
Journal of Mathematics Research; Vol. 7, No. 3; 2015
ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

Global Attractor for Caginalp Hyperbolic Field-phase
System with Singular Potential
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BP 69, Congo. E-mail: moukambaf@yahoo.fr

Received: May 8, 2015 Accepted: May 25, 2015 Online Published: August 7, 2015

doi:10.5539/jmr.v7n3p165 URL: http://dx.doi.org/10.5539/jmr.v7n3p165

Abstract

This article is devoted to the study of the Caginalp hyperbolic phase-field system with singular potentials. We
first prove the existence and uniqueness of solutions for Caginalp hyperbolic phase-field system with logarithmic
potential. We then prove the existence of global attractor. One of main difficulties is to prove that the solutions are
strictly separated from singular values of the potential.
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1. Introduction

The global attractor is a compact invariant and smallest set which attracts the bounded sets of phase space. It
presents two major default: it can attract the trajectories slowly and it can be sensitive to perturbations. In this
article, we are interested in the study of the following Caginalp hyperbolic phase-field system in a smooth and
bounded domain Ω ⊂ Rn, 1 ≤ n ≤ 3,

ϵ∂2
t u + ∂tu − ∆u + f (u) = ∂tα (1)
∂2

t α − ∂t∆α − ∆α = −∂tu, (2)

with homogenous Dirichlet conditions
u = α = 0 on ∂Ω, (3)

and initial conditions
u|t=0 = u0 ∂tu|t=0 = u1 α|t=0 = α0 ∂tα|t=0 = α1, (4)

where ϵ > 0 is a relaxation parameter, u = u(t, x), the order parameter and α = α(t, x) are unknown functions, f is
a given singular potential function.
Consider the following logarithmic potential function

f (s) = −k0s + k1 ln 1+s
1−s , s ∈ (−1, 1), 0 < k1 < k0.

The function f satisfies the following properties

f ∈ C2(−1, 1), lim
s→±1

f (s) = ±∞, lim
s→±1

f ′(s) = +∞,

−c0 ≤ F(s) ≤ f (s)s + c0 where F(s) =
∫ s

0
f (τ) dτ and c0 > 0, (5)

−c1 ≤ f ′(s), c1 > 0 ∀s ∈ [0, 1). (6)

The system (1) − (2) has a sense only if
−1 < u(t, x) < 1

for almost all (t, x) ∈ R+ ×Ω. This reason leads us to introduce the following quantity

D[u(t)] = (1 − ∥u(t)∥L∞ )−1.
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We introduce also the standard energy norm of the initial and boundary value problem for singularly perturbed
damped hyperbolic equation (1)

∥ζu∥2εκ(ϵ) = ∥u∥2Hκ+1 + ϵ∥∂tu∥2Hκ + ∥∂tu∥2Hκ−1 ,

where εκ(ϵ) coincides with [Hκ+1(Ω)×Hκ(Ω)]∩{ζ |∂Ω = 0}. This standard energy norm is used in (Fabrie, Galusin-
ski, Miranville & Zelik, 2014), (Grasselli, Miranville, Pata & Zelik, 2007), ( Moukoko 2014, 2015).

The Caginalp parabolic system, with various types of boundary conditions and for a regular or singular potentials
f , has been extensively studied, ( see, e.g.,(Cherfils, Gatti & Miranville, 2008), (Conti, Gatti & Miranville, 2012),
(Cherfils & Miranville, 2009), (Efendiev, Miranville & Zelik, 2003 , 2004), (Fabrie, Galusinski, Miranville &
Zelik, 2014), (Miranville & Quintanilla, 2009). There are few studies concerned the Caginalp parabolic-hyperbolic
system.

Recently, above Caginalp hyperbolic phase-field system endowed with homogenous Dirichlet boundary conditions
with a regular potentials, is studied in (Moukoko 2014, 2015), in order to prove the existence and uniqueness of
solutions, existence of: global attractor, exponential attractors and the robust family of exponential attractors.

Here we are interested in the Caginalp hyperbolic system with homogenous Dirichlet boundary conditions and log-
arithmic potential. We prove the existence and uniqueness of solutions, as well as regularity. The main difficulties
in this article is to prove that the order parameter u is strictly separated from the singular values of the potential.

In this article, we denote by ∥.∥ and (., .) ( or ∥.∥ϕ ) the norm and the scalar product in L2(Ω) ( in Φ).

2. Method

In this section we brief on method needed to prove our two main results of the next section.

We first prove the existence of the solution which are separated from the singular values ±1 of the singular potential
f . We replace the logarithmic potential by a regular function and prove that the solution of the resulting system
is also the solution of initial system. We define two phase spaces. in order to end, we first prove the existence of
the bounded absorbing set in each phase space, and owing to (Miranville & Zelik, 2008), we prove the existence
of global attractor. Although in our study, we have to use classical methods of functional analysis applied in the
theory of Partial Differential Equations.

3. Results

We first give some estimates which allow us to determine a first phase space.

3.1 A Priory Estimates

We a priory assume ∥u0∥L∞(Ω) < 1 and ∥u∥L∞((0,T )×Ω) < 1.
Multiplying (1) by 2∂tu and (2) by 2∂tα, integrating over Ω and adding the two resulting equations, we have

d
dt

E1 + 2∥∂tu∥2 + 2∥∂tα∥2H1 = 0,

where

E1 = ϵ∥∂tu∥2 + ∥u∥2H1 + ∥∂tα∥2 + ∥α∥2H1 + 2(F(u), 1),

which implies, by integrating between 0 and t

ϵ∥∂tu(t)∥2 + ∥u(t)∥2H1 + ∥∂tα∥2 + ∥α∥2H1 +

∫ t

0
∥∂tu(s)∥2ds +

∫ t

0
∥∂tα(s)∥2H1 ds ≤ 4c0|Ω| + K, (7)

where K is a positive constant.
According to estimate (7), u, α ∈ L∞(R+; H1

0(Ω)), ∂tu ∈ L∞(R+; L2(Ω))∩L2(0,T ; L2(Ω)) and ∂tα ∈ L∞(R+; L2(Ω))∩
L2(0,T ; H1

0(Ω)), ∀T > 0.

