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Abstract

In this paper, a class of Lotka-Volterra system with multiple time delays is considered. By using the continuation theorem
of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantees the existence of at
least a positive periodic solution.
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1. Introduction

Lotka-Volterra system is an important population system and has been studied by many authors, see (Chen Shihua, et.al,
2004, Fan Meng, et.al,1999, Li Yongkun, et.al, 2001) and the reference therein. but most of the previous results focused
on the stability, attractiveness, persistence and periodicity of solution to the ordinary differential systems or time delay
systems with constant delays. Rare work has been done for the systems with varying delays and varying coefficients. In
1991, Weng di Wang et. al (Wang Wending,et. al, 1991) had considered a two-dimensional predator-prey system with a
finite constant number discrete delays



ẋ(t) = x(t)

r1 −
m∑

j=1

a1 jx(t − τ1 j) −
m∑

j=1

b1 jy(t − ρ1 j)

 ,

ẏ(t) = y(t)

r2 +

m∑

j=1

a2 jx(t − τ2 j) −
m∑

j=1

b2 jy(t − ρ2 j)

 ,
(1)

with initial conditions
x(s) = ϕ(s) ≥ 0, s ∈ [−τ, 0];ϕ(0) > 0,

y(s) = ψ(s) ≥ 0, s ∈ [−τ, 0];ψ(0) > 0,

where r1, r2 are real constants with r1 > 0; ai j, bi j, τi j, ρi j (i = 1, 2; j = 1, 2, ...,m) are non-negative constants. Not
all of a1 j and not all b1 j ( j = 1, 2, ...,m) are zero; Both ϕ(s) and ψ(s) are continuous on the interval [−τ, 0] in which
τ = max{τi j, ρi j : i = 1, 2; j = 1, 2, ...,m}. And obtained the conclusion that the time delays are harmless for uniform
persistence of the solutions to the system.
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We note that any biological or environmental parameters are naturally subject to fluctuation in time. It is necessary and
important to consider models with periodic ecological parameters or perturbations which might be naturally exposed ( for
example, those due to seasonal effects of weather, food supply, mating habits, hunting or harvesting seasons, etc.). Thus,
the assumption of periodicity of the parameters is a way of incorporating the periodicity of the environment.

In this paper, we are concerned with the effects of periodicity of ecological and environmental parameters and time delays.
Then system (1) can be modified as the form:



ẋ(t) = x(t)

r1(t) −
m∑

j=1

a1 j(t)x(t − τ1 j(t)) −
m∑

j=1

b1 j(t)y(t − ρ1 j(t))

 ,

ẏ(t) = y(t)

r2(t) +

m∑

j=1

a2 j(t)x(t − τ2 j(t)) −
m∑

j=1

b2 j(t)y(t − ρ2 j(t))

 ,
(2)

with initial conditions {
x(s) = ϕ(s) ≥ 0, s ∈ [−τ, 0];ϕ(0) > 0,
y(s) = ψ(s) ≥ 0, s ∈ [−τ, 0];ψ(0) > 0, (3)

where r1(t), r2(t) are real functions with ri(t) > 0, (i = 1, 2); ai j(t), bi j(t), τi j(t), ρi j(t)(i = 1, 2; j = 1, 2, ...,m) are non-
negative functions. Not all of a1 j(t) and not all b1 j(t)( j = 1, 2, ...,m) are zero; Both ϕ(s) and ψ(s) are continuous on the
interval [−τ, 0] in which τ = maxt∈R max{τi j(t), ρi j(t) : i = 1, 2; j = 1, 2, ...,m}.
Throughout the paper, we always assume that
(H1) ri(t), ai j(t), bi j(t), τi j(t), ρi j(t)(i = 1, 2; j = 1, 2, ...,m) are ω periodic, i.e.,

ri(t + ω) = ri(t), ai j(t + ω) = ai j(t), bi j(t + ω) = bi j(t),

τi j(t + ω) = τi j(t), ρi j(t + ω) = ρi j(t)

for any t ∈ R.
(H2) ri(t), ai j(t), bi j(t), τi j(t), ρi j(t) (i = 1, 2; j = 1, 2, ...,m) are all positive, i.e.,

ri(t), ai j(t), bi j(t), τi j(t), ρi j(t) (i = 1, 2; j = 1, 2, ...,m) > 0.

