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Abstract

The aim of this paper is to discuss statistical attractors of skew products over the solenoid which have an m-
dimensional compact orientable manifold M as a fiber and their ε-invisible parts, i.e. a sizable portion of the
attractor in which almost all orbits visit it with average frequency no greater than ε.

We show that for any n ∈ N large enough, there exists a ball Dn in the space of skew products over the solenoid
with the fiber M such that each C2-skew product map from Dn possesses a statistical attractor with an ε-invisible
part, whose size of invisibility is comparable to that of the whole attractor. Also, it consists of structurally stable
skew product maps.

In particular, small perturbations of these skew products in the space of all diffeomorphisms still have attractors
with the same properties.
Our construction develops the example of (Ilyashenko & Negut, 2010) to skew products over the solenoid with an
m-dimensional fiber, m ≥ 2.

As a consequence, we provide a class of local diffeomorphisms acting on S 1 × M such that each map of this class
admits a robustly topologically mixing maximal attractor.

Keywords: statistical attractor, maximal attractor, skew-product, invisible part, solenoid attractor.

1. Introduction and Preliminaries

The study of attractors is one of the major problems in the theory of dynamical systems. An attractor is a set
of points in the phase space, invariant under the dynamics, towards which neighboring points in a given basin of
attraction tend asymptotically. Roughly abusing of the language, we will use the word attractor referring to any
closed invariant set satisfies two kinds of properties: it attracts many orbits and it is indecomposable. Therefore,
there are various non-equivalent definitions of attractors of dynamical systems including global attractor, Milnor
attractor, statistical attractor and etc. Some knowledge of attractors and their properties is available, see (Karabacak
& Ashwin, 2011), (Kleptsyn, 2006), (Ilyashenko, 1991) and (Milnor, 1985).

In this article, we will treat the attractors of skew products over the solenoid and their invisible parts. Invisibility
of attractors introduced by (Ilyashenko & Negut, 2010) is a new effect in the theory of dynamical systems. The
systems with this property have large parts of attractors that can not be observed in numerical experiments of any
reasonable duration.

Here, we will build a skew product over the solenoid which has a closed m-dimensional orientable manifold M
as a fiber, m ≥ 2. This skew product possesses an attractor with a large invisible part. Moreover, our example is
robust, i.e. this property remains true for every small perturbation.

Our approach is motivated by the example by (Ilyashenko & Negut, 2010). The authors described an open set in
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the space of skew products over the solenoid with one dimensional fiber whose attractors had large unobservable
parts. Then this result extended (Ghane & et al., 2012) to an open set of skew products over the Bernoulli shift
with an m-dimensional fiber.

In fact, we will provide an open class of skew products admitting statistical attractors. These attractors support
a S RB measure. In particular, this property remains true for all nearby diffeomorphisms. Consequently, a class
of local diffeomorphisms is also proposed so that every map of this class admits a robust topologically mixing
attractor.

To be more precise, we need to introduce some notations and recall several background definitions and concepts.

The maximal attractor of F in a neighborhood U is an invariant set Amax of F such that

Amax = ∩∞n=0Fn(U).

The Milnor attractor AM of F is the minimal invariant closed set that contains the ω-limit sets of almost all points
with respect to the Lebesgue measure.

The minimal closed set Astat of F is called the statistical attractor if all orbits spend an average time of 1 in any
neighborhood of it. The notion of the statistical attractor is one of the ways of describing what an observer will see
if looking at a dynamical system for a long time.

An F-invariant measure µ∞ is called Sinai-Ruelle-Bowen (S RB) if there exists a measurable set E ⊂ X, with
Leb(E) > 0, such that for any test function ϕ ∈ C(X) and any x ∈ E we have∫

X
φdµ∞ = lim

k→∞

1
k

k−1∑
i=0

φ(F i(x)).

The set E is called the basin of µ∞.

An open set U is called ε-invisible if almost every orbit visits U with an average frequency ε or less:

lim sup
n→∞

{k; Fk(x) ∈ U, 0 ≤ k ≤ n}
n

≤ ε, f or a.e x.

Throughout this paper we assume that M is an m-dimensional closed orientable manifold and its metric is geodesic
distance and the measure is the Riemannian volume.

