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Abstract

This paper gives a theorem for the continuous time super-replication cost of European options where the stock price
follows an exponential Lévy process. Under a mild assumption on the legend transform of the trading cost function, the
limit of the sequence of the discrete super-replication cost is proved to be greater than or equal to an optimal control
problem. The main tool is an approximation multinomial scheme based on a discrete grid on a finite time interval [0,1] for
a pure jump Lévy model. This multinomial model is constructed similar to that proposed by (Szimayer & Maller, Stoch.
Proce. & Their Appl., 117, 1422-1447, 2007). Furthermore, it is proved that the existence of a liquidity premium for the
continuous-time model under a Lévy process. This paper concentrates on the Lévy processes with infinitely many jumps
in any finite time interval. The approach overcomes some difficulties that can be encountered when the Lévy process has
infinite activity.
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1. Introduction

In this paper, the problem of the continuous time super-replication cost of a European option in a one-dimensional Lévy
model is studied.

Related problems were studied by (Cetin, Soner & Touzi, 2010) and (Gokay & Soner, 2012). Both of the two works
showed that the continuous time super-replication cost for a binomial model exists. In (Gokay & Soner, 2012), it was
shown that a stochastic optimal control problem could be seen as a dual of the super-replication problem. (Gokay &
Soner, 2012) got the duality result implicitly through a partial differential equation and not by a straightforward argument.
And, the proof given in it was limited to Markovian claims. (Dolinsky & Soner, 2013) took the one-dimensional binomial
version of model proposed by (Cetin, Jarrow & Protter, 2004), which was also adopted in (Cetin & Roger, 2007) and
(Gokay & Soner, 2012). Their paper was based on nonmarkovian claims and more general liquidity functions, which was
an extension of (Gokay & Soner, 2012). In (Dolinsky & Soner, 2013), the dual of the discrete model was derived as an
optimal control problem and the construction given in (Kusuoka, 1995) was applied to prove that a liquidity premium
exists.

However, all the continuous time super-replication works so far have been based on a binomial model. That is, the
conclusions are all under the condition that the stock price at time t is given by S t = s0exp(Bt), where Bt is a Brownian
motion. However, the restriction to Brownian motion does not allow for infinite activity of the Lévy process that is actually
frequently used for building stochastic models in finance, economics and many other fields.

In this present paper, the continuous time super-replication problem is extended to one-dimensional Lévy model. The
existence of the liquidity premium is proved which should have the practical importance in the real world. For background
of Lévy processes, the readers are referred to (Applebaum, 2004), (Bertoin, 1996) and (Sato, 1999). Special emphasis is
placed on Lévy processes that have infinitely many jumps, almost surely, in any finite time interval.

The duality result of the discrete model given in Theorem 3.1 of (Dolinsky & Soner, 2013) remains correct for our
multinomial model. To show the existence of the liquidity premium, the main tool is a multinomial approximation scheme
that is similar to that proposed by (Maller, Solomon & Szimayer, 2006). This multinomial model is based on a discrete
grid, in a finite time interval [0, 1], and having a finite number of states, for a Lévy process. In (Maller & Szimayer, 2007),
each jump step of the multinomial scheme is actually the first jump with certain size in each subinterval. And, it is proved
that the discrete multinomial approximation sequence converges to the continuous time Lévy model in mean under the
Skorokhod J1 topology. To show this, the uniformly boundedness of the discrete stock price has to be shown first. The
Dominant convergence theorem will be adopted to complete the proofs.

The remainder of this paper is organized as follows. In section 2, the set-up is outlined. The main convergence results of
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this paper are presented and proved in Section 3. Section 4 gives the conclusions and discussions.

2. Setup and Preliminaries

In this present section, we will first construct a multinomial model and introduce the super-replication problem. And then,
the Lévy model will be defined.

2.1 Super-replication Problem

First of all, a multinomial model is constructed. This multinomial scheme is similar to that proposed by (Maller et al.,
2006). For each n = 1, 2, · · · , the number of time steps in [0, 1] is denoted by N(n). For a fixed M > 0, n ∈ N, let
M(n) = { i

N(n)n , i ∈ N} ∩ (−M, M). Let Ωn = M(n)N(n) be the space of ω(n) = (ω1(n), ω2(n), · · · , ωN(n)(n)) with the
product probability, where ωi(n) ∈ M(n). Define the canonical sequence of random variables Xi(n), i = 1, · · · , N(n) by

Xi(n)(ω(n)) = ωi(n),

and consider the natural filtration Fk(n) = σ{X1(n), X2(n), · · · , Xk(n)}, 1 ≤ k ≤ N(n), and let F0(n) be trivial. For any
n, suppose the N(n)-step multinomial model of a financial market which is active at times 0, 1

N(n) ,
2

N(n) , · · · , 1. Assume
that the discrete stock price at time k

N(n) is given by

S n(k) = S 0 exp

 k∑
j=1

X j(n)

 , k = 0, 1, · · · , N(n). (1)

Let D[0, 1] be the space of all càdlàg functions from [0, 1] to R.