We multiply (1) by −2∆∂tu and (2) by −2∆∂tα, integrate over Ω and add two resulting equations. We have

d
dt

(
ϵ∥∂tu∥2H1 + ∥u∥2H2 + ∥∂tα∥2H1 + ∥α∥2H2

)
+ ∥∂tu∥2H1 + 2∥∂tα∥2H2 ≤ C∥u∥2H1 (8)

≤ C∥u∥2H2 . (9)
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Estimate (8) implies u, α ∈ L∞(0,T ; H2(Ω) ∩ H1
0(Ω)), ∂tu ∈ L∞(0,T ; H1

0(Ω)) ∩ L2(0,T ; H1
0(Ω)) and ∂tα ∈

L∞(0,T ; H1
0(Ω)) ∩ L2(0,T ; H2(Ω) ∩ H1

0(Ω)), ∀T > 0. Moreover, u is continuous almost for all t ∈ [0, T ].
Multiplying (1) by 2∂2

t u and integrate over Ω, we have

d
dt
∥∂tu∥2 + ϵ∥∂2

t u∥2 ≤ C1∥∂tα∥2 +C2∥u∥2H2 +C3∥ f (u)∥2, (10)

Which implies ∂tu ∈ L2(0,T ; L2(Ω)).
We multiply (2) by −2∆∂2

t α and integrate over Ω. We have

d
dt

(
∥∂tα∥2H2 + 2(∆α,∆∂tα)

)
+ ∥∂2

t α∥2H1 ≤ ∥∂tu∥2H1 + 2∥∂tα∥2H2 . (11)

Adding (9) and γ1(11) where γ1 > 0, we obtain

d
dt

E2 + ∥∂tu∥2H1 + 2(1 − γ1)∥∂tα∥2H2 + γ1∥∂2
t α∥2H1 ≤ γ1∥∂tu∥2H1 +C∥u∥2H1 , (12)

where
E2 = ϵ∥∂tu∥2H1 + ∥u∥2H2 + ∥∂tα∥2H1 + ∥α∥2H2 + γ1(∥∂tα∥2H2 + 2(∆α,∆∂tα)).

We know that

∥α∥2H2 + γ1(∥∂tα∥2H2 + 2(∆α,∆∂tα)) ≥ (1 − 2γ1)∥α∥2H2 +
γ1

2
∥∂tα∥2H2 .

Choosing γ1 such that 1 − 2γ1 > 0, we have E2 ≥ 0 and

∥∂tα∥2H1 + (1 − 2γ1)∥α∥2H2 +
γ1

2
∥∂tα∥2H2 ≤ E2. (13)

According to (13), Estimate (12) implies ∂tα ∈ L∞(0,T ; H2(Ω) ∩ H1
0(Ω)) and ∂2

t α ∈ L2(0,T ; H1
0(Ω)). Since

H2(Ω) ⊂ L∞(Ω) with continuous injection , then ∂tα ∈ L∞([0,T ]×Ω), there exists c2 > 0 such that ∥∂tα(t)∥L∞(Ω) ≤
c2 ∀t ∈ [0,T ], where c2 depends of T and initial conditions.

In our study there are two main results; we prove the existence and uniqueness of solution and the existence of
global attractor.

3.2 Existence and Uniqueness of Solution

Theorem 1. (Existence) We assume (u0, u1, α0, α1) ∈ (H2(Ω) ∩ H1
0(Ω)) × H1

0(Ω) × (H2(Ω) ∩ H1
0(Ω)) × (H2(Ω) ∩

H1
0(Ω)) such that ∥ u0 ∥L∞(Ω)< 1. Then, the system (1) − (2) possesses at least one solution (u, α) such that

u, α ∈ L∞(0,T ; H2(Ω) ∩ H1
0(Ω)), ∂tu ∈ L∞(0,T ; H1

0(Ω)) ∩ L2(0,T ; H1
0(Ω)), ∂tα ∈ L∞(0,T ; H2(Ω) ∩ H1

0(Ω)) ∩
L2(0,T ; H2(Ω) ∩ H1

0(Ω)), ∂2
t u ∈ L2(0,T ; L2(Ω)) and ∂2

t α ∈ L2(0,T ; H1
0(Ω)),∀T > 0. Moreover, there exists

δ = δ(T, u0) ∈ (0, 1) such that ∥ u(t) ∥L∞((0,T )×Ω)≤ δ,∀t ∈ [0,T ],∀T > 0.

Proof. In order to prove this Theorem, we first show that all solution (u, α) of system (1) − (2) is such that u is
separated from the singular points of f , i.e., there exists δ ∈ (0, 1) depending of T such that ∥u∥L∞((0,T )×Ω) < δ. In
the second time, we study the auxiliary problem of the system (1) − (2) . Finally, we show that the solution of
auxiliary problem is also the solution of system (1) − (2).

From previous section, we have ∂tα ∈ L∞([0,T ] ×Ω), then there exists δ ∈ (0, 1) such that

∥u0∥L∞(Ω) ≤ δ, f ′(δ) > 0 and ∥∂tα∥L∞([0,T ]×Ω) < f (δ) ∀t ∈ [0,T ].

We set U = u − δ and U+ = max(U, 0), then U satisfies the following equation

ϵ∂2
t U + ∂tU − ∆U + f (u) − f (δ) = ∂tα − f (δ). (14)

Multiplying (14) par 2γ2U+ + 2γ3∂tU+ and integrating over Ω, we have

d
dt

E3 + 2γ2∥U+∥2H1 + 2γ3∥∂tU+∥2 ≤ 2(∂tα − f (δ), γ2U+ + γ3∂tU+) +C1(∥U+∥2 + ∥∂tU+∥2). (15)
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where
E3 = γ2(2ϵ(∂tU+,U+) + ∥U+∥2) + γ3(ϵ∥∂tU+∥2 + ∥U+∥2H1 ).

We have also

γ2(2ϵ(∂tU+,U+) + ∥U+∥2) + γ3ϵ∥∂tU+∥2 ≥ γ3ϵ∥∂tU+∥2 + γ2

(
∥U+∥2 − 2(ϵ2∥∂tU+∥2 +

1
4
∥U+∥2)

)
≥ ϵ(γ3 − 2ϵγ2)∥∂tU+∥2 +

γ2

2
∥U+∥2. (16)

Choosing γ2 and γ3 such that

γ3 − 2ϵγ2 > 0,
γ2U+(t) + γ3∂tU+(t) ≥ 0 ∀t ∈ [0,T ], (17)

there exists C > 0 such that

C−1(∥U+(t)∥2 + ∥∂tU+(t)∥2 + ∥U+(t)∥2H1 ) ≤ E3(t) ≤ C(∥U+(t)∥2 + ∥∂tU+(t)∥2 + ∥U+(t)∥2H1 ). (18)

Thanks to estimates (17) − (18), there exists k > 0 such that estimate (15) implies

d
dt

E3(t) ≤ kE3(t),

which gives, using Gronwall’s lemma

E3(t) ≤ E3(0)ekT ∀t ∈ [0,T ].

applying estimate (18) to the above estimate, we have ∀t ∈ [0,T ]

∥U+(t)∥2 + ∥∂tU+(t)∥2 + ∥U+(t)∥2H1 ≤ K(∥U+(0)∥2 + ∥∂tU+(0)∥2 + ∥U+(0)∥2H1 )ekT (19)

According to the estimate (18), we have u(0) < δ for almost all x ∈ Ω, that implies U+(0) = 0. Moreover, since
u is continuous for almost all t ∈ [0,T ] and u(0) < δ, there exists t0 ∈ [0,T ] such that u(t) < δ ∀t ∈ [0, t0[, this
implies U+(t) = 0 ∀t ∈ [0, t0[ and ∂tU+(0) = 0. Indeed, estimate (19) implies U+(t) = 0 ∀t ∈ [0,T ], then
u(t) ≤ δ ∀t ∈ [0,T ].