Let fi, i = 0, 1, be diffeomorphisms of M. A step skew-product over the Bernoulli shift σ : Σ2 → Σ2, is defined by

F : Σ2 × M → Σ2 × M; (ω, x)→ (σω, fw0 (x)), (1)

where Σ2 is the space of two-sided sequences of 2 symbols {0, 1}. Consider the following standard metric on Σ2

d(ω,ω′) = 2−n,

where n = min{|k|;ωk , ω′k} and ω,ω′ ∈ Σ2.
Also, we equip Σ2 by ( 1

2 ,
1
2 )-probability measure P. This means that

P({ω : ωi1 = α1, ..., ωik = αk}) =
1
2k ,

for any i1, ..., ik ∈ Z and any α1, ..., αk ∈ {0, 1}.
A mild skew product over the Bernoulli shift is a map

G : Σ2 × M → Σ2 × M; (ω, x)→ (σω, gω(x)), (2)

where the fiber maps gω are diffeomorphisms of the fiber into itself.

We would like to mention that in contrast to step skew products, the fiber maps of mild skew products depend on
the whole sequence ω.
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Skew products play an important role in the theory of dynamical systems. Many properties observed for these
products appear to persist as properties of diffeomorphisms, for instance see (Gorodetsky & Ilyashenko, 1999) and
(Gorodetsky & Ilyashenko, 2000).

In the following, we consider skew products over the Smale-Williams solenoid. Take R ≥ 2 and let B = B(R)
denote the solid torus

B = S 1 × D(R), S 1 = R/Z, D(R) = {z ∈ C : |z| ≤ R}.
The solenoid map is defined as

h : B→ B, (y, z) 7−→ (2y, e2πiy + λz), λ < 0.1. (3)

Here, we consider the Cartesian product X = B × M with the natural projections π : X → M along B, p : X → B
along M. The set B is the base, while M is the fiber. The measure on X is the Cartesian product of the measures of
the base and of the fiber. The distance between two points of X is the sum of the distances between their projections
onto the base and onto the fiber.

Consider maps of the form
F : B × M → B × M, F (b, x) = (h(b), fb(x)), (4)

where h is a solenoid map as above. Denote by Λ the maximal attractor of h, which is called the Smale-Williams
solenoid. Let us mentioned that the solenoid was introduced into dynamics by Smale as a hyperbolic attractor
(Katok & Hasselblat, 1999).

We recall that a homeomorphism F of a metric space is called L-bi-Lipschitz if Lip(F ±1) ≤ L, where Lip denotes
Lipschitz constant. Here we shall consider only L-bi-Lipschitz maps F , in order to guarantee that the phenomenon
of ε-invisibility is not produced by any large extraordinary distortion (see Remark 1 of (Ilyashenko & Negut,
2010)).

Consider the Cartesian product X = B × M. Let DL(X) (respectively, C1
p,L(X)) denote the space of L-bi-Lipschitz

smooth maps (respectively, smooth skew products). Also, C2(X) denote the space of all C2-maps on X.

Suppose that Dn is a ball of radius 1
n2 of F in C1

P,L(X), the space of all C1 L-bi-Lipschitz skew products on X, this
means that if skew product G ∈ Dn then

d(F ,G) = sup
b∈B

dC1 ( f ±1
b , g±1

b ) ≤ 1
n2 (5)

We will now state our main result.

Theorem A Consider n ≥ 100m2. Then there exists a ball Dn, of radius 1
n2 in the space C1

p,L(X), X = B × M,
having the following property.
Any map G ∈ Dn ∩C2(X), has a statistical attractor Astat = Astat(G) such that the followings hold:

1. The projection π(Astat) ⊂ M has the property

R ⊂ π(Astat) ⊂ R∗, (6)

where π : B × M → M is the natural projection and R,R∗ are the inverse images of the m-dimensional cubes of
Rm under some local chart of M.

2. There exist a set N that is ε- invisible for G with ε = 1
2n , and the size of N is comparable to that of the whole

attractor.
Also, each G ∈ Dn ∩C2(X) is structurally stable in D1(X), where D1(X) is the space of all C1-diffeomorphisms on
X. Moreover, small perturbations of the maps from Dn in the space DL(X) of all diffeomorphisms have statistical
attractors with the same properties.

In this context the following questions are interesting.

Can we develop the example to provide a better rate of invisibility while keeping the same radius of the ball in the
space of skew products?

Is it possible to obtain the rate of invisibility as a tower of exponents whose height grows with the dimension?

As a Consequence of the main result, we will also provide a class of endomorphisms defined on S 1 × M so that
every endomorphism of this class admits a robust topologically mixing attractor.
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To be more precise, let E(M) be the space of all skew product maps acting on S 1 × M of the following form

F : S 1 × M → S 1 × M, F(y, x) = (g(y), fy(x)), (7)

where g(y) = ky, k ≥ 2, is an expanding circle map and fiber maps x 7→ fy(x) are C1- diffeomorphisms defined on
closed manifold M.