Secondly, I recall some definitions and preliminaries given in (Dolinsky & Soner, 2013). Let F : D[0, 1] → R+ be a
continuous map. Assume that there exist constants L, p > 0 for which

F(y) ≤ L
(
1+ ∥ y ∥pS k

)
, ∀y ∈ D[0, 1], (2)

where ∥ · ∥S k is the Skorokhod norm. For the Skorokhod J1 topology, the readers are referred to (Karatzas & Shreve,
1991) and (Jacod & Shiryaev, 2003). Let the payoff function of a European claim with maturity T = 1 be

Fn := F(S n). (3)

Let g(t, S , v) be the trading cost function at time t, where S is the stock price and v is the trading volume at time t.
Assume that g : [0, 1] × D[0, 1] × R → [0, ∞) is nonnegative, adapted, convex for every (t, S ) ∈ [0, 1] × D[0, 1], and
g(t, S , 0) = 0. The Legendre transform of g is given by

G(t, S , y) = sup
z∈R

(yz − g(t, S , z)), ∀(t, S , y) ∈ [0, 1] × D[0, 1] × R. (4)

Let π =
(
x, {v(k)}N(n)

k=0

)
be a self-financing portfolio strategy where x is the initial capital and v(k) is the number of stocks the

investor holds at time k/N(n) before a transfer is made at this time. Assume that v(0) = 0 and v(k) is an Fk−1−measurable
random variable. The portfolio value of π is defined given by

Yπ(k + 1) = Yπ(k) + v(k + 1)(S n(k + 1) − S n(k)) − g
(

k
N(n)

, S n, v(k + 1) − v(k)
)

for k = 0, 1, · · · , N(n) − 1 with initial value Yπ(0) = x.

The super-replication price of a European claim with payoff Fn is defined as

Vn := Vn(g, Fn) = inf{x| ∃π ∈ Πx
n with Yπ(n : g) ≥ Fn P − a.s.},

where Πx
n is the set of all portfolios with initial capital x.

At last, the Theorem 3.1 in (Dolinsky & Soner, 2013) is recalled in the following remark. It claims that a dual of the
super-replication price is an optimal control problem in which the controller is allowed to choose any probability measure
on (Ωn, F (n)) in their binomial model. This conclusion is also true for the multinomial model in this present paper.

Remark 1 Let Qn be the set of all probability measures on (Ωn, F (n)). Then

Vn = sup
P∈Qn

EP

Fn −
N(n)−1∑

k=0

G
(

k
N(n)

, S n, EP(S n(N(n))|Fk(n)) − S n(k)
) ,
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where EP denotes the expectation with respect to a probability measure P ∈ Qn.

2.2 Lévy Model

Let L = (Lt, 0 ≤ t ≤ 1) be a Lévy process with càdlàg paths defined on a completed probability space (Ω, F , P), where
F is as in the Definition 2 below. Let FL = (F L

t )0≤t≤1 be the natural filtration generated by (Lt, 0 ≤ t ≤ 1). Assume that
the Lévy triplet of (Lt, 0 ≤ t ≤ 1) is (γ, σ, ν) = (0, 0, ν), where γ is the drifting term, σ is the volatility of the Brownian
motion part, and the Lévy measure ν is the intensity of the jump process of the Lévy process. Thus, this Lévy process is
determined by the Lévy measure, ν. By the Lévy-Ito Decomposition,

Lt =

∫ t

0

∫
|x|<1

xÑ(dt, dx) +
∫ t

0

∫
|x|≥1

xN(dt, dx), (5)

where N(·, ·) is the associated independent Poisson random measure process on R+ × (R\{0}) with intensity ν. And, for
t ∈ [0, 1] and A ∈ B(R\{0}), Ñ(t, A) = N(t, A) − tν(A) is the compensate Poisson process.

Definition 1 Let θ be a product measure taking the form θ((0, t] × A) = tν(A) for each t ≥ 0, A ∈ B(R). Let E ∈ B(R).
Let H2(1, E) be the linear space of all equivalent classes of mappings H : [0, 1] × E × Ω → R which coincide almost
everywhere with respect to θ × P and which satisfy the following conditions:
(1) H is predictable;
(2) ||H||2 ,

∫ 1
0

∫
E E(H(t, x))2ν(dx)dt < ∞.

Especially, writeH2(1, {0}) = H2(1).

Remark 2 Naturally,H2(1, R) is isomorphic to L2(R, ν)⊗H2(1), where L2(R, ν) is the set of square ν−integral functions.

For any H ∈ H2(1, R). By Remark 2, there exists f (t) ∈ H2(1) and g(x) ∈ L2(R, ν) such that H(t, x) = f (t)g(x). Let
F f = (F f

t )t∈[0,1] be the natural filtration generated by ( f (t), t ∈ [0, 1]).

Definition 2 Define that F = (Ft)t∈[0,1], where for any t ∈ [0, 1], Ft is the smallest σ−algebra containing F f
t and F L

t .
Suppose that F0 contains all P−null sets and that F1 = F .

Definition 3 For any H(t, x) ∈ H2(1,R), let S H(t) , so exp(εt), where

εt =

∫ t

0

∫
R

H(s, x)N(ds, dx) −
∫ t

0

∫
R

[
eH(s, x) − 1

]
ν(dx)ds. (6)

By Corollary 5.2.2 of (Applebaum, 2004), S H(t) is a local martingale.

3. Main Results

In this section, the existence of liquidity premium is showed. The convergence results are presented and proved.