The principle object of this article is to find a set of sufficient conditions that guarantees the existence of at least a positive
periodic solution for system (2) (3).

2. Basic lemma

In order to explore the existence of positive periodic solutions of (2) (3) and for the reader,s convenience, we shall first
summarize below a few concepts and results without proof, borrowing from (Yang Zhihui, et. al, 2007).

Let X,Y be normed vector spaces, L : DomL ⊂ X → Y is a linear mapping, N : X → Y is a continuous mapping. The
mapping L will be called a Fredholm mapping of index zero if dimKerL = codimImL < +∞ and ImL is closed in Y .
If L is a Fredholm mapping of index zero and there exist continuous projectors P : X → X and Q : Y → Y such that
ImP = KerL, ImL = KerQ = Im(I − Q), it follows that L | DomL ∩ KerP : (I − P)X → ImL is invertible. We denote
the inverse of that map by KP. If Ω is an open bounded subset of X, the mapping N will be called L−compact on Ω̄ if
QN(Ω̄) is bounded and KP(I − Q)N : Ω̄ → X is compact. Since ImQ is isomorphic to KerL, there exist isomorphisms
J : ImQ→ KerL.

Lemma 2.1. (Robert E. Gaines et. al, 1991)(Continuation Theorem ) Let L be a fredholm mapping of index zero and
let N be L−compact on Ω̄. Suppose
(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x < ∂Ω;
(b) QNx , 0 for each x ∈ KerL

⋂
∂Ω, and deg{JQN,Ω

⋂
∂KerL, 0} , 0;

Then the equation Lx = Nx has at least one solution lying in DomL
⋂

Ω̄.

Lemma 2.2. R2
+ = {((x(t), y(t))T ∈ R2 | x(t) > 0, y(t) > 0} is positive invariant with respect to system (2) (3).

Proof. In fact,

x(t) = ϕ(0)exp
∫ t

0

r1(s) −
m∑

j=1

a1 j(s)x(s − τ1 j(s)) −
m∑

j=1

b1 j(s)y(s − ρ1 j(s))

 ds,

y(t) = ψ(0)exp
∫ t

0

r2(s) +

m∑

j=1

a2 j(s)x(s − τ2 j(s)) −
m∑

j=1

b2 j(s)y(s − ρ2 j(s))

 ds.

In view of ϕ(0) > 0, ψ(0) > 0, (i = 1, 2), obviously, the conclusion follows.
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3. Existence of positive periodic solutions

For convenience and simplicity in the following discussion ,we always use the notations below throughout the paper:

ḡ =
1
ω

∫ ω

0
g(t)dt, gL = min

t∈[0,ω]
g(t), gM = max

t∈[0,ω]
g(t),

where g(t) is a ω continuous periodic function. Let σi j(t) = t − τi j(t), θi j(t) = t − ρi j(t), t ∈ R, i = 1, 2; j = 1, 2, ...,m.
Assume that

(H3) τ
′
i j(t) < 1, ρ

′
i j(t) < 1, (i = 1, 2; j = 1, 2, ...,m)

Then σi j(t) and θi j(t) have inverse functions denoted by µi j(t), εi j(t), (i = 1, 2; j = 1, 2, ...,m), respectively. Obviously,
µi j(t + ω) = µi j(t) + ω, εi j(t + ω) = εi j(t) + ω.

In the following, we will ready to state and prove our result.

Theorem 3.1. Suppose that (H1), (H2), (H3), (H4) DL
22r1

L > DM
12r2

M and

(H5) r1

m∑

j=1

b2 j > r2

m∑

j=1

b1 j hold, where

D22 =

m∑

j=1

b2 j(t)ε2 j(t)
1 − ρ′2 j(ε2 j(t))

, D12 =

m∑

j=1

b1 j(t)ε1 j(t)
1 − ρ′1 j(ε1 j(t))

,

then the system (2) (3) has at least a ω periodic solution.