In order to show −δ ≤ u(t) ∀t ∈ [0,T ], we set V = u+δ and V− = min(V, 0), then V satisfies the following equation

ϵ∂2
t V + ∂tV − ∆V + f (u) + f (δ) = ∂tα + f (δ). (20)

Multiplying (20) by γ4V− + γ5∂tV− where γ4 and γ5 > 0 and integrating over Ω, we have

d
dt

E4 + 2γ5∥∂tV−∥2 + 2γ4∥V−∥2H1 + 2γ4( f (u) + f (δ), ∂tV−) = 2(∂tα + f (δ), γ4V− + γ5∂tV−)

+ 2γ4ϵ∥∂tV−∥2, (21)

where
E4 = γ4(2ϵ(∂tV−,V−) + ∥V−∥2) + γ5(ϵ∥∂tV−∥2 + ∥V−∥2H1 ).

We have

γ5ϵ∥∂tV−∥2 + γ4(2ϵ(∂tV−,V−) + ∥V−∥2) ≥ γ5ϵ∥∂tV−∥2 + γ4

(
− 2(ϵ2∥∂tV−∥2 +

1
4
∥V−∥2) + ∥V−∥2

)
≥ ϵ(γ5 − 2ϵγ4)∥∂tV−∥2 +

1
2
∥V−∥2

Choosing γ4 and γ5 such that γ5 − 2ϵγ4 > 0 and γ4V− + γ5∂tV− ≤ 0 for almost t ∈ [0,T ], there exists k > 0 such
that (21) implies the following estimate

d
dt

E4 ≤ kE4. (22)

Moreover, there exists C > 0 such that

C−1(ϵ∥∂tV−(t)∥2 + ∥V−(t)∥2 + ∥V−(t)∥2H1 ) ≤ E4(t) ≤ C(ϵ∥∂tV−(t)∥2 + ∥V−(t)∥2 + ∥V−(t)∥2H1 ). (23)
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Applying Gronwall’s lemma to (22), we have, owing to estimate(23),

ϵ∥∂tV−(t)∥2 + ∥V−(t)∥2 + ∥V−(t)∥2H1 ≤ K(ϵ∥∂tV−(0)∥2 + ∥V−(0)∥2 + ∥V−(0)∥2H1 )ekT∀t ∈ [0,T ]. (24)

Thanks to assumptions of Theorem, we have −δ < u(0) for almost all x ∈ Ω, which implies V−(0) = 0. Moreover,
since u is continuous for almost all t ∈ [0,T ] and −δ < u(0), there exists t1 > 0 such that −δ < u(t) for almost all
t ∈ [0, t1[, then V−(t) = 0 for almost all t ∈ [0, t1[ and ∂tV−(0) = 0. Indeed, estimate(24) implies V−(t) = 0 for
almost all t ∈ [0,T ], then −δ ≤ u(t) for almost all t ∈ [0,T ].

It then proven that there exists δ ∈ (0, 1) such that ∥u(t)∥L∞((0,T )×Ω) ≤ δ.
We now have to prove the existence of a solution (uδ, α) of the following auxiliary system

ϵ
∂2uδ

∂t2 +
∂uδ

∂t
− ∆uδ + fδ(uδ) =

∂α

∂t
(25)

∂2α

∂t2 −
∂∆α

∂t
− ∆α = −∂u

δ

∂t
(26)

obtained by replacing logarithmic function f by the C1(R)-regular function fδ in (1), fδ being defined by

fδ(s) =


f (−δ) + f ′(−δ)(s + δ) , s < −δ

f (s) , |s| ≤ δ
f (δ) + f ′(δ)(s − δ) , s > δ

where δ > 0 very near of 1 and such that [−δ, δ] ⊂ (−1, 1), with homogenous Dirichlet conditions and initial
conditions in (3) − (4).

The existence of a solution of system (25) − (26) is based on estimates (27) − (30) below and a standard Galerkin
scheme (see (Moukoko 2015)).

Multiplying (25) by 2∂tuδ and (26) by 2∂tα integrating over Ω adding the two resulting equations, we have

d
dt

(
ϵ∥∂tuδ∥2+ ∥ uδ ∥2 + ∥ ∂tα ∥2 + ∥ α ∥2 +2(Fδ(uδ), 1)

)
+ 2 ∥ ∂tuδ ∥2 +2 ∥ ∂tα ∥2H1= 0. (27)

The above estimate implies uδ, α ∈ L∞(R; H1
0(Ω)), ∂tuδ ∈ L∞(R; L2(Ω)) ∩ L2(R; L2(Ω)) and ∂tα ∈ L∞(R; L2(Ω)) ∩

L2(R; H1
0(Ω)).

Multiplying (25) by −2∆∂tuδ and (26) by −2∆∂tα, integrating over Ω and adding the two resulting equations, we
obtain

d
dt

E5+ ∥ ∂tuδ ∥2H1 +2 ∥ ∂tα ∥2H2 ≤ C ∥ uδ ∥2H1 .

where
E5 = ϵ∥∂tuδ∥2H1+ ∥ uδ ∥2H2 + ∥ ∂tα ∥2H1 + ∥ α ∥2H2 .

Therefore uδ, α ∈ L∞(0, T ; H2(Ω)∩H1
0(Ω)), ∂tuδ ∈ L∞(0,T ; H1

0(Ω))∩L2(0,T ; H1
0(Ω)) and ∂tα ∈ L∞(0,T ; H1

0(Ω))∩
L2(0,T ; H2(Ω) ∩ H1

0(Ω)).