3.1 Existence of Liquidity Premium

Assumption 1 Assume that G defined in (4) satisfies the following growth and scaling conditions:

(a) There are constants C, p, and β ≥ 2 such that

G(t, S , y) ≤ Cyβ(1+ ∥ S ∥∞)p, ∀(t, S , y) ∈ [0, 1] × D[0, 1] × R.

(b) There exists m(n) ↓ 0 and a continuous function

Ĝ : [0, 1] × D[0, 1] × R→ [0, ∞]

such that lim
n→∞

ν̄(m(n))2

N(n) = 0 and, for any bounded sequence {xn} and convergent sequences tn → t, S n → S in the Skorohod
norm,

lim
n→∞

∣∣∣∣∣∣N(n)G
(
tn, S n,

xnν̄(m(n))2

N(n)
S n(t)

)
− Ĝ(t, S , xnS (t))

∣∣∣∣∣∣ = 0.

The main result of this paper is stated in the following theorem. The proof will be given in subsection 3.3.

Theorem 1 Let G be a dual function satisfying Assumption 1(a), and let Ĝ be as in Assumption 1(b). Then,

lim
n→∞

Vn ≥ sup
H∈AM

J(S H),
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where

J(S H) := E
{

F(S H) −
∫ 1

0
Ĝ(t, S H ,

(t − 1)S H(t)
2

)dt
}
,

AM := {H(t, x) ∈ H2(1,R) : |H| < M and E(S H(t) = 1) for any t ∈ [0, 1]}.
Remark 3 It follows from the Theorem 5.2.4 in (Applebaum, 2004) that S H(t) is a martingale if E(S H(t) = 1) for any
t ∈ [0, 1].

3.2 Multinomial Approximation Schemes and Lemmas

To show Theorem 1, we need the following constructions of multinomial schemes and lemmas.

Fix H(t, x) ∈ AM . Suppose that H(t, x) = f (t)g(x) for some f (t) ∈ H2(1) and g(x) ∈ L2(R, ν). Since |H| < M almost
surely, it is harmless to assume that | f | < α and |g| < β for some positive finite numbers, α and β, with probability 1. By
the proof of Lemma 4.1.4 of (Applebaum, 2004), a sequence of simple processes, fn(t), can be constructed such that, as
n→ ∞, ∫ 1

0
E| fn − f |2dt → 0. (7)

Actually,
fn(t) = fn(t j−1(n)) (8)

if t ∈ [t j−1(n), t j(n)), j = 1, · · · , N(n), where t j(n)’s are the grid points of an equal partition of the time interval [0, 1].
Let Hn(t, x) = fn(t)gn(x), where gn(x) := g(x)1{|x|>m(n)}. Moreover, | fn| < α and |gn| < β for all n ∈ N.

Let S̃ n(t) := s0 exp (ε̃n(t)), where

ε̃n(t) :=
∫ t

0

∫
R

Hn(s, x)N(ds, dx) −
∫ t

0

∫
R

[
eHn(s, x) − 1

]
ν(dx)ds. (9)

Lemma 2 We have

E
(

sup
t∈[0, 1]

∣∣∣S̃ n(t) − S H(t)
∣∣∣) −→ 0.

That is, S̃ n
L1

→ S H as n→ ∞. Here and later, ”
L1

→” denotes convergence in mean.

Proof. By the definition of εn(t) and εt, we have

E
(

sup
t∈[0,1]

|ε̃n(t) − εt |
)

≤ E
(

sup
t∈[0,1]

∣∣∣∣∣∣
∫ t

0

∫
R

(Hn(s, x) − H(s, x))Ñ(ds, dx)

∣∣∣∣∣∣
)

+E
(

sup
t∈[0,1]

∣∣∣∣∣∣
∫ t

0

∫
R

[(
eHn(s,x) − 1 − Hn(s, x)

)
−

(
eH(s,x) − 1 − H(s, x)

)]
ν(dx)ds

∣∣∣∣∣∣
)
.

First of all, consider that
∫ t

0

∫
R(Hn(s, x) − H(s, x))Ñ(ds, dx) is a martingale for H, Hn ∈ H2(1,R). Thus, by the Doob’s

martingale inequality, we have

E2
(

sup
t∈[0,1]

∣∣∣∣∣∣
∫ t

0

∫
R

(Hn(s, x) − H(s, x))Ñ(ds, dx)

∣∣∣∣∣∣
)

≤ E
 sup

t∈[0,1]

∣∣∣∣∣∣
∫ t

0

∫
R

(Hn(s, x) − H(s, x))Ñ(ds, dx)

∣∣∣∣∣∣2


≤ 4E
∣∣∣∣∣∣
∫ 1

0

∫
R

(Hn(s, x) − H(s, x))Ñ(ds, dx)

∣∣∣∣∣∣2


≤ 4E
(∫ 1

0

∫
R

(Hn(s, x) − H(s, x))2ν(dx)ds
)

n→∞−→ 0.

