A Counterexample to the Generalized Ho-Zhao Problem

Ahmad Alghoussein¹ & Abdulkader Sheikh Ibrahim²

¹ Prof., Dep. of Math. Faculty of science, Tishreen University, Lattakia, Syria

² Postgraduate Student (PhD), Dep. of Math. Faculty of science, Tishreen University, Lattakia, Syria

Correspondence: Abdulkader Sheikh Ibrahim, Postgraduate Student (PhD), Dep. of Math. Faculty of science, Tishreen University, Lattakia, Syria. E-mail: appoodeh@hotmail.com

Received: June 1, 2015Accepted: June 12, 2015Online Published: July 17, 2015doi:10.5539/ijsp.v4n3p137URL: http://dx.doi.org/10.5539/ijsp.v4n3p137

Abstract

In this paper we find the answer to the open question in (Ho & Zhao, 2009), which states that we do not know whether the isomorphism of complete lattices C(P) and C(Q) implies that of the dcpo's P and Q, where C(P) and C(Q) are the lattices of all Scott closed subsets of P and Q respectively. We proved that is not necessarily satisfied in general case.

Keywords: directed set, directed complete poset (dcpo), Scott closed sets, lattice of Scott closed set

1. Introduction

1.1 Introducing the Problem

This paper depends on the work of (Ho & Zhao, 2009) about the nature of the order relation in the lattice of Scott-closed sets over semi-lattice. They mentioned at end of their paper that we still do not know whether the isomorphism of complete lattices C(P) and C(Q) implies that of the dcpo's P and Q, so further work must be done to achieve a better understanding of the lattices of Scott-closed sets.

1.2 What is The Question?

The remained question is: Can one prove or deny the statement: $C(P) \cong C(Q)$ implays $P \cong Q$ for two arbitrary directed complete partly ordered sets P and Q.

1.3 What We Are Proving in This Paper?

In this paper, we prove that it's not necessarily satisfied in general case, through defining two dcpo Υ and Ψ such that $\Upsilon \ncong \Psi$ and $C(\Upsilon) \cong C(\Psi)$.

2. Method

At first, we give some preliminaries on directed complete partly ordered sets.

2.1 Definition

A nonempty subset D of a poset is said to be directed if any two elements in D have an upper bound in D. See (Kelley, 1975, p 81)

A poset L in which every directed subset D has a supremum (donate by $\forall D$) is called a directed-complete partial order, or dcpo for short. See (Abramsky & Jung, 1995, p 14)

2.2 Definition

For any subset A of a poset L, the subset $\uparrow A$ is defined by:

 $\uparrow A = \{b \in L : \exists a \in A, a \le b\}$

And the subset $\downarrow A$ defined dually by:

 $\downarrow A = \{b \in L : \exists a \in A, b \le a\}$

If $A = \{x\}$ then $\uparrow \{x\} = \uparrow x$ and $\downarrow \{x\} = \downarrow x$.

A subset A of a poset L is said to be upper if $A = \uparrow A$ and said to be lower if $A = \downarrow A$. See (Gierz, et al., 2003) 2.3 Definition

Let L be a dcpo and $U \subseteq L$. Then U said to be Scott-open if and only if the following two conditions are

satisfied:

- i. *U* is upper set
- ii. $\sup D \in U$ implies $D \cap U \neq \phi$ for all directed sets $D \subseteq L$.

The collection of all Scott-open subsets of L is called the Scott topology of L and will be denoted by $\sigma(L)$.

The complement of a Scott-open set is called Scott-closed, The collection of all Scott-closed subsets of L will be denoted by C(L).

One can prove that a subset $F \subseteq L$ is Scott-closed if and only if the following two conditions are satisfied:

- i. *F* is lower set
- ii. For any directed set $D \subseteq F$, If D has a supremum $\forall D$ then $\forall D \in F$.

Both $\sigma(P)$ and C(P) are complete, distributive lattices with respect to the inclusion relation. See (Gierz, et al., 2003; Gierz, et al., 1980)

3. Results

Now we define two dcpo Υ and Ψ such that $\Upsilon \ncong \Psi$ and $C(\Upsilon) \cong C(\Psi)$.

First, let $\Upsilon = [0,1]$ the real interval ordered by real order relation \leq .

The upper subsets in Υ are the closed intervals [a, 1] and the half opened intervals]a, 1], and every subset of Υ is directed because \leq is a total order relation (for every two elements, one must be upper bound of the other).

Since \leq is a total order relation, ever (directed) subset of Υ has an upper bound, so Υ is directed complete poset (dcpo).

Now let us characterize the Scott-open sets of Υ , the first condition is to be upper set.

For every upper set of the form [a, 1] with 0 < a < 1, we have the directed set D = [0, a[that does not have any intersection with it.

But the supremum of D is $\forall D = a \in [a, 1]$, so those upper sets of the form [a, 1] are not Scott-open, because they don't satisfy the second condition.

On other hand, for every upper set of the form U =]a, 1], every subset *D* satisfies that: *D* doesn't have any intersection with *U*, will have a supremum $\forall D \le a$, that means $\forall D \notin U$, so *U* is Scott-open.

As a result the lattice of Scott-open sets of $\Upsilon = [0,1]$ is:

$$\sigma(\Upsilon) = \{\Phi, [0,1]\} \cup \{[a,1]: 0 < a < 1\}$$

Since the complement of a Scott-open set is Scott-closed, the lattice of Scott-closed sets of $\Upsilon = [0,1]$ is:

$$C(\Upsilon) = \{\Phi, [0,1]\} \cup \{[0,a]: 0 < a < 1\}$$

Second, let $\Psi = \{[0, a]: 0 < a \le 1\}$ then Ψ is dcpo with inclusion relation \subseteq .