Multiplying (25) by 2∂2
t uδ and integrating over Ω , we obtain

d
dt
∥ ∂tuδ ∥2 +ϵ ∥ ∂2

t uδ ∥2 ≤ C1∥uδ∥2H2 +C2∥ fδ(uδ)∥2 +C3∥∂tα∥2,

therefore ∂2
t uδ ∈ L2(0,T ; L2(Ω)).

Multiplying (26) by −2∆∂2
t α and integrate over Ω , we have

d
dt

(
∥ ∂tα ∥2H2 +2(∆α,∆∂tα)

)
+ ∥ ∂2

t α ∥2H1≤∥ ∂tuδ ∥2H1 +2 ∥ ∂tα ∥2H2 . (28)

Adding (29) and γ6(28) where γ6 > 0, we have

d
dt

(
ϵ ∥ ∂tuδ ∥2H1 + ∥ ∆uδ ∥2H2 + ∥ ∂tα ∥2H1 + ∥ α ∥2 +γ6 ∥ ∂tα ∥2H2 +2γ6(∆α,∆∂tα)

)
+ γ6 ∥ ∂2

t α ∥2H1

+2(1 − γ6) ∥ ∂tα ∥2H2 +(1 − γ6) ∥ ∂tuδ ∥2H1≤ C ∥ uδ ∥2H2 . (29)
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We have

∥ α ∥2H2 +γ6 ∥ ∂tα ∥2H2 +2γ6(∆α,∆∂tα ≥ (1 − 2γ6) ∥ α ∥2H2 +
γ6

2
∥ ∂tα ∥2H2 . (30)

We choose γ6 <
1
2 , then (29) implies ∂tα ∈ L∞(0,T ; H2(Ω) ∩ H1

0(Ω)) ∩ L2(0,T ; H2(Ω) ∩ H1
0(Ω)) et ∂2

t α ∈
L2(0,T ; H1

0(Ω)). Therefore, the auxiliary system possesses a solution (uδ, α) such that uδ, α ∈ L∞(0,T ; H2(Ω) ∩
H1

0(Ω)), ∂tuδ ∈ L2(0,T ; H1
0(Ω)), ∂tα ∈ L∞(0,T ; H2(Ω) ∩ H1

0(Ω)) ∩ L2(0,T ; H2(Ω) ∩ H1
0(Ω)), ∂2

t u ∈ L2(0,T ; L2(Ω)
and ∂2

t α ∈ L2(0,T ; H1
0(Ω)),∀T > 0.

Since
∥u0∥L∞(Ω) < δ, f ′δ (δ) > 0 and ∥∂tα∥L∞((0,T )×Ω) < fδ(δ),

then ∥uδ∥L∞((0,T )×Ω) ≤ δ, then fδ(uδ) = f (uδ) and (uδ, α) is solution of system (1)-(2).

Theorem 2. (uniqueness) Let the assumptions of Theorem 1 hold. Then, system (1)-(2) possesses a unique
solution (u, α) such that u, α ∈ L∞(0, T ; H2(Ω) ∩ H1

0(Ω)), ∂tu ∈ L2(0,T ; H1
0(Ω)), ∂tα ∈ L∞(0,T ; H2(Ω) ∩

H1
0(Ω)) ∩ L2(0,T ; H2(Ω) ∩ H1

0(Ω)), ∂2
t u ∈ L2(0,T ; L2(Ω), ∂2

t α ∈ L2(0,T ; H1
0(Ω)),∀T > 0.

Proof. Let be T > 0 and (u(i), α(i))i=1,2 two solutions of system (1)-(2) with initial conditions (u(i)
0 , α

(i)
0 , u

(i)
1 , α

(i)
1 )i=1,2

respectively, such that ∥ u(i)(0) ∥L∞(Ω)< δ
(i) < 1 for i = 1, 2.

We set u = u(1) − u(2) and α = α(1) − α(2). Then, (u, α) satisfies the following system

ϵ∂2
t u + ∂tu − ∆u + l(t)u = ∂tα (31)
∂2

t α − ∂t∆α − ∆α = −∂tu (32)

where l(t) =
∫ 1

0 f ′(su1(t) + (1 − s)u2(t))ds, with homogenous Dirichlet conditions and following initial conditions

u(0, x) = u0 = u(1)
0 − u(2)

0 α(0, x) = α0 = α(1)
0 − α

(2)
0

∂tu|t=0 = u1 = u(1)
1 − u(2)

1 ∂tα|t=0 = α1 = α(1)
1 − α

(2)
1 ,

Since f ∈ C2(−1, 1) and ui are separated from ±1, i = 1, 2, we have

∥l(t)∥L∞ ≤ c,∀t ≥ 0,

where c depends of δi, i = 1, 2.
Multiplying (31) by 2∂tu and (32) by 2∂tα, integrating over Ω and adding two resulting equations, we have

d
dt

(
ϵ ∥ ∂tu ∥2 +∥u∥2H1+ ∥ ∂tα ∥2 +∥α∥2H1

)
+ ∥ ∂tu ∥2 +2 ∥ ∂tα ∥2H1 ≤ C∥u∥2H1 , (33)

where C depends of δi. Applying Gronwall’s lemma to (33), we have

ϵ ∥ ∂tu(t) ∥2 +∥u(t)∥2H1+ ∥ ∂tα(t) ∥2 +∥α(t)∥2H1 ≤ eCt
(
ϵ ∥ ∂tu(0) ∥2 +∥u(0)∥2H1+ ∥ ∂tα(0) ∥2 +∥α(0)∥2H1

)
.

We have the continuous dependence with respect to initial conditions, hence the uniqueness of solution.

In order to prove the existence of global attractor we seek the solution with more regularity.

Theorem 3. Assume (u0, u1, α0, α1) ∈ (H3(Ω)∩H1
0(Ω))× (H2(Ω)∩H1

0(Ω))× (H3(Ω)∩H1
0(Ω))× (H3(Ω)∩H1

0(Ω))
and ∥ u0 ∥L∞(Ω)< 1. Then (1)-(2) possesses a unique solution (u, α) such that u, α ∈ L∞(0,T ; H3(Ω)∩H1

0(Ω)), ∂tu ∈
L∞(0,T ; (H2(Ω)∩H1

0(Ω)))∩L2(0,T ; H2(Ω)∩H1
0(Ω)), ∂tα ∈ L∞(0, T ; H3(Ω)∩H1

0(Ω))∩L2(0,T ; H3(Ω)∩H1
0(Ω)) and

∂2
t α ∈ L2(0,T ; H2(Ω) ∩ H1

0(Ω)),∀T > 0. Moreover, there exists δ = δ(T, u0) ∈ (0, 1) such that ∥ u(t) ∥L∞((0,T )×Ω)<
δ,∀t ∈ [0,T ],∀T > 0.