Here, the convergence follows from the construction of Hn.
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Secondly, by the Taylor expansion,

E
(

sup
t∈[0,1]

∣∣∣∣∣∣
∫ t

0

∫
R

[(
eHn(s,x) − 1 − Hn(s, x)

)
−

(
eH(s,x) − 1 − H(s, x)

)]
ν(dx)ds

∣∣∣∣∣∣
)

= E
 sup

t∈[0,1]

∣∣∣∣∣∣∣
∫ t

0

∫
R

∞∑
k=2

Hk
n − Hk

k!
ν(dx)ds

∣∣∣∣∣∣∣


= E
 sup

t∈[0,1]

∣∣∣∣∣∣∣
∞∑

k=2

[∫ t

0

∫
|x|≤m(n)

−Hk

k!
ν(dx)ds +

∫ t

0

∫
|x|>m(n)

Hk
n − Hk

k!
ν(dx)ds

]∣∣∣∣∣∣∣


≤ E
 ∞∑

k=2

∫ 1

0

∫
|x|≤m(n)

|H|k
k!
ν(dx)ds

 + E  ∞∑
k=2

∫ 1

0

∫
|x|>m(n)

|Hk
n − Hk |

k!
ν(dx)ds

 .
Since H ∈ H2(1,R), E

∫ 1
0

∫
|x|≤m(n) H2ν(dx)ds→ 0 as n→ ∞.

E
 ∞∑

k=2

∫ 1

0

∫
|x|≤m(n)

|H|k
k!
ν(dx)ds

 ≤ E
 ∞∑

k=2

∫ 1

0

∫
|x|≤m(n)

H2Mk−2

k!
ν(dx)ds


≤

∞∑
k=2

Mk−2

k!

(
E

∫ 1

0

∫
|x|≤m(n)

H2ν(dx)ds
)

→ 0.

Recall that, for any t ∈ [0, 1], x ∈ R, Hn(t, x) = fn(t)gn(x), where gn(x) = g(x)1|x|>m(n), and that | fn|, | f | < α and |g| < β.
So,

E
 ∞∑

k=2

∫ 1

0

∫
|x|>m(n)

|Hk
n − Hk |

k!
ν(dx)ds


= E

 ∞∑
k=2

∫ 1

0

∫
|x|>m(n)

|g|k | f k
n − f k |
k!

ν(dx)ds


=

∞∑
k=2

[∫
|x|>m(n)

|g|k
k!
ν(dx)E

(∫ 1

0
| f k

n − f k |ds
)]

≤
∞∑

k=2

[
βk−2

k!

∫
|x|>m(n)

g2ν(dx)E
(∫ 1

0
| fn − f || f k−1

n + f k−2
n f + · · · + f k−1|ds

)]

≤
∞∑

k=2

[
kβk−2αk−1

k!

∫
|x|>m(n)

g2ν(dx)E
(∫ 1

0
| fn − f |ds

)]
−→ 0,

as n→ ∞, where the convergence follows from the boundedness of
∑∞

k=2
kβk−2αk

k! , g ∈ L2(R, ν) and that fn
L2

→ f .

Above all, εn(t)
L1

→ εt under the uniform topology.

At last, consider that ε̃n(t) is a martingale. So, exp(ε̃n(t)) is a submartingale. By the Doob’s martingale inequality, we
have

max
n≥1

E2
(

sup
t∈[0,1]

eε̃n(t)
)
≤ max

n≥1
E

(
sup

t∈[0,1]
eε̃n(t)

)2

≤ max
n≥1

4E
(
e2ε̃n(1)

)
.

Hence, we only need to show max
n≥1

E
(
e2ε̃n(1)

)
< ∞. Then, by the Dominant Convergence Theorem, the lemma follows

immediately.

By (9),

e2ε̃n(1) = exp
{∫ 1

0

∫
R

2Hn(s, x)N(ds, dx) −
∫ 1

0

∫
R

2
[
eHn(s, x) − 1

]
ν(dx)ds

}
.

66



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 4; 2015

Consider that

E
(
exp

[∫ 1

0

∫
R

2Hn(s, x)N(ds, dx)
])

= E

exp

N(n)∑
j=1

∫
R

2Hn(t j−1(n), x)N([t j−1(n), t j(n)), dx)




= E

N(n)∏
j=1

exp
[∫

R
2Hn(t j−1(n), x)N([t j−1(n), t j(n)), dx)

]
= E

N(n)∏
j=1

exp
[
(t j(n) − t j−1(n))

∫
R

(e2Hn(t j−1(n), x) − 1)ν(dx)
]

= E

exp

N(n)∑
j=1

(t j(n) − t j−1(n))
∫
R

(e2Hn(t j−1(n), x) − 1)ν(dx)




= E
(
exp

[∫ 1

0

∫
R

(e2Hn(s, x) − 1)ν(dx)ds
])
,

where the third equality follows from the generating function of a compound Poisson process and the independence of
increment for the Poisson process N([t j−1(n), t j(n)), ·), j = 1, 2, · · · ,N(n).

Then,

E
(
e2ε̃n(1)

)
= E

(
exp

[∫ 1

0

∫
R

(e2Hn(s, x) − 2eHn(s, x) + 1)ν(dx)ds
])

= E
(
exp

[∫ 1

0

∫
R

(eHn(s, x) − 1)2ν(dx)ds
])

≤ e2ME
(
exp

[∫ 1

0

∫
R

Hn(s, x)2ν(dx)ds
])

= e2ME
(
exp

[∫ 1

0
fn(s)2ds

∫
R

gn(x)2ν(dx)
])

≤ e2M
(
eα

2
∫
R gn(x)2ν(dx)

)
< ∞,

where the first inequality follows from the assumption that |Hn| < M, the second from | fn| < α and the last from
gn ∈ L2(R, ν). Thus, the lemma follows.

