum_{i=1}^m x_{ij}$ belongs to J_w for every $j = 1, \ldots, n$. Then there exist functions:

$$F_i = \frac{\varphi'_i}{\varphi''_i}, \ i = 1, \dots, m \quad and \quad F = \frac{\chi'}{\chi''}.$$
(12)

Take
$$\boldsymbol{a} = (a_1, \dots, a_n), a_i \ge 0$$
 and $\sum_{i=1}^n a_i = 1$. Connote *n*-tuple: $\sum_{i=1}^m \boldsymbol{x}_i = \left(\sum_{i=1}^m x_{i1}, \sum_{i=1}^m x_{i2}, \dots, \sum_{i=1}^m x_{in}\right)$. The inequality
$$\sum_{i=1}^m M_{\varphi_i}(\boldsymbol{x}_i; \boldsymbol{a}) \ge M_{\chi}\left(\sum_{i=1}^m \boldsymbol{x}_i; \boldsymbol{a}\right),$$
(13)

holds if and only if any of the following conditions is fulfilled:

- (i) all F, F_1, \ldots, F_m are positive and $F \ge F_1 + F_2 + \cdots + F_m$.
- (ii) F is negative and all F_1, \ldots, F_m are positive

The inequality in (13) is opposite if and only if any of the following is fulfilled:

- (i) all F, F_1, \ldots, F_m are negative and $F \leq F_1 + F_2 + \cdots + F_m$.
- (ii) F is positive and all F_1, \ldots, F_m are negative

Proof. Since the Proposition 2.1 is proven, it is enough to prove concavity for the function $H(s_{1j}, s_{2j}, \ldots, s_{mj}) = \chi\left(\varphi_1^{-1}(s_{1j}) + \ldots + \varphi_m^{-1}(s_{mj})\right)$, respecting Remark 2.1. Elements in (10) and (11) are given with $H_{ii} = \frac{\partial^2 H}{\partial s_i^2} = \frac{\chi'}{(\varphi_i')^2} \left(\frac{\chi''}{\chi'} - \frac{\varphi_i''}{\varphi_i'}\right) = \frac{\partial^2 H}{\partial s_i^2}$

 $\frac{\chi'}{(\varphi'_i)^2} \left(\frac{1}{F} - \frac{1}{F_i}\right) \text{ and } H_{ij} = \frac{\partial^2 H}{\partial s i \partial s_j} = \frac{\chi''}{\varphi'_i \varphi'_j} = \frac{\chi'}{\varphi'_i \varphi'_j} \frac{1}{F} \text{ for } i \neq j. \text{ The condition on the } k\text{-th determinant in (11) is:}$

$$(-1)^{k} \cdot \begin{vmatrix} \frac{\chi'}{(\varphi'_{1})^{2}} \left(\frac{1}{F} - \frac{1}{F_{1}}\right) & \frac{\chi'}{\varphi'_{1}\varphi'_{2}} \frac{1}{F} & \frac{\chi'}{\varphi'_{1}\varphi'_{3}} \frac{1}{F} & \cdots & \frac{\chi'}{\varphi'_{1}\varphi'_{k}} \frac{1}{F} \\ \frac{\chi'}{\varphi'_{2}\varphi'_{1}} \frac{1}{F} & \frac{\chi'}{(\varphi'_{2})^{2}} \left(\frac{1}{F} - \frac{1}{F_{2}}\right) & \frac{\chi'}{\varphi'_{2}\varphi'_{3}} \frac{1}{F} & \cdots & \frac{\chi'}{\varphi'_{2}\varphi'_{k}} \frac{1}{F} \\ \frac{\chi'}{\varphi'_{3}\varphi'_{1}} \frac{1}{F} & \frac{\chi'}{\varphi'_{3}\varphi'_{2}} \frac{1}{F} & \frac{\chi'}{(\varphi'_{3})^{2}} \left(\frac{1}{F} - \frac{1}{F_{3}}\right) & \cdots & \frac{\chi'}{\varphi'_{3}\varphi'_{k}} \frac{1}{F} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\chi'}{\varphi'_{k}\varphi'_{1}} & \frac{\chi'}{\varphi'_{k}\varphi'_{2}} & \frac{\chi'}{\varphi'_{n}\varphi'_{3}} & \cdots & \frac{\chi'}{(\varphi'_{k})^{2}} \left(\frac{1}{F} - \frac{1}{F_{k}}\right) \end{vmatrix} > 0.$$

From every, *k*-th row, the fraction $\frac{\chi'}{\varphi'_1 \cdots (\varphi'_k)^2 \cdots \varphi'_m}$ could be extracted. Their product is $\frac{(\chi')^m}{(\varphi'_1)^{m+1} \cdots (\varphi'_m)^{m+1}}$. After that, each *k*-th column contains factor $\varphi_1 \cdots \varphi_{k-1} \cdots \varphi_m$ that could be extracted. Their product is $(\varphi'_1)^{m-1} \cdots (\varphi'_m)^{m-1}$. Multiplying the product together, we have new condition with factor $\frac{(\chi')^m}{(\varphi'_1)^2 \cdots (\varphi'_m)^2}$.