Proof. Following Theorem 1, system (1) − (2) has a unique solution (u, α) such that u, α ∈ L∞(0,T ; H2(Ω) ∩
H1

0(Ω)), ∂tu ∈ L2(0,T ; H1
0(Ω)) and ∂2

t α ∈ L2(0, T ; L2(Ω)),∀T > 0.

Multiplying (1) by 2∆2∂tu and (2) by 2∆2∂tα, integrating over Ω and adding the two resulting equations, we obtain

d
dt

(
ϵ∥∂tu∥2H2 + ∥∇∆u∥2 + ∥∂tα∥2H2 + ∥∇∆α∥2

)
+ ∥∂tu∥2H2 + 2∥∇∆∂tα∥2 ≤ C. (34)

170



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 3; 2015

Therefore u, α ∈ L∞(0,T ; H3(Ω) ∩ H1
0(Ω)), ∂tu ∈ L∞(0,T ; H2(Ω) ∩ H1

0(Ω)) ∩ L2(0,T ; H2(Ω) ∩ H1
0(Ω)), ∂tα ∈

L∞(0,T ; H2(Ω) ∩ H1
0(Ω)) ∩ L2(0,T ; H3(Ω) ∩ H1

0(Ω)).
Multiply (2) by −2∆2∂2

t α and integrate over Ω. We have, owing the continuous injections H2(Ω) ⊂ L∞(Ω) and
H3(Ω) ⊂ L∞(Ω),

d
dt
∥∇∆∂tα∥2 + ∥∂2

t α∥2H2 ≤ C,

which implies ∂tα ∈ L∞(0,T ; H3(Ω) ∩ H1
0(Ω)) ∩ L2(0, T ; H3(Ω) ∩ H1

0(Ω)) and ∂2
t α ∈ L2(0,T ; H2(Ω) ∩ H1

0(Ω)).
This finishes the proof of the Theorem.

3.3 Existence of Global Attractor

The phase-field spaces are Φκ = {(u, v, α, β) ∈ (Hκ(Ω)∩H1
0(Ω))× (Hκ−1(Ω)∩H1

0(Ω))× (Hκ(Ω)∩H1
0(Ω))× (Hκ(Ω)∩

H1
0(Ω)) : ∥u∥L∞((0,T )×Ω) < 1} for κ = 2, 3, with energy norm

∥(u, ∂tu, α, ∂tα)∥2Φκ = ∥ζu∥
2
εκ(ϵ) + ∥α∥2Hκ + ∥∂tα∥2Hκ .

Thanks to theorems 1 and 3, we define the semigroup of operators S t(ϵ) resolving the system (1) − (2) by

S t(ϵ) : Φκ −→ Φκ (u0, u1, α0, α1) 7−→ (u(t), ∂tu(t), α(t), ∂tα(t)),

where (u(t), ∂tu(t), α(t), ∂tα(t)) is such that (u, α) is uniqueness solution of phase-field system (1) − (2) for initial
conditions (u0, u1, α0, α1) ∈ Φκ.
The following lemma gives the uniform estimates of ∥ u(t) ∥H2 , ∥ α(t) ∥H2 and ∥ ∂tα(t) ∥H2 independent of ϵ, which
allow to prove dissipativity of semigroup S t(ϵ) in Φ2.

Lemma 1. Let the assumptions of Theorem 1 hold, ϵ < 1 and (u, α) the solution of system (1) − (2) such that
(u(0), ∂tu(0), α(0), ∂tα(0)) ∈ Φ2. Then, the solution (u, α) verifies the following estimate

D[u(t)]+ ∥ u(t) ∥2H2 +ϵ ∥ ∂tu(t) ∥2H1 + ∥ α(t) ∥2H2 + ∥ ∂tα(t) ∥2H2

+

∫ t

0
e−β(t−s)

(
∥∂tu(s)∥2H1+ ∥ ∂2

t α(s) ∥2H1

)
ds ≤ Q(D[u(0)], ∥ζu(0)∥ε2(ϵ), ∥α(0)∥H2 , ∥∂tα(0)∥H2 )e−βt +C, (35)

where the positive constants C, β and the monotonic function Q are independent of ϵ.

Proof. Multiply (1) by −2∆u and (2) by −2∆α and integrate over Ω. We obtain, thanks to continuous injection
H2(Ω) ⊂ L∞(Ω)

d
dt

(
2ϵ(∇∂tu,∇u) + ∥u∥2H2

)
+ ∥u∥2H2 ≤ 2∥∂tu∥2H1 +C, (36)

d
dt
∥α∥2H2 + ∥α∥2H2 ≤ C2∥∂tu∥2H1 +C3∥∂2

t α∥2H1 . (37)

Adding γ7(9), γ8(11), γ9(36) et γ10(37) where γ7, γ8, γ9 and γ10 > 0 are such that

γ7 − γ8 − 2γ9 −C2γ10 > 0,
2γ7 − 2γ8 > 0,
γ8 −C3γ10 > 0,
γ9 −Cγ7 > 0,

we have
d
dt

E6 +C1∥∂tu∥2H1 +C2∥u∥2H2 + 2γ9∥α∥2H2 +C3∥∂tα∥2H2 +C4∥∂2
t α∥2H1 ≤ C, (38)

where

E6 = γ7

(
ϵ∥∂tu∥2H1 + ∥u∥2H2 + ∥∂tα∥2H1 + ∥α∥2H2

)
+ γ8

(
∥∂tα∥2H2 + 2(∆α,∆∂tα)

)
+γ9

(
2ϵ(∇∂tu,∇u) + ∥u∥2H2

)
+ γ10∥α∥2H2 .
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There exists β > 0 such that

βE6 ≤
C1

2
∥∂tu∥2H1 +C2∥u∥2H2 + 2γ9∥α∥2H2 +C3∥∂tα∥2H2 .

Thanks to above estimate, estimate (38) can be written on form

d
dt

E6 + βE6 +
C1

2
∥∂tu∥2H1 +C4∥∂2

t α∥2H1 ≤ C,

which implies, thanks to Gronwall’s lemma,

E6(t) +
∫ t

0
eβ(t−s)

(
∥∂tu∥2H1 + ∥∂2

t α(s)∥2H1

)
ds ≤ E6(0)e−βt +C. (39)

Moreover, for very small values of γ8 and γ9, there exists C > 0 independent of ϵ such that

C−1
(
ϵ∥∂tu(t)∥2H1 + ∥u(t)∥2H2 + ∥α(t)∥2H2 + ∥∂tα(t))∥2H2

)
≤ E6(t) ≤ C∥(u(t), ∂tu(t), α(t), ∂tα(t))∥2Φ2

.