Suppose the Lévy process given in (5) has infinitely many jumps in any finite time interval. Similar to the idea in (Szimayer
& Maller, 2007), only the first jump in each subinterval with certain magnitude is taken.

Definition 4 Let △Lt be the jump of the Lévy process at time t ∈ [0, 1]. For j = 1, · · · , N(n), let τ j(n) = inf{t ∈
(t j−1(n), t j(n)] | |△Lt | > m(n)} and Y1

j (n) be the size of the first such jump occurs at τ j(n) if there is such a jump. Define
S̄ n(t) = s0 exp(ε̄n(t)), where

ε̄n(t) = ε̃n,1(t)

:=
N(n)∑
j=1

1{τ j(n)≤t}

Hn(τ j(n), Y1
j (n)) − ln

1 +
∫
|x|>m(n)(e

Hn(τ j(n), x) − 1)ν(dx)

ν̄(m(n))


 .

Here ν̄(m(n)) = ν([−m(n), m(n)]c).

The following lemma shows that the sequence S̄ n is uniformly bounded and |S̃ n − S̄ n|
L1

→ 0.

Lemma 3 We have

(i) max
n≥1

E
(

sup
t∈[0,1]

S̄ n(t)
)
≤ ∞;
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(ii) E
(

sup
t∈[0, 1]

∣∣∣S̃ n(t) − S̄ n(t)
∣∣∣) −→ 0 as n→ ∞.

Proof. (i)By definition 4. S̄ n(t) = s0eε̄n(t) is a martingale. Indeed, let ϑ j(n) be the number of jumps of Lt in the subinterval,
(t j−1(n), t j(n)], with magnitude greater than m(n), and Y j,k(n) be the size of the kth such jump that occurs at time tk

j(n),

k = 1, 2, 3, · · · , ϑ j(n). Take expectation of exp
[∑ϑ j(n)

k=1 Hn(tk
j(n), Y j,k(n))

]
with respect to Y j,k(n)’s:

EY

exp

ϑ j(n)∑
k=1

Hn(tk
j(n), Y j,k(n))




= EY

(
exp

[∫
R

Hn(t j−1(n), x)N([t j−1(n), t j(n)), dx)
])

= exp
[
(t j(n) − t j−1(n))

∫
R

(
eHn(t j−1(n), x) − 1

)
ν(dx)

]
.

On the other hand, consider that
∑ϑ j(n)

k=1 Hn(tk
j(n), Y j,k(n)) is a compound Poisson random variable with E(ϑ j(n)) =

ν̄(m(n))/N(n). By the generating function of a compound Poisson random variable,

EY

(
e
[∑ϑ j(n)

k=1 Hn(tk
j (n), Y j,k(n))

])
= exp

[
ν̄(m(n))

N(n)

(
EY (eHn(t j−1(n),Y j,k(n))) − 1

)]
,

for each k = 1, 2, 3, · · · , ϑ j(n). Hence,

EY (eHn(t j−1(n),Y j,k(n))) = 1 +

∫
R

(
eHn(t j−1(n), x) − 1

)
ν(dx)

ν̄(m(n))
.

And so, E exp
{

Hn(τ j(n), Y1
j (n)) − ln

[
1 +

∫
|x|>m(n)(e

Hn (τ j(n),x)−1)ν(dx)

ν̄(m(n))

]}
= 1 for each j = 1, 2, · · · ,N(n). Therefore, S̄ n(t) =

s0eε̄n(t) is a martingale.

Again, by the Doob’s martingale inequality,

E2
(

sup
t∈[0,1]

S̄ n(t)
)
≤ E

(
sup

t∈[0,1]
S̄ n(t)

)2

≤ 4E
(
S̄ n(1)

)2 ≤ 4s0E
(
e2ε̃n,1(1)

)
.

Since all of the terms of ε̄n(1) are mutually independent with respect to (Ω, F , P),

E
(
e2ε̄n(1)

)
= E


N(n)∏
j=1

exp

1{τ j(n)≤1}

2Hn(τ j(n),Y1
j ) − 2 ln

1 +
∫
R(eHn(t j−1(n),x) − 1)ν(dx)

ν̄(m(n))




= E


N(n)∏
j=1

P(ϑ j(n) = 0) + P(ϑ j(n) > 0) ·
1 +

∫
R(e2Hn(t j−1(n),x)−1)ν(dx)

ν̄(m(n))(
1 +

∫
R(eHn (t j−1(n),x)−1)ν(dx)

ν̄(m(n))

)2


 .

Note that

1 +
∫
R(e2Hn(t j−1(n),x)−1)ν(dx)

ν̄(m(n))(
1 +

∫
R(eHn (t j−1(n),x)−1)ν(dx)

ν̄(m(n))

)2

= 1 +

∫
R(eHn (t j−1(n),x)−1)2ν(dx)

ν̄(m(n)) −
( ∫

R(eHn(t j−1(n),x)−1)ν(dx)
ν̄(m(n))

)2

(
1 +

∫
R(eHn (t j−1(n),x)−1)ν(dx)

ν̄(m(n))

)2

≤ 1 +

∫
R(eHn (t j−1(n),x)−1)2ν(dx)

ν̄(m(n))(
1 +

∫
R(eHn (t j−1(n),x)−1)ν(dx)

ν̄(m(n))

)2 .
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Since |Hn| < M,
(
1 +

∫
R(eHn (t j−1(n),x)−1)ν(dx)

ν̄(m(n))

)2
∈ (e−2M , e2M). Because Hn ∈ H2(1,R),

∫
R(eHn(t j−1(n),x) − 1)2ν(dx)

ν̄(m(n))
<

e2M
∫
R(Hn(t j−1(n), x)2ν(dx)

ν̄(m(n))
= O

(
1

ν̄(m(n))

)
.