Proof. Since solutions of (2) (3) remained positive for all t ≥ 0, we let

u1(t) = ln[x(t)], u2(t) = ln[y(t)]. (4)

Substituting (4) into (2), we obtain


u̇1(t) = r1(t) −
m∑

j=1

a1 j(t)exp{u1(t − τ1 j(t))} −
m∑

j=1

b1 j(t)exp{u2(t − ρ1 j(t))},

u̇2(t) = r2(t) +

m∑

j=1

a2 j(t)exp{u1(t − τ2 j(t))} −
m∑

j=1

b2 j(t)exp{u2(t − ρ2 j(t))}.
(5)

It is easy to see that if system (5) has one ω periodic solution (u∗1(t), u∗2(t))T , then (x∗(t), y ∗ (t))T = (exp[u∗1(t), exp[u∗2(t)])T

is a positive solution of system (2). Therefore, to complete the proof, it suffices to show that system (5) has at least one ω
periodic solution.

Let X = Z = {u(t)} = {(u1(t), u2(t))T | u(t) ∈ C(R,R2), u(t+ω) = u(t)}, and define ‖u‖ = ‖(u1(t), u2(t))T ‖ = maxt∈[0,ω] |u1(t)|+
maxt∈[0,ω] |u2(t)|. Then X and Z are Banach spaces when they are endowed with the norm ‖.‖.
Let L : DomL ⊂ X → Z and N : X → Z be the following:

Lu = x
′
(t),

Nu =



r1(t) −
m∑

j=1

a1 j(t)exp{u1(t − τ1 j(t))} −
m∑

j=1

b1 j(t)exp{u2(t − ρ1 j(t))}

r2(t) +

m∑

j=1

a2 j(t)exp{u1(t − τ2 j(t))} −
m∑

j=1

b2 j(t)exp{u2(t − ρ2 j(t))}


. (6)

Define continuous projective operators P and Q:

Pu =
1
ω

∫ ω

0
u(t)dt,Qu =

1
ω

∫ ω

0
u(t)dt, u ∈ X, u ∈ Z.

We can see that KerL = {u ∈ X | u = h ∈ R2}, ImL = {u ∈ Z |
∫ ω

0 u(t)dt = 0} is closed in X and dim(KerL) = 2 =

codim(ImL), then it follows that L is a fredholm mapping of index zero. Moreover, it is easy to check that

QNx =



1
ω

∫ ω

0

r1(t) −
m∑

j=1

a1 j(t)exp{u1(t − τ1 j(t))} −
m∑

j=1

b1 j(t)exp{u2(t − ρ1 j(t))}
 dt

1
ω

∫ ω

0

r2(t) +

m∑

j=1

a2 j(t)exp{u1(t − τ2 j(t))} −
m∑

j=1

b2 j(t)exp{u2(t − ρ2 j(t))}
 dt


.
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By easily computation, we have

KP(z) =

∫ ω

0
z(u)du − 1

ω

∫ ω

0

[∫ t

0
z(u)du

]
dt,

KP(I − Q)Nu = 
∫ t

0 F1(s)ds∫ t
0 F2(s)ds

 −


1
ω

∫ ω

0

∫ t
0 F1(s)dsdt

1
ω

∫ ω

0

∫ t
0 F2(s)dsdt

 −
 ( t

ω
− 1

2 )
∫ ω

0 F1(s)ds
( t
ω
− 1

2 )
∫ ω

0 F2(s)ds

 , (7)

where

F1(s) = r1(s) −
m∑

j=1

a1 j(s)exp{u1(s − τ1 j(s))} −
m∑

j=1

b1 j(s)exp{u2(s − ρ1 j(s))},

F2(s) = r2(s) +

m∑

j=1

a2 j(s)exp{u1(s − τ2 j(s))} −
m∑

j=1

b2 j(s)exp{u2(s − ρ2 j(s))}.