Corollary B There exists an open ball Dn ⊂ E(M) such that any map F ∈ Dn ∩ C2(S 1 × M) admits a maximal
attractor which is the support of an invariant ergodic S RB measure. Also, it is robustly topologically mixing.
Moreover, the projection of the maximal attractor on the fiber contains an m-cube.

Here is an extremely brief indication of the proof of our main result.
We follow the approach suggested by (Ilyashenko & Negut, 2010) to provide an open ball Dn in the space of skew
product maps over the solenoid such that it satisfies the requirements of Theorem A. However, we can not use this
approach straightforwardly to settle our result.
In (Ilyashenko & Negut, 2010), the fiber maps defined on the circle S 1 and the fact that central direction is one
dimensional is essential. In our setting, the central direction is m-dimensional and this makes some difficulties in
the proof.
To specify the open ball Dn, we seek a single skew product map F which is the center of Dn. In order to introduce
F , we need to choose two diffeomorphisms fi, i = 0, 1, in an appropriate way such that the set { f0, f1} has covering
property, i.e. there exists an open set U satisfying U ⊂ f0(U)∪ f1(U). Hence, we should choose an m-cube R such
that U 1

n2
(R) = U, see section 2.

Moreover, fi, i = 0, 1, can be chosen so that the size of invisible part of the attractor is large enough.

This paper is organized as follows. First, an open set of skew products, North-South like skew products, is intro-
duced in section 2. The sections after that will be concerned with the proof of the main result. In section 3, we
assert that the maximal attractor and statistical attractor of skew products which have been chosen in an appropriate
way are coincide. In section 4, the proof of statement (2) of Theorem A is presented. Moreover, the invisible part
of the attractor is also specified. Also, we prove that small perturbations of the maps from Dn in the space DL(X) of
all diffeomorphisms have statistical attractors with the same properties, in section 5. Finally, section 6 is devoted
to prove Corollary B.

2. North-South Like Skew Products over the Solenoid

In this section, we will introduce an open set of skew products that will be studied in the paper.

For a closed m-dimensional manifold M, consider two disjoint open neighborhoods U,W ⊂ M which are the
domains of two local charts (W, φ) and (U, ψ). Take two C2-gradient Morse-Smale vector fields on M, each of
which possesses a unique hyperbolic repelling equilibrium qi in W, a unique hyperbolic attracting equilibrium
pi in U, i = 0, 1, (see e.g. (Matsumoto, 2002), Theorem 3.35 for the existence of Morse functions with unique
extrema) and finitely many saddle points ri

j, i = 0, 1, j = 1, ..., l, which are contained in M \ (U ∪ W). Suppose
that fi, i = 0, 1, are their time-1 maps. Also, we require that they satisfy the following conditions.

(i) The mappings fi, i = 0, 1, are coincide on Uc. So, we can take q0 = q1 and r0
j = r1

j , j = 1, ..., l. For simplicity,
we take r j := ri

j, j = 1, ..., l. Moreover, we assume that they have no any saddle connection.

(ii) We may choose the coordinate functions φ and ψ such that they are isometries with the following properties:

ψ : U → C3(0) ⊂ Rm, φ : W → C2(0), where Cr(0) is an m- dimensional cube Πm
s=1[−r, r] with r > 0. Also, let

V ⊂ W be a compact neighborhood containing the fixed points q0 = q1.

If we take f̂i := ψ ◦ fi ◦ ψ−1, i = 0, 1, then f̂i’s are affine maps which are defined by

f̂0(x1, . . . , xm) = (1 − 1
m2n )(xm, x1, . . . , xm−1) − ( 1

mn +
2m
n2 , 0, . . . , 0),

f̂1(x1, . . . , xm) = ( 1
n xm + 1 − 2

3n , (1 −
1

m2n )x1, . . . , (1 − 1
m2n )xm−1).

Also if we take f i := φ ◦ fi ◦ φ−1, i = 0, 1, then f i(x1, . . . , xm) = 2(x1, . . . , xm).
Now consider the m-dimensional cubes R̂ = Πm

i=1[−αi, αi] and R̂∗ = Πm
i=1[−γi, γi], where

αi = 1 +
m − i
m2n

+
2(m − i)

n2 , i = 1, . . . ,m − 1, αm = 1
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and
γi = 2 +

2(m − i)
m2n

− m − i − 2
n2 +

2(m − i)
m4n2 , i = 1, . . . ,m − 1, γm = 2.