Hence,

0 ≤ E
(
e2ε̃n,1(1)

)
≤ E


N(n)∏
j=1

[
e−

ν̄(m(n))
N(n) +

(
1 − e−

ν̄(m(n))
N(n)

) (
1 + O

(
1

ν̄(m(n))

))]
= E


N(n)∏
j=1

[
1 +

(
1 − e−

ν̄(m(n))
N(n)

)
O

(
1

ν̄(m(n))

)]
= E


N(n)∏
j=1

[
1 + O

(
1

N(n)

)] .
Moreover, max

n≥1
E

(
e2ε̃n,1(1)

)
< ∞. Thus, part (i) is obtained.

(ii) Let

ε̃n,2(t)

:=
N(n)∑
j=1

1{ϑ j(n)≥2}

ϑ j(n)∑
k=2

1{tk
j (n)≤t}

Hn(tk
j(n),Y j,k(n)) − ln

1 +
∫
R(eHn(t j−1(n),x) − 1)ν(dx)

ν̄(m(n))

 ,
Obviously, ε̃n,2(t) + ε̃n,1(t) = ε̃n(t) for any t ∈ [0, 1]. Actually, ε̃n,1(t) collects all of the first jump in each subinterval with
magnitude greater than m(n), whereas ε̃n,2(t) collects over all subintervals such jumps except for the first one.

Consider that

E
(

sup
t∈[0,1]

∣∣∣S̃ n(t) − S̄ n(t)
∣∣∣) = E

(
sup

t∈[0,1]

∣∣∣S̄ n(t)
∣∣∣ ∣∣∣eε̃n,2(t) − 1

∣∣∣)
≤ E

(
sup

t∈[0,1]

∣∣∣S̄ n(t)
∣∣∣ sup

t∈[0,1]

∣∣∣eε̃n,2(t) − 1
∣∣∣)

= E
(

sup
t∈[0,1]

∣∣∣S̄ n(t)
∣∣∣)E (

sup
t∈[0,1]

∣∣∣eε̃n,2(t) − 1
∣∣∣) ,

where the last equality follows from the independence of
(
S̄ n(t)

)
t

and
(
εn,2(t)

)
t.

Part (i) showed max
n≥1

E
(

sup
t∈[0,1]

S̄ n(t)
)
< ∞. So, to show S̃ n(t)

L1

−→ S̄ n(t) as n→ ∞, we only need to show that

E
(

sup
t∈[0,1]

∣∣∣eε̃n,2(t) − 1
∣∣∣)→ 0.

Similar to the arguments for ε̄n(t) in part (i), eε̃n,2(t) is also a martingale. Then, by the Doob’s martingale inequality, we
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have

E2
(

sup
t∈[0,1]

∣∣∣eε̃n,2(t) − 1
∣∣∣) ≤ E

(
sup

t∈[0,1]

∣∣∣eε̃n,2(t) − 1
∣∣∣)2

≤ 4E
(∣∣∣eε̃n,2(1) − 1

∣∣∣2)
= 4E

(
e2ε̃n,2(1) − 2eε̃n,2(1) + 1

)
= 4

[
E

(
e2ε̃n,2(1)

)
− 1

]
= 4


N(n)∏
j=1

P(ϑ j(n) < 2) + E

1(ϑ j(n) ≥ 2) ·
ϑ j(n)∏
k=2

1 +
∫
R(e2Hn (t j−1(n),x)−1)ν(dx)

ν̄(m(n))(
1 +

∫
R(eHn (t j−1(n),x)−1)ν(dx)

ν̄(m(n))

)2


 − 1

 ,
where the second equality follows from E

(
eε̃n,2(1)

)
= 1 and the last equality from the definition of ε̃n,2(t) and the indepen-

dence of
(
ϑ j(n), Hn(tk

j(n),Y j,k(n))
)

j,k
. From |Hn| < M, it follows that |ηn, j| =

∣∣∣∣∣∣∣∣∣
1+

∫
R(e

2Hn (t j−1(n),x)−1)ν(dx)
ν̄(m(n))(

1+
∫
R(e

Hn (t j−1(n),x)−1)ν(dx)
ν̄(m(n))

)2

∣∣∣∣∣∣∣∣∣ is bounded, uniformly

for n ∈ N and j = 1, 2, · · · ,N(n), by a positive finite number, say η. So,

E

1(ϑ j(n) ≥ 2) ·
ϑ j(n)∏
k=2

ηn, j

 ≤ ∞∑
l=2

ηl−1 P(ϑ j(n) = l).

Since ϑ j(n) is a Poisson r.v. with expectation λ(n) = ν̄(m(n))
N(n) , P(ϑ j(n) = k) = e−λ(n) λ(n)k

k! for any k = 0, 1, 2, · · · . By

Assumption 1 (b), lim
n→∞

ν̄(m(n))2

N(n) = 0. Hence,

E

1(ϑ j(n) ≥ 2) ·
ϑ j(n)∏
k=2

ηn, j

 ≤ ∞∑
k=2

ηkλ(n)k

k!
e−λ(n) = O(λ(n)2).