We want to prove that Ψ is isomorphic to $\Upsilon \{0\}$:

Let us define $f: \Upsilon \setminus \{0\} \to \Psi$ by:

$$f(x) = [0, x]: 0 < x \le 1$$

f Order preserving:

For every two elements $x, y \in \Upsilon \setminus \{0\}$ where $x \leq y$:

$$x \le y \Longrightarrow [0, x] \subseteq [0, y] \Longrightarrow f(x) \subseteq f(y)$$

f Injective function:

For every two elements $x, y \in \Upsilon \setminus \{0\}$ where f(x) = f(y):

$$f(x) = f(y) \Longrightarrow [0, x] = [0, y] \Longrightarrow x = y$$

f Surjective function:

For every $[0, a] \in \Psi$ where $0 < a \le 1$, there is $a \in Y \setminus \{0\}$ satisfies f(a) = [0, a]

So f is isomorphism.

Now, $\Upsilon \setminus \{0\} \subset \Upsilon$, $0 \notin \Upsilon \setminus \{0\}$, $0 \in \Upsilon$ this means $\Upsilon \setminus \{0\} \ncong \Upsilon$. So $\Upsilon \ncong \Psi$, because we proved $\Upsilon \setminus \{0\} \cong \Psi$. Now let us characterize the Scott-open sets of Ψ .

Every subset of Ψ is directed, since \subseteq is a total order relation, because for every two intervals [0, x], [0, y]

in Ψ one of the following is satisfied:

$$0 < x < y < 1 \Leftrightarrow [0, x] \subseteq [0, y] \text{ or } 0 < y < x < 1 \Leftrightarrow [0, y] \subseteq [0, x]$$

The upper subsets in Ψ are of the form $U_x = \{[0, a] : x \le a\}$ or of the form $U'_x = \{[0, a] : x < a\}$ for every $0 < x \le 1$.

For every upper set of the form $U_x = \{[0, a]: x \le a\}$ where $0 < x \le 1$, there is a directed set:

$$D = \{[0, a]: a < x\}$$

which has no intersection with U_x , but the supremum of D is $\forall D = [0, x] \in U_x$. So the sets of the form $U_x = \{[0, a] : x \le a\}$ are not Scott-open.

On the other hand, for the upper sets of the form $U'_x = \{[0, a]: x < a\}$, the supremum of any set *D* where *D* has no intersection with U'_x , is $\forall D \subseteq [0, x]$, this means $\forall D \notin U'_x$.

Therefore, the sets of the form U'_x are Scott-open.

As a result, the lattice of Scott-open sets of Ψ is:

$$\sigma(\Psi) = \{\Phi, \Psi\} \cup \{\{[0, a] : x < a\} : 0 < x < 1\}$$

Since the complement of a Scott-open set is Scott-closed, the lattice of Scott-closed sets of Ψ is:

 $C(\Psi) = \{\Phi, \Psi\} \cup \{\{[0, a]: a \le x\}: 0 < x < 1\}$

In the following we will prove that the lattice C(Y) is isomorphic to the lattice $C(\Psi)$:

Let us define $f: C(\Upsilon) \to C(\Psi)$ by:

$$f([0, x]) = \{[0, a]: a \le x\}: 0 < x \le 1$$

f Order preserving:

For every two intervals $[0, x], [0, y] \in C(Y)$, If $[0, x] \subseteq [0, y]$ then:

$$[0, x] \subseteq [0, y] \Rightarrow x \le y \Rightarrow \{[0, a] : a \le x\} \subseteq \{[0, a] : a \le y\} \Rightarrow f([0, x]) \subseteq f([0, y])$$

f Injective function:

For every two intervals $[0, x], [0, y] \in C(Y)$, If f([0, x]) = f([0, y]) then:

$$f([0,x]) = f([0,y]) \implies \{[0,a]: a \le x\} = \{[0,a]: a \le y\}$$
$$\implies \sup\{[0,a]: a \le x\} = \sup\{[0,a]: a \le y\}$$
$$\implies [0,x] = [0,y]$$

f Surjective function:

For every $\{[0,a]: a \le x\} \in \Psi$ where $0 < x \le 1$, there is $[0,x] \in C(Y)$ satisfies $f([0,x]) = \{[0,a]: a \le x\}$ Therefore, f is isomorphism.

As a result, for the two dcpo Υ and Ψ defined above, $C(\Psi) \cong C(\Upsilon)$ but $\Psi \ncong \Upsilon$.

4. Conclusions

The counterexample we provided in this paper gives the answer to the open question in (Ho & Zhao, 2009). Thus in general case, we know now that the isomorphism of complete lattices C(P) and C(Q) doesn't imply that of the dcpo's P and Q, where C(P) and C(Q) are the lattices of all Scott closed subsets of P and Q respectively.

Acknowledgments

This research is supported by the Tishreen University, Lattakia, Syria.

References

- Abramsky, S., & Jung, A. (1995). Domain Theory, in Handbook of Logic in Computer Science (Vol. 3). T.S.E.: D.M. Gabbay.
- Gierz, G., Hoffmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., & Scott, D. S. (2003). *Continuous Lattices and Domains*. Cambridge: Cambridge University Press.

Gierz, G., Hoffmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., & Scott, D. S. (1980). A Compendium

of Continuous Lattices. Berlin: Springer.

Ho, K. H., & Zhao, D. (2009). *Lattice of Scott closed sets* (pp. 297-314). Carolinae: Commentationes Mathematicae Univer-sitatis

Kelley, J. L. (1975). General Topology. New York: Springer Verlag.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).