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Abstract

A point interpolation which bases on the radial function is a new meshless method. It is advantageous over the original
PIM with polynomial basis in avoiding singularity when shape functions are constructed. It is also easy to deal with
essential boundary for its property of Kronecher Delta function. To verify it’s valid, this paper introduced the basic
principle of RPIM. In addition, numerical example of heat conduction showed that the new methods possessed several
advantages, such as high efficiency, high accuracy, and high stability. It is a promising method in physics.
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1. Introduction

Meshless method is a new numerical analysis method which has rapidly developed in recent years (Zhang Xiong and Liu
Yan, 2004). Because it bases of nodes information and thoroughly or partially eliminates the grids, and it also has high
efficiency, easy to implement, therefore it is more flexible and effective in dealing with large deformation, high-gradient
and other advantages than the traditional finite element.

Recent meshless approximations mainly have the following types of programs (LIU G.R, 2007), element-free Galerkin
method (EFGM), local Peter-Galerkin method (MLPG), Point Interpolation (PIM) and so on, but mostly shape functions
don’t have Kronecker Delta function property, which makes the essential boundary conditions hard to deal with. Radial
Point Interpolation Method (RPIM) is a new meshless method (XIONG Yuan-bo, LONG Shu-yao and LIU Kai-yuan,
2007, p135-138. XIA Mao-hui , JIA Yan and LIU Cai, 2006, p112-117), its shape function is constructed by the com-
bination of radial and polynomial basis functions. Because it has the property of delta functions, so it is convenient to
implement the boundary conditions. At the same time its interpolation process is very similar to the finite element, so a
lot of finite element procedures can be applied directly. Select the appropriate shape parameters is the key to Radial point
interpolation method, which is usually determined by empirical formula.

At present, meshless method appling to the temperature field mainly use EFGM(GAO Zhi-hua, ZHANG Ming-yi and
LIU Zhi-qiang, 2006, p545-550. YUAN Su-ling, GE Yong-qing and WANG Zhang-qi, 2003, p82-86) and MLPG (LI
Qing-hua, CHEN Shen-shen and XIONG Yong-gang, 2006, p22-24). This article introduced the basic theory of the radial
point interpolation (RPIM), and used this method to construct the interpolation function, and applied it to two-dimensional
steady-state temperature field, and example verified that RPIM is a less time-consuming and high precision, simple and
effective computing method.

2. Point Interpolation Method

Consider a scalar function u(x) defined in problem domain Ω, set several nodes in and on the domain randomly, use total
of n field nodes included in the local support domain Ω of the point of interest at xq to interpolate, and the u(x) at xq is
approximated in the form of

uh(x, xq) =

n∑

i=1

Ri(x)ai +

n∑

j=1

P j(x)b j = RT (x)a + PT (x)b (1)

Where Ri(x) is a radial basis function, P j(x) is monomial in the space coordinates xT = {x, y}, m is the number of
polynomial basis functions. Coefficients ai, b j are constants yet to be determined. We also choose m < n to have better
stability of the interpolating function. In two-dimensional problems, the general linear-based PT (x) = [1, x, y] is used.
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For given x, we have

a = [a1, a2, · · · , an]T

b = [b1, b2, · · · , bm]T

RT (x) = [R1(x),R2(x), · · · ,Rn(x)] (2)

PT (x) = [P1(x), P2(x), · · · , Pm(x)]

Typically, in two-dimensional problems
Ri(x) = Ri(ri) = Ri(x, y) (3)

ri(x) = [(x − xi)2 + (y − yi)2]1/2 (4)

Now enforcing equation (1) to be satisfied at nodes to determine the coefficients ai, b j, the matrix form is

US = RQa + Pmb (5)

Where US = [u1, u2, · · · , un]T , Matrix RQ is given by

RQ =



R1(x1) R2(x1) · · · Rn(x1)
R1(x2) R2(x2) · · · Rn(x2)
...

...
...

...
R1(xn) R2(xn) · · · Rn(xn)


(6)

The matrix Pm is a n × m matrix given by

Pm =



P1(x1) P2(x1) · · · Pm(x1)
P1(x2) P2(x2) · · · Pm(x2)
...

...
...

...
P1(xn) P2(xn) · · · Pm(xn)


(7)

However, there are n + m variables in equation (5), but only have n equations, so it is an undetermined equations, solving
the above equation (5) needs to impose a constraint equation

PT
ma = 0 (8)

Combing equations (5) and (8), the matrix form becomes
[

RQ Pm

Pm 0

] {
a
b

}
=

{
US

0

}
(9)

Solving equation (9), we can obtain

b = S BUS

a = S aUs (10)

Where S b = [PT
mR−1

Q Pm]−1PmR−1
Q , S a = R−1

Q − R−1
Q PmS b.