Above all,

1
4
E2

(
sup

t∈[0,1]

∣∣∣eε̃n,2(t) − 1
∣∣∣) ≤

N(n)∏
j=1

(
e−λ(n) + λ(n)e−λ(n) + O(λ(n)2)

)
− 1

=

N(n)∏
j=1

(
1 + O(λ(n)2)

)
− 1

=

1 + O
(
ν̄(m(n))

N(n)

)2N(n)

− 1

= O
(
ν̄(m(n))2

N(n)

)
n→∞−→ 0,

where the convergence also follows from the assumption that lim
n→∞

ν̄(m(n))2

N(n) = 0. Thus, we got part (ii).

Next, the definition of S n is given.

Definition 5 For any t ∈ [0, 1], let Ŝ n(t) = s0 exp(ε̂n(t)), where ε̂n(t) =
∑N(n)

j=1 1{τ j(n)≤t}
⌊∆ε̃n,1(τ j(n))N(n)n⌋

N(n)n and ∆ε̃n,1(τ j(n)) =
ε̃n,1(τ j(n)) − ε̃n,1(τ j(n)−). For any k = 0, 1, 2, · · · ,N(n), let S n(k) = s0 exp(εn(k)), where εn(k) = ε̂n(tk(n)).

Remark 4 Each S n(k) defined above is of the form (1). Indeed, by Definition 5, ∆ε̃n,1(τ j(n)) = Hn(τ j(n), Y1
j (n)) −

ln
[
1 +

∫
|x|>m(n)(e

Hn (τ j(n),x)−1)ν(dx)

ν̄(m(n))

]
. It is known that |H| < M almost surely. For any given ω ∈ Ω, let M − |H| > c1 for some

constant c1 > 0. And, then M− |Hn| > c1 by the definition of Hn. Set d be a positive number such that both |ln(1+d)| < c1
and |ln(1−d)| < c1. Since g ∈ L2(R, ν), there exists c2 > 0 such that |gn| ≤ |g| < ln(1+d)

2α for all n ∈ N whenever |x| < c2. Let
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n be large enough such that

∣∣∣∣∣∣
∫
|x|>c2

(eHn (τ j(n),x)−1)ν(dx)

ν̄(m(n))

∣∣∣∣∣∣ < d
2 . Thus,

∣∣∣∣∣∣ln
[
1 +

∫
|x|>m(n)(e

Hn (τ j (n),x)−1)ν(dx)

ν̄(m(n))

]∣∣∣∣∣∣ < c1. Hence, ∆ε̃n,1(τ j(n)) < M

for all j = 1, 2, · · · ,N(n) and n ∈ N.

Lemma 4 We have
(i) E (ρ(S n(⌊N(n)t⌋), S H(t)))→ 0 as n→ ∞, where ρ is the Skorokhod distance;

(ii) max
n≥1

E
(

max
0≤k≤N(n)

S n(k)
)
≤ ∞.

Proof. (i) Consider that

sup
t∈[0,1]

∣∣∣Ŝ n(t) − S̄ n(t)
∣∣∣

≤ sup
t∈[0,1]

∣∣∣S̄ n(t)
∣∣∣ · sup

t∈[0,1]

∣∣∣∣∣∣∣∣exp

N(n)∑
j=1

(
1{τ j(n)≤t}

⌊∆ε̃n,1(τ j(n))N(n)n⌋
N(n)n

− ∆ε̃n,1(τ j(n))
) − 1

∣∣∣∣∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣S̄ n(t)
∣∣∣ · ∣∣∣∣e 1

n − 1
∣∣∣∣ .

By Lemma 3(i), max
n≥1

E
(

sup
t∈[0,1]

S̄ n(t)
)
≤ ∞. So, E

(
sup

t∈[0,1]

∣∣∣Ŝ n(t) − S̄ n(t)
∣∣∣)→ 0 as n→ ∞.

Since S n(⌊N(n)t⌋) = Ŝ n(t j(n)) if t ∈ [t j(n), t j+1(n)),

E[ρ(S n(⌊N(n)t⌋), Ŝ n(t j(n)))] ≤ ∆t(n)
a.s−→ 0.

Together with Lemma 2 and Lemma 3(ii), we get E (ρ(S n, S H))→ 0 as n→ ∞, as required.

(ii) By Lemma 3(i) and the proof of part (i) above, it is easy to see that

max
n≥1

E
(

max
0≤k≤N(n)

S n(k)
)
= max

n≥1
E

(
sup

t∈[0,1]

∣∣∣Ŝ n(t)
∣∣∣)

≤ max
n≥1

E
(

sup
t∈[0,1]

∣∣∣Ŝ n(t) − S̄ n(t)
∣∣∣ + sup

t∈[0,1]

∣∣∣S̄ n(t)
∣∣∣)

≤ ∞.

Then, the proof is finished.

Lemma 5 Let Mn(k) = E(S n(N(n)|Fk(n))), k = 1, 2, · · · ,N(n), where Fk(n) is the natural filtration generated by εn(k).
Then,

Mn(k) − S n(k) =
( k

N(n) − 1)ν̄(m(n))2

2N(n)
(1 + o(1))S n(k).