Thanks to above estimate, (39) implies

D[u(t)] + ϵ∥∂tu(t)∥2H1 + ∥u(t)∥2H2 + ∥α(t)∥2H2 + ∥∂tα(t))∥2H2

+

∫ t

0
eβ(t−s)

(
∥∂tu(s)∥2H1 + ∥∂2

t α(s)∥2H1

)
ds ≤ Q(D[u(0)], ∥ζu(0)∥ε2(ϵ), ∥α(0)∥H2 , ∥∂tα(0)∥H2 )e−βt +C,

this achieves the proof.

Theorem 4. Let the assumptions of Theorem 1 hold, ϵ < 1 and (u, α) the solution of system (1) − (2) such that
(u(0), ∂tu(0), α(0), ∂tα(0)) ∈ Φ2. Then, the following estimate is valid

∥ (ζu(t), α(t), ∂tα(t)) ∥2Φ2
+

∫ t

0
e−β(t−s)(∥ ∂tu(s) ∥2 + ∥ ∂tα(s) ∥2 + ∥ ∂tα(s) ∥2H1 )ds

≤ Q(D[u(0)], ∥ζu(0)∥ε2(ϵ), ∥α(0)∥H2 , ∥∂tα(0)∥H2 )e−βt +C, (40)

where positive constants C, β and monotonic function Q are independent of ϵ.

Proof. We first determine standard energy of the initial and boundary value problem for singularly perturbed
damped hyperbolic equation (1) . This equation can be written in the following form

ϵ∂2
t u + ∂tu − ∆u = − f (u(t)) + ∂tα(t) = hu,α(t), u(t)|∂Ω = h(t)|∂Ω = 0. (41)

Applying corollary 5.2 of appendix of (Grasselli, Miranville, Pata & Zelik 2007) to equation (41) where κ = 2, we
have

∥ ζu(t) ∥2
ε2(ϵ) +

∫ t

0
e−β(t−s) ∥ ∂tu(s) ∥2H2 ds ≤ Ce−βt(∥ ζu(0) ∥2

ε2(ϵ) + ∥ hu,α(0) ∥2H1 )

+ C
∫ t

0
e−β(t−s)(∥ hu,α(s) ∥2H2 + ∥ ∂thu,α(s) ∥2)ds, (42)

where positive constants C and β are independent of ϵ.
To determine estimate of the last term of second member of (42), we begin by finding an estimate of ∥ hu,α(s) ∥2H2

+ ∥ ∂thu,α(s) ∥2. We have, indeed,

∥ hu,α(s) ∥2H2 + ∥ ∂thu,α(s) ∥2 ≤ 2 ∥ f (u(s)) ∥2H2 +2 ∥ ∂tα(s) ∥2H2 +2 ∥ f ′(u(s))∂tu(s) ∥2

+ 2 ∥ ∂2
t α(s) ∥2 . (43)

We now determine estimates of ∥ f (u) ∥H2 and ∥ f ′(u)∂tu ∥. We have

∥ f (u) ∥H2= ∥ f ′′(u)(∇u)2 + f ′(u)∆u∥ ≤ C(∥u∥2H2 + ∥u∥H2 ) ≤ C,

where C is independent of ϵ. We have also

∥ f ′(u)∂tu ∥ ≤ ∥ f ′(u)∥L∞∥∂tu∥ ≤ C∥∂tu∥,
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where C is independent of ϵ. We have, allow for estimate (7),

∥ hu,α(s) ∥2H2 + ∥ ∂thu,α(s) ∥2≤ C(1 + ∥∂tu(s) ∥2H1 + ∥ ∂2
t α(s) ∥2H1 ). (44)

Inserting (44) into (42), we obtain, thanks to estimate (35),

∥ ζu(t) ∥2
ε2(ϵ) +

∫ t

0
e−β(t−s) ∥ ∂tu(s) ∥2 ds ≤

Ce−βt(∥ ζu(0) ∥2
ε2(ϵ) + ∥ hu,α(0) ∥2H1 ) +C

∫ t

0
e−β(t−s)(1 + ∥∂tu ∥2H1 + ∥ ∂2

t α(s) ∥2H1 )ds

≤ Ce−βt(∥ ζu(0) ∥2
ε2(ϵ) + ∥ hu,α(0) ∥2H1 ) + Q(D[u](0), ∥(ζu(0), α(0), ∂tα(0))∥Φ1 )e−βt

≤ Q(D[u(0)], ∥ζu(0)∥ε2(ϵ), ∥α(0)∥H2 , ∥∂tα(0)∥H2 )e−βt +C,

where positives constants C and β are independent of ϵ. Combining above estimate and estimate (35), we obtain
the result. This achieves the proof.

Corollary 1. The semigroup S t(ϵ) associated with system (1)− (2) is dissipative in Φ2, i.e., it possesses a bounded
absorbing set in Φ2.

This corollary is the straightforward consequence of above Theorem.

In the sequence, we note B1
R0

(ϵ) = {(u, v, α, v) ∈ Φ2; ∥(u, v, α, ω)∥Φ2 ≤ R0} where R0 is enough great, a bounded
absorbing set in Φ2.

Theorem 5. Let the assumptions of Theorem 3 hold, ϵ < 1 and (u, α) the solution of system (1) − (2) such that
(u(0), ∂tu(0), α(0), ∂tα(0)) ∈ B1

R0
(ϵ) ∩ Φ3. Then, following estimate is verified

D[u](t)+ ∥ (u(t), ∂tu(t), α(t), ∂tα(t)) ∥2Φ3
+

∫ t

0
e−β(t−s)(∥ ∂tu(s) ∥2H1 +ϵ ∥ ∂2

t u(s) ∥2H1 + ∥ ∂2
t α(s) ∥2H1 )ds

≤ Q(D[u(0)], ∥ζu(0)∥ε3(ϵ), ∥α(0)∥H3 , ∥∂tα(0)∥H3 )e−βt +C, (45)

where the positive constants C, β and the monotonic function Q are independent of ϵ.