Let R and R∗ be the inverse images of R̂ and R̂∗ under the local chart ψ, respectively. Clearly

f̂0(R̂) ∪ f̂1(R̂) ⊃ R̂, f̂i(R̂∗) ⊂ R̂∗, i = 0, 1, (8)

which implies that R ⊂ f0(R) ∪ f1(R), i.e. { f0, f1} has covering property.

Note that these inclusions are robust, this means that they remain true for any maps ĝ0 := ψ ◦ g0 ◦ ψ−1 and
ĝ1 := ψ ◦ g1 ◦ψ−1, where (g0, g1) belongs to open ballW of ( f0, f1) with radius 1

n2 in Di f f 1(M)×Di f f 1(M). Also
let V j, j = 1, ..., l, be disjoint compact neighborhoods of r j contained in the domains of local charts of M.

The iterated function system F( f0, f1) is the action of semigroup generated by { f0, f1} on M. An orbit of x ∈ M
under the iterated function system F( f0, f1) is a sequence

{ fi1 ◦ fi2 ◦ ... ◦ fik (x); i j ∈ {0, 1}, j = 1, . . . , k, k ∈ N}.

The F-orbit of x denoted by Orbit+F(x) is the set of points lying on some orbit of x under the iterated function
system F.
We say that the iterated function system F is minimal if the F-orbit of any point is dense in M. The iterated function
system F( f0, f1) has covering property if there exists an open set D such that

D ⊂
1∪

i=0

fi(D).

Now, we fix the diffeomorphisms f0, f1 : M → M as above. Then it is not hard to see that the iterated function
system F generated by f0, f1 admits a unique compact invariant set ∆ = ∆F with nonempty interior so that the
acting F on ∆ is minimal. In particular, this property is robust in C1-topology, see (Homburg & Nassiri, 2013).

Let us consider the corresponding skew product map F with generators fi, i = 0, 1, which are defined as follows:

F : Σ2 × M → Σ2 × M; (ω, x)→ (σω, fω0 (x)), (9)

where σ : Σ2 → Σ2 is the Bernoulli shift map. The skew product map F with generators fi, i = 0, 1, which satisfies
all properties mentioned above, is called North-South like skew product map.

R

f
0
(R) f

1
(R)

^^

^

^ ^

^

^

O

Figure 1. Description of the open domain R̂ contained in the attractor.

Lemma 2.1 Consider the North-south like skew product map F of the form

F : Σ2 × M → Σ2 × M; (ω, x)→ (σω, fω0 (x)),

as above. Then F is C1 robustly topologically mixing on Σ2 × ∆ under continuous perturbation of ω 7→ fω in
the C1-topology, where ∆ is the unique compact invariant set of the corresponding iterated function system F
generated by fi : M → M, i = 0, 1, and the acting F on ∆ is minimal.

126



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 3; 2015

Proof. Let F be a North-south like skew product map with the fiber maps fi, i = 0, 1, and with the corresponding
iterated function system F( f0, f1) satisfying the hypothesis. Then, F admits a unique compact invariant set ∆ such
that the acting F on ∆ is minimal, see (Homburg & Nassiri, 2013).
Let us define

L(∆) =
1∪

i=0

fi(∆).

Take two open subsets ∆in ⊂ ∆ ⊂ ∆out close enough to ∆ so that f̂i := ψ◦ f ◦ψ−1, i = 0, 1, are affine on them. Then

∆in ⊂ L(∆in) ⊂ ∆ ⊂ L(∆out) ⊂ ∆out, (10)

and the sequences Li(∆in) and Li(∆out) converge to ∆ in the Hausdorff topology whenever i→ ∞.
Let us show that the skew product map F(ω, x) = (σω, fω0 (x)) is topologically mixing on Σ2 ×∆. For, take an open
set U ⊂ Σ2 × ∆, a high iterate Fn(U) contain a strip Σ2 ×W in Σ2 × ∆, where W ⊂ M is an open set. Now Fn+1(U)
maps Σ2 ×W to 2 strips with total width larger than c.vol(W), with

c =
1∑

i=0

(m(D fi(pi)))m > 1,

where vol(W) is the volume of W and m(D fi(pi)) is the co-norm of linear operator D fi(pi) which is defined by
m(D fi(pi)) := inf{∥D fi(pi)(v)∥ : ∥v∥ = 1}. Further iterates Fn+k(U) contains 2k strips of increasing width so that for
some k > 0, Fn+k(U) lies dense in Σ2 × V for any neighborhood V ⊂ ∆. This shows that F is topologically mixing
on Σ2 × ∆.
This reasoning also applies to small perturbations of F, where the fiber maps may depend on all ω instead of just
ω0, with any modifications. The inclusions (10) get replaced by

Σ2 × ∆in ⊂ F(Σ2 × ∆in), F(Σ2 × ∆out) ⊂ Σ2 × ∆out.