Obviously, QN and KP(I − Q)N are continuous. Since X is a finite-dimensional Banach space, using the Ascoli-Arzela
theorem, it is not difficult to show that KP(I − Q)N(Ω̄) is compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω̄) is
bounded. Thus, N is L−compact on Ω̄ with any open bounded set Ω ⊂ X.

Now we are at the point to search for an appropriate open, bounded subset Ω for the application of the continuation
theorem. Corresponding to the operator equation Ly = λNy, λ ∈ (0, 1), we have



u̇1(t) = λ

r1(t) −
m∑

j=1

a1 j(t)exp{u1(t − τ1 j(t))} −
m∑

j=1

b1 j(t)exp{u2(t − ρ1 j(t))}
 ,

u̇2(t) = λ

r2(t) +

m∑

j=1

a2 j(t)exp{u1(t − τ2 j(t))} −
m∑

j=1

b2 j(t)exp{u2(t − ρ2 j(t))}
 .

(8)

Suppose that u(t) = (u1(t), u2(t))T ∈ X is an arbitrary solution of system (8) for a certain λ ∈ (0, 1), integrating both sides
of (8) over the interval [0, ω] with respect to t , we obtain



∫ t

0


m∑

j=1

a1 j(t)exp{u1(t − τ1 j(t))} +
m∑

j=1

b1 j(t)exp{u2(t − ρ1 j(t))}
 dt = r1ω,

∫ t

0


m∑

j=1

a2 j(t)exp{u1(t − τ2 j(t))} −
m∑

j=1

b2 j(t)exp{u2(t − ρ2 j(t))}
 dt = −r2ω.

(9)

In view of the following: ∫ ω

0

m∑

j=1

ai j(t)exp{u1(t − τi j(t))}dt

=

∫ ω−τi j(ω)

−τi j(0)

m∑

j=1

ai j(µi j(s))
1 − τ′i j(µi j(s))

exp{u1(s)}ds,

=

∫ ω−τi j(ω)

−τi j(0)

m∑

j=1

ai j(µi j(s))
1 − τ′i j(µi j(s))

exp{u1(s)}ds

=

∫ ω

0

m∑

j=1

ai j(µi j(s))
1 − τ′i j(µi j(s))

exp{u1(s)}ds, (i = 1, 2; j = 1, 2, ...,m), (10)

∫ ω

0

m∑

j=1

bi j(t)exp{u2(t − ρi j(t))}dt

=

∫ ω−ρi j(ω)

−ρi j(0)

m∑

j=1

bi j(εi j(s))
1 − ρ′i j(εi j(s))

exp{u2(s)}ds

=

∫ ω−ρi j(ω)

−ρi j(0)

m∑

j=1

bi j(εi j(s))
1 − ρ′i j(εi j(s))

exp{u2(s)}ds

=

∫ ω

0

m∑

j=1

bi j(εi j(s))
1 − ρ′i j(εi j(s))

exp{u2(s)}ds, (i = 1, 2; j = 1, 2, ...,m).(11)
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From (9) (10) (11), we can obtain

∫ ω

0

m∑

j=1

a1 j(µ1 j(s))
1 − τ′1 j(µ1 j(s))

exp{u1(s)}ds +

∫ t

0

m∑

j=1

b1 j(ε1 j(s))
1 − ρ′1 j(ε1 j(s))

exp{u2(s)}ds = r1ω, (12)

∫ ω

0

m∑

j=1

a2 j(µ2 j(s))
1 − τ′2 j(µ2 j(s))

exp{u1(s)}ds −
∫ ω

0

m∑

j=1

b2 j(ε2 j(s))
1 − ρ′2 j(ε2 j(s))

exp{u2(s)}ds = −r2ω. (13)

By the mean value theorem for improper integral, there exist ξik j ∈ [0, ω] (i = 1, 2; k = 1, 2; j = 1, 2, ...,m) such that

A11

∫ ω

0
exp{u1(s)}ds + A12

∫ ω

0
exp{u2(s)}ds = r1ω, (14)