Elementary determinant transformations and some algebra entail the following conditions:

$$(\chi')^k \left(\frac{F}{FF_1 \cdots F_k} - \frac{F_1}{FF_1 \cdots F_k} - \frac{F_2}{FF_1 \cdots F_k} - \frac{F}{FF_1 \cdots F_k} - \frac{F}{FF_1 \cdots F_k} \right) \ge 0, \ k = 1, \dots, m.$$
(14)

The proof of the convex case is analogue and we obtain conditions:

$$(-\chi')^k \left(\frac{F}{FF_1 \cdots F_k} - \frac{F_1}{FF_1 \cdots F_k} - \frac{F_2}{FF_1 \cdots F_k} - \cdots - \frac{F}{FF_1 \cdots F_k}\right) \ge 0, \ k = 1, \dots, m.$$
(15)

Conditions for inequality in (13) were obtained after discussion when $\chi' > 0$ in (14) or when $\chi' < 0$ in (15).

Conditions for the opposite inequality in (13) followed after discussion when $\chi' < 0$ in (14) or when $\chi' > 0$ in (15).

4. Multiplicative Case

In the multiplicative case the function from (6) is a multiplication: $f(x_1, \ldots, x_m) = x_1 \cdots x_m$. The criteria for inequality (6) are proven through the next Theorem.

Theorem 4.1. Suppose that $\varphi_1, \ldots, \varphi_m$ and χ are twice differentiable strictly monotone functions on their domains J_1, \ldots, J_m and J_w . Suppose that each n-tuple $(x_i) = (x_{i1}, \ldots, x_{in})$ is positive and consists values from J_i , $i = 1, \ldots, m$ such that product $\prod_{i=1}^m x_{ij}$ belongs to J_w for every $j = 1, \ldots, n$. Presume functions

$$D_i(x_i) = \frac{1}{1 + x_i \frac{\varphi_i''(x_i)}{\varphi_i'(x_i)}}, \ i = 1, \dots, m \ and \ D(u) = \frac{1}{1 + u \frac{\chi''(u)}{\chi'(u)}}$$
(16)

are definable for $u = x_1 \cdots x_m$. Take $\mathbf{a} = (a_1, \dots, a_n)$, $a_i \ge 0$ with $\sum_{i=1}^n a_i = 1$ and connote n-tuple

$$\prod_{i=1}^{m} \mathbf{x}_{i} = \left(\prod_{i=1}^{m} x_{i1}, \prod_{i=1}^{m} x_{i2}, \dots, \prod_{i=1}^{m} x_{in}\right). \text{ Then the inequality}$$
$$\prod_{i=1}^{m} M_{\varphi_{i}}(\mathbf{x}_{i}; \mathbf{a}) \ge M_{\chi}\left(\prod_{i=1}^{m} \mathbf{x}_{i}; \mathbf{a}\right), \tag{17}$$

holds if and only if any of the following conditions is fulfilled:

- (i) all D, D_1, \ldots, D_m are positive and $D \ge D_1 + D_2 + \cdots + D_m$.
- (ii) D is negative and all D_1, \ldots, D_m are positive

The inequality in (17) is opposite if and only if any of the following is fulfilled:

- (i) all D, D_1, \ldots, D_m are negative and $D \leq D_1 + D_2 + \cdots + D_m$.
- (ii) D is positive and all D_1, \ldots, D_m are negative

Proof. In the case that χ increases, the inequality in (17) is based on the concavity of the function $H(s_{1j}, s_{2j}, \dots, s_{mj}) = \chi\left(\varphi_1^{-1}(s_{1j})\cdots\varphi_m^{-1}(s_{mj})\right)$ and opposite inequality is based on its convexity. When χ decreases, inequalities are vice versa.

Here we give the proof for (17) according Remark 2.1. From $H(s_{1j}, s_{2j}, \dots, s_{mj})$ it follows that $H_{ii} = \frac{\partial^2 H}{\partial s_i^2} = \frac{x_1 \cdots x_m \chi'}{x_i^2 (\varphi'_i)^2}$

$$\left(\frac{1}{D} - \frac{1}{D_i}\right)$$
 and $H_{ij} = \frac{\partial^2 H}{\partial s_j \partial s_i} = \frac{x_1 \cdots x_m \chi'}{x_i x_j \varphi'_i \varphi'_j} \frac{1}{D}$. The conditions (11) is explored on the *k*-th determinant:

$$(-1)^{m} \begin{vmatrix} \frac{x_{1}\cdots x_{m}\chi'}{x_{1}^{2}(\varphi_{1}')^{2}} \left(\frac{1}{D} - \frac{1}{D_{1}}\right) & \frac{x_{1}\cdots x_{m}\chi'}{x_{1}x_{2}\varphi_{1}'\varphi_{2}'} \frac{1}{D} & \cdots & \frac{x_{1}\cdots x_{m}\chi'}{x_{1}x_{m}\varphi_{1}'\varphi_{m}'} \frac{1}{D} \\ \frac{x_{1}\cdots x_{m}\chi'}{x_{2}x_{1}\varphi_{2}'\varphi_{1}'} \frac{1}{D} & \frac{x_{1}\cdots x_{m}\chi'}{x_{2}^{2}(\varphi_{2}')^{2}} \left(\frac{1}{D} - \frac{1}{D_{2}}\right) & \cdots & \frac{x_{1}\cdots x_{m}\chi'}{x_{2}x_{m}\varphi_{2}'\varphi_{m}'} \frac{1}{D} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{x_{1}\cdots x_{m}\chi'}{x_{m}x_{1}\varphi_{m}'\varphi_{1}'} \frac{1}{D} & \frac{x_{1}\cdots x_{m}\chi'}{x_{m}x_{2}\varphi_{m}'\varphi_{2}'} \frac{1}{D} & \cdots & \frac{x_{1}\cdots x_{m}\chi'}{x_{m}^{2}(\varphi_{m}')^{2}} \left(\frac{1}{D} - \frac{1}{D_{m}}\right) \end{vmatrix} > 0.$$

Elementary determinant transformations and simple algebra entails

$$(\chi')^m (x_1 \cdots x_m)^m \left(\frac{D}{DD_1 \cdots D_m} - \frac{D_1}{DD_1 \cdots D_m} - \frac{D_2}{DD_1 \cdots D_m} - \cdots - \frac{D_m}{DD_1 \cdots D_m} \right) > 0.$$
(18)

Discussing

To prove the opposite inequality in (17) it is enough to divide the left hand side of the previous condition (18) by $(-1)^m$ and here it is:

$$(-\chi')^m (x_1 \cdots x_m)^m \left(\frac{D}{DD_1 \cdots D_m} - \frac{D_1}{DD_1 \cdots D_m} - \frac{D_2}{DD_1 \cdots D_m} - \cdots - \frac{D_m}{DD_1 \cdots D_m} \right) > 0.$$
(19)

Since all D_1, \ldots, D_m and χ'' are negative, the sign of common denominator $DD_1 \cdots D_m$ is $(-1)^{m+1}$. In cumulative, it is $(-1)^{2m+1} = -1$ and the inequality in (18) would be opposite. It is equivalent with conditions that has to be proven. Exploring any smaller determinant in the Remark 2.1 gives the analogue.

5. Minkowski and Hölder Inequality Types

Minkowsky and Hölder inequality are originally given in (Pečarić, et al., 1992). Defining a power mean generalization

 $M_{n,a}(\mathbf{x})_p := \left(\sum_{i=1}^n x_i^{a+p} / \sum_{i=1}^n x_i^p\right)^{\frac{1}{a}}$, author obtained a generalization of the Minkowski inequality in (Páles, 1982) and a generalization of the Hölder inequality in (Páles, 1983).

Well-known Minkowski inequality for non-negative *n*-tuples of real numbers is here enlarged for the case of several different potential means:

$$\left(\sum_{j=1}^{n} a_j x_{1j}^{\mu_1}\right)^{\frac{1}{\mu_1}} + \dots + \left(\sum_{j=1}^{n} a_j x_{mj}^{\mu_m}\right)^{\frac{1}{\mu_m}} \ge \left(\sum_{j=1}^{n} a_i (x_{1j} + \dots + x_{mj})^{\lambda}\right)^{\frac{1}{\lambda}}.$$
(20)

According the (12), for μ_i , $\lambda \neq 0$, there m + 1 auxiliary functions are appearing:

$$F_i(x_i) = \frac{x_i}{\mu_i - 1}, i = 1, \dots, m \text{ and } F(x_1 + \dots + x_m) = \frac{x_1 + \dots + x_m}{\lambda - 1}.$$

Proposition 5.1. The inequality (20) holds if $\lambda < 1$ and all $\mu_i > 1$, i = 1, ..., m. If all $\mu_i, \lambda > 1$, the (20) holds if for every j = 1, ..., n:

$$\frac{x_{1j} + \dots + x_{mj}}{\lambda - 1} \ge \frac{x_{1j}}{\mu_1 - 1} + \dots + \frac{x_{mj}}{\mu_m - 1}.$$
(21)

The inequality (21) holds if one of the two following conditions is fulfilled:

- when $\mu_i > \lambda > 1$ for every $i = 1, \dots, m$
- when the sequential queue $\mu_1 > \mu_2 > \cdots > \mu_k > \lambda > \mu_{k+1} > \cdots > \mu_m > 1$ is interrupted by λ as shown and for every $j = 1, \dots, n$:

$$\frac{\mu_1 - \lambda}{\mu_1 - 1} x_{1j} + \frac{\mu_2 - \lambda}{\mu_2 - 1} x_{2j} + \dots + \frac{\mu_k - \lambda}{\mu_k - 1} x_{kj} > \frac{\lambda - \mu_{k+1}}{\mu_{k+1} - 1} x_{(k+1)j} + \dots + \frac{\mu_m - \lambda}{\mu_m - 1} x_{mj}.$$

The inequality in (20) is opposite if $\lambda > 1$ and $\mu_i < 1$ for all i = 1, ..., m. If all $\mu_i, \lambda < 1$, the opposite inequality in (20) holds if

$$\frac{x_{1j} + \dots + x_{mj}}{\lambda - 1} \le \frac{x_{1j}}{\mu_1 - 1} + \dots + \frac{x_m}{\mu_m - 1}.$$
(22)

The inequality (22) holds if one of the two followings is fulfilled:

- when $\mu_i < \lambda$ for every $i = 1, \dots, m$
- when the sequential queue $\mu_1 < \mu_2 < \cdots < \lambda < \mu < k + 1 < \cdots < \mu_m < 1$ is interrupted as shown and:

$$\frac{\mu_1 - \lambda}{\mu_1 - 1} x_{1j} + \frac{\mu_2 - \lambda}{\mu_2 - 1} x_{2j} + \dots + \frac{\mu_k - \lambda}{\mu_k - 1} x_{kj} < \frac{\lambda - \mu_{k+1}}{\mu_{k+1} - 1} x_{(k+1)j} + \dots + \frac{\mu_m - \lambda}{\mu_m - 1} x_{mj}.$$

Proof. Apply Theorem 3.1 for the potential functions $\varphi_i(x_i) = x_i^{\mu_i}$. The statement follows immediately.

Generalized Hölder inequality is presented in the article as the inequality:

$$\left(\sum_{j=1}^{n} a_j x_{1j}^{\mu_1}\right)^{\frac{1}{\mu_1}} \cdots \left(\sum_{j=1}^{n} a_j x_{mj}^{\mu_m}\right)^{\frac{1}{\mu_1}} \ge \left(\sum_{j=1}^{n} a_j (x_{1j} \cdots x_{mj})^{\lambda}\right)^{\frac{1}{\lambda}}.$$
(23)

The suitable auxiliary functions are constants with given exponets as their values: $D_i(x_i) = \frac{1}{\mu_i}$ and $D(x_1 \cdots x_m) = \frac{1}{\lambda}$

Proposition 5.2. The inequality (23) holds if $\lambda < 0$ and $\mu_i > 0$ for i = 1, ..., m. If all $\mu_i, \lambda > 0$, then the (23) holds if

$$\frac{1}{\lambda} \geq \frac{1}{\mu_1} + \dots + \frac{1}{\mu_m}.$$

The inequality in (23) is opposite when $\lambda > 0$ and $\mu_i < 0$ for $i = 1, \ldots, m$. If all $\mu_i, \lambda < 0$ and

$$\frac{1}{\lambda} \leq \frac{1}{\mu_1} + \dots + \frac{1}{\mu_m},$$

the inequality in (23) is opposite too.

Proof. According the Theorem 4.1, statement of Proposition slides immediately.

135

References

- Beck, E. (1970). Ein Satzüber umerdnungs-ungleichungen. Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 320-328, 1-14.
- Ivanković, B. (2015). Criteria Enlargement For An Inequality Between Quasi-Arithmetic Means. J. of Math. Sci.: Advances and Applications, 32(1), 17-35.
- Losonczi, L., & Páles, Z. (2008). Comparison of means generated by two vunctions and a measure. J. Math. Anal. Appl., 345, 135-146. http://dx.doi.org/10.1016/j.jmaa.2008.04.004
- Losonczi, L., & Páles, Z. (2011). Minkowski-type inequalities for means generated by two functions and a measure. *Publ. Math. Debrecen*, 78(3-4), 743-753. http://dx.doi.org/10.5486/PMD.2011.5017
- Páles, Z. (1982). A Generalization of the Minkowski Inequality. J. Math. Anal. Appl., 90, 456-462. http://dx.doi.org/10.1016/0022-247X(82)90073-7
- Páles, Z. (1983). On Hölder-Type Inequalities. J. Math. Anal. Appl., 95, 457-466. http://dx.doi.org/10.1016/0022-247X(83)90120-8
- Pečarić, J. E., Proschan, F., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications, Academic Press, Inc.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).