Substituting a, b back into equation (1), we obtain

uh(x, xq) = [RT S A + PT S b]US =

n∑

i=1

Φi(x)ui = Φ(x)US (11)

Where shape function Φ(x) is given by
Φ(x) = [Φ1(x),Φ2(x), · · · ,Φn(x)] (12)

The derivatives of shape functions can be easily obtained as
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

∂Φk
∂x =

n∑
i=1

∂Ri
∂x S a

ik +
n∑

j=1

∂P j

∂x S b
jk

∂Φk
∂y =

n∑
i=1

∂Ri
∂y S a

ik +
n∑

j=1

∂P j

∂y S b
jk

(13)

Here are three often used globally supported radial basis functions:

(1)Multi-quadrics(MQ):
Ri(x) = (r2

i + c2)q = [(x − xi)2 + (y − yi)2 + c2]q c > 0 (14)

(2)Gaussian(EXP):
Ri(x) = exp(−cr2) = exp(−c[(x − xi)2 + (y − yi)2]) (15)

(3)Thin plate spline:
Ri(x) = rηi = [(x − xi)2 + (y − yi)2]η η ∈ N (16)

In above equations, c, q, η are all called shape-parameters, r = ‖x − xi‖ . Normally, the choosing of these parameters will
effect the result. J.G. Wang and G.R. Liu have discussed in their papers. They also discovered that q = 1.03, c = 1.42
performs best in MQ. We will use this result in the following example, the derivative of MQ function is:



∂Ri
∂x = 2q(r2

i + c2)q−1(x − xi)

∂Ri
∂y = 2q(r2

i + c2)q−1(y − yi)
(17)

3. Discretized equation of Temperature field

Consider the issue of two-dimensional steady-state temperature field:


∂
∂x (kx

∂Φ
∂x ) + ∂

∂y (ky
∂Φ
∂y ) + ρQ = 0 in the Ω

Φ = Φ on the Γϕ

kx
∂Φ
∂x nx + ky

∂Φ
∂y ny = q on the Γq

(18)

Where Φ indicates temperature, Γϕ is the Dirichlet border, Γq is Neumann border, ρ is material density, kx is the thermal
conductivity coefficient along the direction of x, ky is the thermal conductivity material coefficient along the direction of
y, Q is the object density of internal heat source, nx and ny is the boundary normal direction cosine.

The standard variational (weak) form of equation (18) is posed as follows:

F(A) =

∫

Ω

[
1
2

kx(
∂Φ

∂x
)2 +

1
2

ky(
∂Φ

∂y
)2 − ΦρQ]dΩ −

∫

Γq

ΦqdΓ (19)

Substituting equation (11) back into equation (19), we can obtain

KΦ = F (20)

Where
KIJ =

∫

Ω

(kxNI,xNJ,x + kyNI,yNJ,y)dΩ

FI =

∫

Ω

NI(ρQ)dΩ +

∫

Γq

NIqdΓ

4. Numerical example

As shown in Figure 1, 5 × 5 square region, given constant temperature Φ = 0℃ on the edge of x = 0, x = 5 and y = 0,
along the edge of y = 5 set a constant temperature of Φ = 10℃, with no heat source, thermal conductivity coefficients
kx = ky = 1. RPIM used to calculate the temperature distribution, the problem domain is represented by 225(15 × 15)
regularly distributed nodes, 14 × 14 rectangular Gaussian background cells are used for numerical interactions. In each
background cell, 3 × 3 Gaussian points are employed. Compare RPIM solution to the exact solution on the cross section
x = 2.5, Figure 2 gives the trends of cross section on the meshless solution , exact solution and FEM solution. Through
figure 2 we can see that the meshless results are basically consistent with the exact solution, which verified the accuracy
and effectiveness of RPIM.
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5. Conclusions

(1). Meshless method only needs nodes of information and boundary conditions, which cast off the restricted units of the
finite element method and decrease the work of finite element method in the complex mesh generation and re-dividing.

(2). RPIM method is more advanced than the element-free Galerkin method based on the mobile least squares, as long
as R−1

Q determined, shape function and its derivative will be able to determined. Shape function possess δ function
characteristics, it is easier to handle essential boundary conditions.

(3). This paper attempted to promote this method to the temperature field problem, example results show that using
this method to deal with the issue of temperature field receives satisfactory results, which further validated the meshless
method RPIM is accuracy and effectiveness.
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Figure 1. Heat conduction model of two-dimension

Figure 2. The change of temperature along x = 2.5
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