Proof. By the mutually independence of {τ j(n)} j and {Y1
j (n)} j, Mn(k) can be rewritten as

Mn(k) = E(S n(N(n))|Fk(n)) = S n(k)
N(n)∏
j=k+1

E
(
exp

( ⌊1{ϑ j(n)≥1}δ j(n)N(n)n⌋
N(n)n

)
|Fk(n)

)
,

where

δ j(n) = Hn(τ j(n),Y1
j (n)) − ln

1 +
∫
R(eHn(τ j(n),x) − 1)ν(dx)

ν̄(m(n))

 .
71



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 4; 2015

Since E
(
eδ j(n)

)
= 1 when ϑ j(n) ≥ 1, E

(
e
⌊δ j (n)N(n)n⌋

N(n)n

)
= 1 + O

(
1

N(n)

)
.

N(n)∏
j=k+1

E
(
exp

( ⌊δ j(n)N(n)n⌋
N(n)n

)
|Fk(n)

)

=

N(n)∏
j=k+1

[
P(ϑ j(n) = 0) + P(ϑ j(n) ≥ 1)E

(
e
⌊δ j(n)N(n)n⌋

N(n)n |F n
k

)]

=

N(n)∏
j=k+1

[
e−ν̄(m(n))/N(n) +

ν̄(m(n))
N(n)

e−ν̄(m(n))/N(n)
(
1 + O

(
1

N(n)n

))]

=

N(n)∏
j=k+1

[
1 − ν̄(m(n)2

2N(n)2 + o
(
ν̄(m(n)2

N(n)2

)]

=

[
1 − ν̄(m(n)2

2N(n)2 + o
(
ν̄(m(n)2

N(n)2

)]N(n)−k

= 1 − (N(n) − k)ν̄(m(n)2

2N(n)2 + o
(

(N(n) − k)ν̄(m(n)2

2N(n)2

)
.

Then, the lemma follows directly.

Now, we are ready to show the existence of the liquidity premium.

3.3 Proof of Theorem 1

The proof idea for the lower bound part of Theorem 3.5 in (Dolinsky & Soner, 2013) is used in the following proof of
Theorem 1.

Proof. Fix H ∈ AM . From Theorem 3.1 of (Donlinsky & Soner, 2013), it follows that

Vn ≥ E

F(S n) −
N(n)−1∑

k=0

G
(

k
N(n)

, S n, Mn(k) − S n(k)
) .

By Lemma 4(i), S n −→ S H in the mean under the Skorohod topology. So, by the Skorohod representation theorem, there
exists a probability space, (Ω̃, F̃, P̃), on which

S n −→ S H P̃ − a.s.

on the space D[0, 1].

By the growth assumption on F and Lemma 4(ii), the sequence F(S n) is uniformly integrable. Then,

lim
n→∞

E(F(S n)) = Ẽ(F(S H)),

where Ẽ is the expectation with respect to P̃. So, Mn(k) can be redefined on the new space, (Ω̃, F̃, P̃), as Mn(k) =
Ẽ[S n(N(n))|F̃k(n)]. The joint distribution of Mn and S n remains as before. The Assumption 1(b), Lemma 4 and Lemma
5 imply the sequence N(n)G

( ⌊nt⌋
N(n) , S n,Mn(⌊nt⌋) − S n(⌊nt⌋)

)
is uniformly integrable in L × P̃, where L is the Lesbegue

measure on [0, 1]. Since Ĝ is continuous, by Fubini’s theorem, Assumption 1(a) and Lemma 5,

lim
n→∞

E

N(n)−1∑
k=0

G
(

k
N(n)

, S n, Mn(k) − S n(k)
)

= lim
n→∞

Ẽ


∫

[0, 1]

N(n)G
(
⌊nt⌋

n
, S n,Mn(⌊nt⌋) − S n(⌊nt⌋)

)
dt


= Ẽ


∫

[0, 1]

Ĝ
(
t, S H ,

(t − 1)S H(t)
2

)
dt

 .
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Therefore, the theorem is obtained.

4. Conclussion and Discussion

As stated in the introduction, all the super-replication cost works so far have been based on the binomial model and
Brownian motion. However, the restriction to Brownian motion does not allow for the Lévy process with infinite activity
that is actually frequently used for building stochastic models in finance, economics and many other fields.

In this paper, the problem of continuous time super-replication cost of a European option in a one-dimensional Lévy
model is studied. Special emphasis is placed on Lévy processes that have infinitely many jumps, almost surely, in any
finite time interval. Under a mild assumption, the continuous time super-replication cost is proved to be greater than or
equal to an optimal control problem. The existence of the liquidity premium is proved which should have the practical
importance in the real world. So, the result in this paper is strong enough to fulfill the practical need.

The main tool is a multinomial approximation scheme that is based on a discrete grid, on a finite time interval [0, 1], and
having a finite number of states, for a Lévy process. The approach overcomes some difficulties that can be encountered
when the Lévy process has infinite activity.

This paper showed the continuous time super-replication cost is greater than or equal to an optimal control problem. It
would be interesting to know the condition under which the equal sign holds. However, due to the large jumps of Lévy
process, research in the less than or equal to part is quite challenge. So, I will leave it in a future study.
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