The map F acting on Σ2 × ∆out acts by contractions in the fibers ω × ∆out. A high iterate Fn(U) may not contain a
product Σ2 × W but contains a strip of some width ε lying between the graphs of 2 maps. Again Fn+1(U) contains
2 strip of total width exceeding cε for some c > 1, and Fn+k(U) contain 2k strips of increasing total width. There
exists a closed neighborhood ∆̃ near to ∆ so that for some k > 0, Fn+k(U) lies dense in Σ2 × V for any V ⊂ ∆̃.
In the following, we will introduce an S RB measure on the Smale-Williams solenoid Λ. Consider the solenoid
map h as above. Let Σ2

1 ⊂ Σ2 be the set of infinite sequences of 0′s and 1′s without a tail of 1′s infinitely to the
right (i.e sequences which have 0′s arbitrary far to the right). Its metric and measure are inherited from the space
Σ2. Consider the fate map

Φ : Λ→ Σ2
1, Φ(b) = (. . . ω−1ω0ω1 . . .),

where ωk = 0 if y(hk(b)) ∈ [0, 1
2 ) and ωk = 1 if y(hk(b)) ∈ [ 1

2 , 1). The map Φ is a bijection with a continuous
inverse. Moreover, it conjugates the map h|Λ with the Bernoulli shift σ on Σ2

1:

Λ
h→ Λ

Φ ↓ ↓ Φ
Σ2

1
σ→ Σ2

1

In addition to the fate map Φ, we can define the forward fate map Φ+(b) = (ω0ω1 . . .), with ω0ω1 . . . described as
above. The map Φ+(b) is now defined for all b in the solid torus B, and it only depends on y(b). More generally, if
h−k(b) exists, then we can define Φ+−k(b) = (ωk . . . ω0ω1).
It is not hard to see that the SRB measure onΛ is the pullback of the Bernoulli measure on Σ2

1 under the fate mapΦ,
i.e. µΛ = Φ∗P. In fact, we set fb = fΦ(b)0 . This means that fb depends on the digit Φ(b)0 only, where Φ(b)0 ∈ {0, 1}.
Note that this skew product would be discontinuous at y(b) ∈ {0, 1

2 } ⊂ S 1. In following, we apply the approach
suggested in [8] to remove this discontinuity.
For, consider an isotopy

ft : M → M, t ∈ [0, 1)

between f0, f1 as follows. Since f0 and f1 are both orientation preserving on U, so we can take f̂t = (1− t2) f̂0+ t2 f̂1
on ψ(U) and ft = f0 = f1, for each t ∈ [0, 1] outside U . The choice of isotopy ft implies that this family is C1 in
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y. In below, numbers in [0,1) are written in binary representation. For y ∈ [0, 1), define

f̂y :=


f̂0 for y ∈ [0,0.011),

f̂8y−3 for y ∈ [0.011,0.1),
f̂1 for y ∈ [0.1,0.111),

f̂8−8y for y ∈ [0.111,1).

(11)

We define the almost step North-South like skew product over the solenoid corresponding to the fiber maps f0, f1
by

F : X → X,F (b, x) = (h(b), fy(b)(x)),

where fy’s are introduced by (11). Note that if we consider a word w = (ω0 . . . ωk+1) that contains no cluster 11
and a sequence ω with the subword w starting at the zero position then

fhi−1(b) ◦ . . . ◦ fb = fωi−1 ◦ . . . ◦ fω0 .

Indeed, the binary expansion of y(hi(b)), for any 0 ≤ i ≤ k − 1, starts with the combination ωiωi+1ωi+2 which is
different from 011 or 111. Hence, by definition, fhi(b) = fωi .

Proposition 2.2 Consider the almost step North-South like skew product F over the solenoid corresponding to the
fiber maps f0, f1 as above. Let Amax(F ) =

∩
k≥0 F k(B × R∗) be the maximal attractor of F . Then

Amax(F ) = Λ × ∆,

where Λ is the maximal attractor (solenoid attractor) of the base map h and ∆ is the compact invariant set of the
corresponding iterated function system F( f0, f1) such that the acting F on ∆ is minimal.

Proof. Consider the isotopy f̂t = (1 − t2) f̂0 + t2 f̂1, t ∈ [0, 1], on ψ(U), where f̂i = ψ ◦ fi ◦ φ−1, i = 0, 1. Then the
construction shows that

f̂t(R̂∗) ⊂ f̂0(R̂∗) ∪ f̂1(R̂∗).