A21

∫ ω

0
exp{u1(s)}ds − A22

∫ ω

0
exp{u2(s)}ds = −r2ω, (15)

where

A11 =

m∑

j=1

a1 j(ξ11 j)µ1 j(ξ11 j)
1 − τ′1 j(µ1 j(ξ11 j))

,

A12 =

m∑

j=1

b1 j(ξ12 j)ε1 j(ξ12 j)
1 − ρ′1 j(ε1 j(ξ12 j))

,

A21 =

m∑

j=1

a2 j(ξ21 j)µ2 j(ξ21 j)
1 − τ′2 j(µ2 j(ξ21 j))

,

A22 =

m∑

j=1

b2 j(ξ22 j)ε2 j(ξ22 j)
1 − ρ′2 jε2 j((ξ22 j))

.

Then, ∫ ω

0
exp{u1(s)}ds =

(A22r1 − A12r2)ω
A11A22 + A21A12

, (16)

∫ ω

0
exp{u2(s)}ds =

(A21r1 + A11r2)ω
A11A22 + A21A12

. (17)

So we have
(DL

22r1
L − DM

12r2
M)ω

DM
11DM

22 + DM
21DM

12

≤
∫ ω

0
exp{u1(s)}ds ≤ (DM

22r1
M − DL

12r2
L)ω

DL
11DL

22 + DL
21DL

12

, (18)

(DL
21r1

L
+ DM

11r2
M)ω

DM
11DM

22 + DM
21DM

12

≤
∫ ω

0
exp{u2(s)}ds ≤ (DM

21r1
M

+ DL
11r2

L)ω

DL
11DL

22 + DL
21DL

12

, (19)

where

D11 =

m∑

j=1

a1 j(t)µ1 j(t)
1 − τ′1 j(µ1 j(t))

,

D12 =

m∑

j=1

b1 j(t)ε1 j(t)
1 − ρ′1 j(ε1 j(t))

,

D21 =

m∑

j=1

a2 j(t)µ2 j(t)
1 − τ′2 j(µ2 j(t))

,

D22 =

m∑

j=1

b2 j(t)ε2 j(t)
1 − ρ′2 j(ε2 j(t))

.

By the condition of theorem 3.1, there exist ti ∈ [0, ω], i = 1, 2 such that

u1(t1) = ln
[
(A22r1 − A12r2)ω
A11A22 + A21A12

]
, (20)

u2(t2) = ln
[
(A21r1 + A11r2)ω
A11A22 + A21A12

]
. (21)
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By the condition (H4) of theorem 3.1, there exist B1, B2 > 0 such that

|u1(t1)| ≤ B1, |u2(t2)| ≤ B2. (22)

In view of the following:

∫ ω

0
|u̇1(t)|dt = λ

∫ ω

0

∣∣∣∣∣∣∣∣

r1(t) −
m∑

j=1

a1 j(t)exp{u1(t − τ1 j(t))}

−
m∑

j=1

b1 j(t)exp{u2(t − ρ1 j(t))}


∣∣∣∣∣∣∣∣
dt

≤ 2
∫ ω

0
|r1(t)|dt = 2

∫ ω

0
r1(t)dt = 2r1ω := B3, (23)

∫ ω

0
|u̇2(t)|dt = λ

∫ ω

0

∣∣∣∣∣∣∣∣

r2(t) +

m∑

j=1

a2 j(t)exp{u1(t − τ2 j(t))}

−
m∑

j=1

b2 j(t)exp{u2(t − ρ2 j(t))}


∣∣∣∣∣∣∣∣
dt

≤ r2ω +

∫ ω

0

∣∣∣∣∣∣∣∣

m∑

j=1

a2 j(t)exp{u1(t − τ2 j(t))}
∣∣∣∣∣∣∣∣
dt

+

∫ ω

0

∣∣∣∣∣∣∣∣

m∑

j=1

b2 j(t)exp{u2(t − ρ2 j(t))}
∣∣∣∣∣∣∣∣
dt

≤ r2ω +

m∑

j=1

a2 j(µ2 j(s))ω
1 − µ′2 j(µ2 j(s))

∫ ω

0
exp{u1(s)}ds

+

m∑

j=1

b2 j(ε2 j(s))ω
1 − ρ′2 j(ε2 j(s))

∫ ω

0
exp{u2(s)}ds.