Proof. Multiplying (1) by 2∆2∂tu and (2) by 2∆2∂tα, integrating over Ω and adding the resulting equations, we
have

d
dt

(
ϵ∥∂tu∥2H2 + ∥∇∆u∥2 + ∥∂tα∥2H2 + ∥∇∆α∥2

)
+ ∥∂tu∥2H2 + 2∥∇∆∂tα∥2 ≤ C. (46)

Multiply (1) by 2∆2u and (2) by 2∆2α, and integrate over Ω. We obtain

d
dt

(
2ϵ(∆∂tu,∆u) + ∥u∥2H2

)
+ ∥∇∆u∥2 ≤ C (47)

d
dt

(
2(∆∂tα,∆α) + ∥α∥2H3

)
+ ∥∇∆α∥2 ≤ ∥∂tu∥2H1 +C. (48)

Multiply (2) by 2∆2∂2
t α and integrate over Ω. We find

d
dt

(
∥∂tα∥2H3 + 2(∇∆α,∇∆∂tα)

)
+ ∥∂2

t α∥2H2 ≤ 2∥∇∆∂tα∥2 +C. (49)

Multiplying (1) by −2∆∂2
t u, integrating over Ω, we have

d
dt

E7 + 2ϵ∥∂2
t u∥2H1 ≤ C6∥∂tu∥2H1 + ∥∂2

t α∥2H1 +C, (50)

where
E7 = ∥∂tu∥2H1 + 2(∆u,∆∂tu) − 2( f (u),∆∂tu) + 2(∂tα,∆∂tu).

Add (38), (46), (47), γ11(48), γ12(49) and γ13(50) where γ11, γ12 and γ13 > 0 are such that
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C1 − γ11 −C6γ13 > 0;
C4 − γ13 > 0;
1 − γ12 > 0;

we obtain

d
dt

E8 +C1∥∂tu∥2H1 +C2∥∂tu∥2H2 +C3∥u∥2H2 +C4∥∇∆u∥2 +C5∥α∥2H2 +C6∥∇∆α∥2

+C7∥∂tα∥2H2 +C8∥∇∆∂tα∥2 +C9∥∂2
t α∥2H1 +C10∥∂2

t α∥2H2 +C10ϵ∥∂2
t u∥2H1 ≤ C, (51)

where

E8 = E6 +
(
ϵ∥∂tu∥2H2 + ∥∇∆u∥2 + ∥∂tα∥2H2 + ∥∇∆α∥2

)
+
(
2ϵ(∆∂tu,∆u) + ∥u∥2H2

)
+ γ11

(
2(∆∂tα,∆α) + ∥∇∆α∥2

)
+ γ12

(
∥∇∆∂tα∥2 + 2(∇∆α,∇∆∂tα)

)
+ γ13

(
∥∂tu∥2H1 + 2(∆u,∆∂tu) + 2( f (u),∆∂tu) − 2(∂tα,∆∂tu)

)
.

There exists β > 0 independent of ϵ such that

βE8 ≤ C1∥∂tu∥2H1 +C2∥∂tu∥2H2 +C4∥u∥2H3 +C6∥α∥2H3 +C8∥∂tα∥2H3 . (52)

Choosing γ11, γ12, γ13 and γ14 very small, there exists C > 0 independent of ϵ such that

C−1(∥ζu(t)∥2
ε3(ϵ) + ∥∂tα(t)∥2H3 + ∥α(t)∥H3 ) ≤ E8(t) ≤ C(∥ζu(t)∥2

ε3(ϵ) + ∥∂tα(t)∥2H3 + ∥α(t)∥H3 ). (53)

Inserting estimate (52) into (51), we obtain

d
dt

E8 + βE8 + ∥∂tu∥2H1 + ϵ∥∂2
t u∥2H1 + ∥∂2

t α∥2H1 ≤ C.

Applying Gronwall’s lemma to above estimate, thanks to estimate (53), we obtain the result.

Corollary 2. Assume assumptions of Theorem 3 hold and 0 < ϵ < 1. Then, the semigroup S t(ϵ) associated with
system (1) − (2) is dissipative in Φ3, i.e., it possesses a bounded absorbing set in Φ3.

This corollary is the straightforward consequence of above Theorem.

Theorem 6. Assume assumptions of Theorem 3 hold and 0 < ϵ < 1. Then, the semigroup S t(ϵ) associated with
system (1) − (2) possesses a global attractorAϵ which is compact in Φ2, bounded in Φ3 and connected.

Proof. we already proved existence of bounded absorbed set B1
R0

(ϵ) in Φ2; it remains to split the solution (u, α) ∈
B1

R0
(ϵ) as following

(u, α) = (ν, η) + (ω, ξ)

such that semigroup S t(ϵ) can be written as S t(ϵ) = S 1
t (ϵ) + S 2

t (ϵ) with

S 1
t (ϵ)(u(0), ∂tu(0), α(0), ∂tα(0)) = (ν(t), ∂tν(t), η(t), ∂tη(t)),

S 2
t (ϵ)(0, 0, 0, 0) = (ω(t), ∂tω(t), ξ(t), ∂tξ(t)),

where S 1
t (ϵ) is resolving operator of following linear hyperbolic system

ϵ∂2
t ν + ∂tν − ∆ν = ∂tη (54)

∂2
t η − ∂t∆η − ∆η = −∂tν (55)

ν = η = 0 over ∂Ω,

S 2
t (ϵ) is resolving operator of following nonlinear hyperbolic system

ϵ∂2
tω + ∂tω − ∆ω + f (u) = ∂tξ (56)

∂2
t ξ − ∂t∆ξ − ∆ξ = −∂tω (57)

ω = ξ = 0 over ∂Ω
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and to show that S 1
t (ϵ) uniformly converges to 0 over all bounded set of Φ2 and S 2

t (ϵ) is regularizing in Φ3, when t
tends to +∞.
We first prove that the semigroup of operator S 1

t (ϵ) uniformly converges to 0 in Φ2, when t tends +∞.
Multiplying (54) by −2∆∂tν and (55) by −2∆∂tη, integrating over Ω and adding resulting equations, we have

d
dt

(
ϵ ∥ ∂tν ∥2H1 + ∥ ν ∥2H2 + ∥ ∂tη ∥2H1 + ∥ η ∥2H2

)
+ 2 ∥ ∂tν ∥2H1 +2 ∥ ∂tη ∥2H2= 0. (58)

Multiply (54) by −2∆ν and (55) by −2∆η and integrate over Ω. We obtain

d
dt

(
∥ ν ∥2H1 +2ϵ(∇ν,∇∂tν)

)
+ ∥ ν ∥2H2 ≤ C1 ∥ ∂tη ∥2H2 +2 ∥ ∂tν ∥2H1 (59)

d
dt

(
∥ η ∥2H2 +2(∇η,∇∂tη)

)
+ ∥ η ∥2H2 ≤ C2 ∥ ∂tν ∥2H1 +C3 ∥ ∂tη ∥2H2 . (60)