Therefore,
ft(R∗) ⊂ f0(R∗) ∪ f1(R∗).

We conclude that
π(Amax(F )) = π(

∩
k≥0

F k(B × R∗)) =
∩
n≥0

Ln(R∗) = ∆,

where L(R∗) = f0(R∗) ∪ f1(R∗) and Ln(R∗) = Ln−1(L(R∗), (see (Homburg & Nassiri, 2013)).

Now, consider the ball Dn of radius 1
n2 centered at F in the space C1

p,L(X), X = B × M, of skew products over the
solenoid. This ball consists of skew products:

G : B × M → B × M, G(b, x) = (h(b), gb(x))

which satisfy

max
B

dC1 ( f ∓1
b , g∓1

b ) ≤ 1
n2 .

Also, we set C2(X) the space of all C2-maps on X.

Proposition 2.3 Consider n > 100m2. Then any G ∈ Dn ∩C2(X) satisfies the following properties:

(i) For each b ∈ B, the fiber map gb has one hyperbolic attracting fixed point p(b), one hyperbolic repelling fixed
point q(b) and saddle fixed points ri(b), for i = 1, . . . , l,.

(ii) All the attractors of the maps gb lie strictly inside R∗.

(iii) All the repellers of the maps gb lie strictly inside W, the domain of the local chart (W, φ).

(iv) All the saddles of the maps gb lie strictly inside Vi, for some i ∈ {1, ..., l}, where Vi is a compact subset which is
contained in a domain of some local chart of M, as introduced before.

(v) All the maps gb bring R∗ into itself and they are contracting on R∗, uniformly in b. In particular, gb(R∗) ⊂
int(R∗). Moreover, the map g−1

b is expanding on R∗, for all b ∈ B.
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(vi) All the inverse maps g−1
b bring W into itself and they are contracting on W uniformly in b. Moreover, the map

gb is expanding on W, for all b ∈ B.

(vii) The mappings gb and g−1
b depend on b continuously in the Di f f 1-norm.

Proof. First note that for any t ∈ (0, 1), the map ft has a unique attracting fixed point in R∗ and it is contracting on
R∗, it has a unique repelling fixed point in W and it is expanding on W. Also, it has a unique saddle in Vi, i = 1, ..., l,
and has no other fixed points. Hence, F possesses all of the properties mentioned in the proposition.

Now let G ∈ Dn ∩C2(X). We verify the property (v) for G, the other properties follow immediately. We show that
the rectangle R∗ is mapped strictly inside R∗ by gb for any b ∈ B . We use notations b(0), b(1) for any point b in B
with y(b) lies in [0, 0.011) and [0.1, 0.111), respectively.
For any x ∈ R̂∗, j = 0, 1 and i = 2, . . . ,m,

πi(̂gb( j)(x)) < πi( f̂ j(x)) + 1
n2 ≤ (1 − 1

m2n )γi−1 +
1
n2 < γi,

π1(̂gb(0)(x)) < π1( f̂0(x)) + 1
n2 ≤ (1 − 1

m2n )γm − 1
mn −

2m
n2 +

1
n2 < γ1,

π1 (̂gb(1)(x)) < π1( f̂1(x)) + 1
n2 <

1
nγm + 1 − 2

3n +
1
n2 < γ1,

where πi : Rm → R, i = 1, ...,m, are the natural projections on the ith-coordinate. The construction shows that
these inequalities hold for any yb replaced by yb( j). Note that ft = f0 = f1 outside of U. Also, these estimates imply
that

U 1
n2

( f̂b(R̂∗)) ⊂ int(R̂∗),

and
ĝb(R̂∗) ⊂ int(R̂∗),

where U 1
n2

( f̂b(R̂∗)) is a 1
n2 -neighborhood of the set f̂b(R̂∗). We conclude that

gb(R∗) ⊂ R∗.

In particular, gb is a contraction on R∗ and it has a unique attracting fixed point p(b) ∈ R∗.

In the sequel, we say that a skew product is North-South like skew product if it possesses all of the properties
mentioned above. Also, we require that

n ≥ 100m2. (12)

3. Statistical Attractors of North-South Like Almost Step Skew Products

The following theorem is needed to prove the main result.