≤ r2ω +

m∑

j=1

a2 j(µ2 j(s))ω
1 − µ′2 j(µ2 j(s))

(AM
22r1

M − AL
12r2

L)ω

AL
11AL

22 + AL
21AL

12

+

m∑

j=1

b2 j(ε2 j(s))ω
1 − ρ′2 j(ε2 j(s))

(AM
21r1

M
+ AL

11r2
L)ω

AL
11AL

22 + AL
21AL

12

:= B4, (24)

then it follows from (22) (23) (24) that

|u1(t)| ≤ |u1(t1)| +
∫ ω

0
|u̇1(t)|dt ≤ B1 + B3 := B5, (25)

|u2(t)| ≤ |u2(t2)| +
∫ ω

0
|u̇2(t)|dt ≤ B2 + B4 := B6. (26)

Obviously, B1, B2, B3, B4 are independent of λ ∈ (0, 1). By the condition (H5) of Theorem 3.1, it is easy to show that the
algebraic equations 

m∑

i=1

a1 ju1 +

m∑

i=1

b1 ju2 = r1,

m∑

i=1

a2 ju1 −
m∑

i=1

b2 ju2 = −r2,

(27)

has a unique positive solution (ũ1, ũ2)T ∈ R2. Take M = max{B5, B6} + B0, where B0 is taken sufficiently large such that
the unique positive solution (ũ1, ũ2)T ∈ R2 satisfies maxt∈[0,ω] |ũ1| + maxt∈[0,ω] |ũ2| < B0,

Let Ω := {u = {u(t)} ∈ X : ‖u‖ < M}, then it is easy to see that Ω is an open, bounded set in X and verifies requirement
(a) of Lemma 2.1. When (u1(t), u2(t))T ∈ ∂Ω ∩ KerL = ∂Ω ∩ R2, u = {(u1, u2)T } is a constant vector in R2 with ‖u‖ =
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‖(u1(t), u2(t))T ‖ = maxt∈[0,ω] |u1(t)| + maxt∈[0,ω] |u2(t)| = M. Then we have

QNy =



r1 −
m∑

i=1

a1 ju1 −
m∑

i=1

b1 ju2

r2 +

m∑

i=1

a2 ju1 −
m∑

i=1

b2 ju2


, 0. (28)

Letting J be the identity mapping and by direct calculation, we get

deg
{
JQN(u1, u2)T ; ∂Ω

⋂
kerL; 0

}

= deg
{
QN(u1, u2)T ; ∂Ω

⋂
kerL; 0

}

= sign


det



−
m∑

i=1

a1 j −∑m
i=1 b1 j

m∑

i=1

a2 j −∑m
i=1 b2 j





= sign


m∑

i=1

a1 j

m∑

i=1

b2 j +

m∑

i=1

a2 j

m∑

i=1

b1 j

 = 1 , 0.

This proves that condition (b) in Lemma 2.1 is satisfied. By now, we have proved that Ω verifies all requirements of
Lemma 2.1, then it follows that Lu = Nu has at least one solution (u1(t), u2(t))T in DomL ∩ Ω, that is to say, (5) has at
least one ω periodic solution in DomL ∩ Ω. Then we know that ((x(t), y(t))T = (exp{u1(t)}, exp{u2(t)})T is an ω periodic
solution of system (2) (3) with strictly positive components. This completes the proof.

Remark 3.1. Theorem 3.1 remains valid if some or all terms are replaced by corresponding terms with discrete time
delays, distribute delays (finite or infinite), or deviating arguments respectively. At this point, we would like to point out
that, when one applies the continuation theorem from the coincidence degree theory to explore the existence of periodic
solutions to the system of differential equations or difference equations, time delays of any type or the deviating arguments
have no effect on the existence of positive solutions.
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