Multiply (54) by 2∂2
t ν and (55) by −2∆∂2

t η, and integrate over Ω. We have

d
dt

(
∥∂tν∥2 + 2(∇ν,∇∂tν)

)
+ ϵ∥∂2

t ν∥2 ≤ C4∥∂tη∥2H2 + 2∥∂tν∥2H1 (61)

d
dt

(
∥∂tη∥2H2 + 2(∆η,∆∂tη)

)
+ ∥∂2

t η∥2H1 ≤ ∥∂tν∥2H1 + 2∥∂tη∥2H2 . (62)

Adding (58), γ14(59), γ15(60), γ16(61) and γ17(62) where γ14, γ15, γ16 and γ17 > 0 such that

1 − 2ϵγ14 −C2γ15 − 2γ16 − γ17 > 0;
1 −C1γ14 −C3γ15 −C4γ16 − 2γ17 > 0,

we have

d
dt

E9+ ∥ ν ∥2H2 +C1 ∥ ∂tν ∥2H1 + ∥ η ∥2H2 + ∥ ∂tη ∥2H2 + ∥ ∂2
t ν ∥2H1 + ∥ ∂2

t η ∥2H1≤ 0, (63)

where C1 > 0 and

E9 = ϵ ∥ ∂tν ∥2H1 + ∥ ν ∥2H2 + ∥ ∂tη ∥2H1 + ∥ η ∥2H2 +γ14

(
∥ ν ∥2H1 +2ϵ(∇ν,∇∂tν)

)
+ γ15

(
∥ η ∥2H2 +2(∇η,∇∂tη)

)
+ γ16

(
∥∂tν∥2 + 2(∇ν,∇∂tν)

)
+ γ17

(
∥∂tη∥2H2 + 2(∆η,∆∂tη)

)
.

Moreover, for γ15, γ16 and γ17 sufficiently small, there exists β and C > 0 such that

βE9(t) ≤∥ ν(t) ∥2H2 +C1 ∥ ∂tν(t) ∥2H1 + ∥ η(t) ∥2H2 + ∥ ∂tη(t) ∥2H2 (64)

C−1∥(ν(t), ∂tν(t), η(t), ∂tη(t))∥2Φ2
≤ E9(t) ≤ C∥(ν(t), ∂tν(t), η(t), ∂tη(t))∥2Φ2

. (65)

Thanks to (64), estimate (63) can be written of the following form

d
dt

E9 + βE9+ ∥ ∂2
t ν ∥2 + ∥ ∂2

t η ∥2H1≤ 0.

Applying Gronwall’s lemma to above estimate, thanks to estimate (65), we find

D[u](t)+ ∥ (ν(t), ∂tν(t), η(t), ∂tη(t)) ∥2Φ2
+

∫ t

0

(
∥ ∂2

t ν(s) ∥2 + ∥ ∂2
t η(s) ∥2H1

)
e−β(t−s)ds

≤ Q(D[u](0), ∥(u(0)∥H3 , ∥∂tu(0)∥H2 , ∥α(0)∥H3 , ∥∂tα(0)∥H3 )e−βt.

where positive constants C and β are independent of ϵ. Therefore the semigroup of operators S 1
t (ϵ) uniformly

converges to 0 when t tends to +∞. To end, we prove that the semigroup S 2
t (ϵ) is regularizing in Φ3.

Thanks to assumptions of function f and the fact that u is continuous on [0,T ] such that −1 < u(t, x) < 1 ∀(t, x) ∈
[0,T ] ×Ω, we have f ′(u)∇u, f ′′(u)(∇u)2 and f ′(u)∆u ∈ L2(0,T ; L2(Ω)),∀T > 0.
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Multiplying (56) by 2(−∆∂tω+∆
2∂tω) and (57) by 2(−∆∂tξ +∆

2∂tξ), integrating over Ω and adding two resulting
equations, we have

d
dt

E10+ ∥ ∂tω ∥2H1 +2 ∥ ∂tξ ∥2H2 + ∥ ∂tω ∥2H2 +2 ∥ ∇∆∂tξ ∥2 ≤ ∥ f ′(u)∇u∥2 + 2 ∥ f ′′(u)(∇u)2 ∥2

+ 2∥ f ′(u)∆u∥2, (66)

where

E10 = ϵ ∥ ∂tω ∥2H1 +ϵ ∥ ∂tω ∥2H2 + ∥ ω ∥2H2 + ∥ ∇∆ω ∥2 + ∥ ∂tξ ∥2H1 + ∥ ∂tξ ∥2H2 + ∥ ξ ∥2H2 + ∥ ∇∆ξ ∥2H3 .

Multiplying (57) by 2∆2∂2
t ξ and integrating over Ω, we have, owing to continuous injections H2(Ω) ⊂ L∞(Ω) and

H3(Ω) ⊂ L∞(Ω)

d
dt

(
∥∇∆∂tξ∥2 + 2(∇∆ξ,∇∆∂tξ)

)
+ ∥∂2

t ξ∥2H2 ≤ C. (67)

Summing (66) and γ18(67) where γ18 > 0, we obtain

d
dt

E11 ≤ C(∥ f ′(u)∇u∥2+ ∥ f ′(u)(∇u)2 ∥2 +2∥ f ′′(u)∆u∥2 + 1), (68)

where
E11 = E10 + γ18

(
∥∇∆∂tξ∥2 + 2(∇∆ξ,∇∆∂tξ)

)
,

which implies, by integration between 0 and t

E12(t) ≤ C(T 2 + 1)Q(∥u0∥H2 , ∥∂tu0∥, ∥α0∥H2 , ∥α1∥H2 ).

For sufficiently small γ18 > 0, there exists C > 0 such that

C∥(ω(t), ∂tω(t), ξ(t), ∂tξ(t))∥2Φ3
≤ E12(t).

Thanks to above estimate, estimate (69) implies

∥(ω(t), ∂tω(t), ξ(t), ∂tξ(t))∥2Φ3
≤ C(T 2 + 1)Q(D[u](0), ∥u0∥H2 , ∥u1∥, ∥α0∥H2 , ∥α1∥H2 ),

then, the semigroup S 2
t (ϵ) is regularizing on Φ3. This finishes the proof of the Theorem.

4. Discussion

In this article we have proven as in (Moukoko, 2014, 2015) that the Caginalp hyperbolic phase-field system with
singular potential, has a unique solution and the global attractor. It remains to study the existence of exponential
attractors and the robust family of exponential attractors for Caginalp hyperbolic phase-field system with singular
potential.
We can also complete this work by studying Caginalp hyperbolic phase-field system with other types of boundary
conditions and regular or singular potential.
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