Theorem 3.1 Let G : X → X be a North-South like skew product over the solenoid. Then

(a) The statistical attractor of G lies inside B × R∗, and is the graph of a continuous map ΓG : ΛG → R∗, where
ΛG is an invariant set of G homeomorphic to the solenoid attractor Λ of F . Under the projection

p : Astat → ΛG, (13)

the restriction G|Astat becomes conjugated to the solenoid map on ΛG:

G
Astat −→ Astat

p ↓ p ↓
ΛG −→ ΛG

h

(b) There exists an SRB measure µ∞ on X = B×M. This measure is concentrated onAstat and is precisely the pull
back of the Bernoulli measure P on Σ2

1 under the isomorphism Φ o p : Astat → Σ2
1.

This theorem is proved in the same way as Theorem 4 of (Ilyashenko & Negut, 2010), see also the proof of
Theorem 2 of (Ghane & et al., 2012). So we present only a sketch of proof.
For proof, we claim that

Amax = Astat.
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The claim and the following lemma imply statement (a) of the theorem.

Lemma 3.2 The attractor Amax is the graph of a continuous function Γ : B→ R∗.

Proof. See proposition 3 of (Ghane & et al., 2012).

Let us now prove the claim. The proof relies on the following lemma.

Lemma 3.3 For almost all (b, x) ∈ B × M, there exist k ∈ N such that Gk(b, x) ∈ B × R∗.

First, consider the following invariant sets:

Si =

∞∩
k=−∞
Gk(ΛG × Vi), i = 1, ..., l. (14)

Recall that if S is an invariant set of G then we set

W sS = {q ∈ S 2 × M; d(Gk(q), S )→ 0 as k → ∞}.

To prove the lemma, we need to show that W s(S i), i = 1, ..., l, have Lebesgue measure zero. For, we apply the
Bowen’s theorem (Bowen, 1995).

Theorem 3.4 [Bowen] Consider a C2 diffeomorphism of a compact manifold M and a hyperbolic invariant set
S of this diffeomorphism which is not a maximal attractor in its neighborhood. Then the attracting set W sS has
Lebesgue measure zero.

Now the hyperbolicity of the invariant sets

Si =

∞∩
k=−∞
Gk(ΛG × Vi), i = 1, ..., l,

follow as Proposition 4 of (Ghane & et al., 2012), see also Lemma 2 and Proposition 6 of (Ilyashenko & Negut,
2010).

Let us show that how the proof of Lemma 3.3 follows from the hyperbolicity of the invariant sets

Si =

∞∩
k=−∞
Gk(ΛG × Vi), i = 1, ..., l,

and Bowen’s theorem.

Proof. [Proof of Lemma 3.3] First, we mention that Si, i = 1, ..., l, are locally maximal hyperbolic set. Notice that
all the fiber maps gb push points away from W and Vi, i = 1, ..., l, and into R∗ or V j, for some j ∈ {1, ..., l}.
Therefore, the statement of lemma fails only for elements of the sets

R =
∞∩

k=0

G−k(ΛG × V), W s(Si), i = 1, ..., l,

where

Si =

∞∩
k=−∞
G−k(ΛG × Vi), i = 1, ..., l.

In fact, since any point whose orbit stays forever in ΛG × Vi, i = 1, ..., l, will be attracted to Si, i = 1, ..., l.
Now, we apply the Bowen’ theorem to conclude that

mes(W s(Si)) = 0, i = 1, ..., l.

Also, according to Lemma 1 of (Ilyashenko & Negut, 2010), mes(R) = 0. This terminates the proof.

Let us to verify thatAmax = Astat. By Lemma 3.3, the ω-limit sets of almost all points in ΛG × M belong toAmax.
SoAmax is the Milnor attractor of G, and thus containsAstat. Now, we show thatAmax is precisely equal toAstat.
Suppose that µ∞ is any good measure of G. For each measurable set A ⊂ ΛG, we have

G−1(A × M) = h−1(A) × M
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and therefore
G∗µ(A × M) = µ(h−1(A) × M) = µ(A × M).

By iterating it, we obtain
Gk
∗µ(A × M) = µ(A × M) = µΛG (A) = ϕ∗P(Σ2

1),

for all k. By the definition of a good measure, we conclude that

µ∞(A × M) = µΛG(A). (15)

But any good measure supported onAstat, and therefore onAmax. These facts imply that µ∞ must be push-forward
of µΛG = Φ

∗p under the isomorphism (p|Amax)−1. In particular, the support of µ∞ is the whole ofAmax.
So, the only good measure is µ∞. Its support Amax coincide with the minimal attractor Amin. Therefore, by the
inclusions between attractors, we conclude that

Amin = Astat = Amax, (16)

as desired. This proves statement (a) of Theorem 3.1. The proof of statement (b) is similar to Theorem 3 of
(Ilyashenko & Negut, 2010).

4. Large ε-Invisible Parts of Attractors for Skew Products over the Solenoid

Suppose that n ≥ 100m2, F is the almost step skew product as introduced in section 2, and G ∈ Dn. Hence,

d(F ,G) = sup
b∈B

dC1 ( f ±1
b , g±1

b ) ≤ 1
n2 . (17)

In particular, G is a North-South like skew product which satisfies the properties of Proposition 2.3.
By definition of fi, i = 0, 1,

f̂0(R̂) ∪ f̂1(R̂) ⊃ R̂, f̂i(R̂∗) ⊂ R̂∗, i = 0, 1,

where f̂i = ψ ◦ fi ◦ ψ−1 (see (Ilyashenko & Negut, 2010)). So, it is easy to see that

R ⊂ π(F i(B × R∗)) ⊂ R∗,

for each i ∈ N. This implies that
R ⊂ π(Amax) ⊂ R∗.

SinceAmax = Astat, then
R ⊂ π(Astat) ⊂ R∗.

Note that
f̂0(R̂) ∪ f̂1(R̂) ⊃ U 1

n2
R̂.

Moreover, the above inclusions are robust, this means that they remain true for any maps ĝ0 = ψ ◦ g0 ◦ ψ−1 and
ĝ1 = ψ ◦ g1 ◦ ψ−1, where (g0, g1) belongs to an open ballW of ( f0, f1) with radius 1

n2 in Di f f 1(M) × Di f f 1(M).
Therefore,

R ⊂ π(Astat(G)) ⊂ R∗.

Now, statement (1) of the main theorem follows by this fact and Theorem 3.1.
Let us prove statement (2).
Indeed we must show that the set N = π−1(ψ−1(A)) is ε − invisible for ε = 2−n, where

A = {x ∈ R̂∗|πi(x) < 1 − 1
m
, i = 1, . . . ,m},

πi : Rm → R, (x1, ..., xm) 7→ xi, i = 1, ...,m, are the natural projections, and π : B × M → M is the projection on
the fiber.

In other words, we must show that the orbits of almost all points (b, x) ∈ B × M visit N with frequency at most ε.
By lemma 3.3, we restrict attention to (b, x) ∈ B × R∗. Let U be the set of finite words of length 2n which do
not contain the two-digit sequence 10. These words have the form 0 . . . 0︸︷︷︸

s

1 . . . 1︸︷︷︸
t

, (0 ≤ s, t ≤ 2n, s + t = 2n). The

cardinality ofU is 2n + 1.
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Proposition 4.1 Let k ≥ 2n and (b, x) ∈ B × R∗ such that Gk(b, x) ∈ N. If ω = Φ+(b), then (ωk−2n . . . ωk−1) ∈ U.
Proof. To get a contradiction, suppose that j ≤ 2n is the minimum integer satisfies ωk− jωk− j+1 = 10. Then ghk− jb is
1
n2 close to f1.
Clearly, for each (x1, x2, . . . , xm) ∈ R̂∗,

π1( f̂1(x1, x2, . . . , xm)) > 1 − 4
3n
.

So
π1 (̂ghk− jb(x1, x2, . . . , xm)) > 1 − 4

3n
− 1

n2 > 1 − 2
n
.

Moreover, we have the following statements:
(i) For all (x1, x2, . . . , xm) ∈ R∗ with 1 − 1

m < xi < 1 − 2
n , i = 1, . . . ,m − 1,

πi+1( f̂ j(x1, x2, . . . , xm)) > xi(1 −
1

m2n
), j = 0, 1.

Note that the above inequality persists under linear homotopy. Hence, it holds for any fiber map fb of almost step
skew product F . Hence for each b ∈ B

πi+1 (̂gb(x1, x2, . . . , xm)) > xi(1 −
1

m2n
) − 1

n2 .

(ii) For all (x1, . . . , xm) ∈ R∗ with 1 − 1
m < xi < 1 − 2

n , i = 1, . . . ,m − 1,

π1( f̂0(x1, x2, . . . , xm)) > xm(1 − 1
m2n

) − 1
mn
− 2m

n2 .

So for each b ∈ B
π1 (̂gb(x1, x2, . . . , xm)) > xm(1 − 1

m2n
) − 1

mn
− 2m + 1

n2 .

By induction, it is easy to see that

π j( f̂ i
0( f̂1(x))) < 1 − 2

n
, f or i = j(mod m), i = 0, 1, 2, . . . , 2n, x ∈ R̂∗.

So by applying statements (i) and (ii), we conclude that the following holds:

πs(ψ ◦ π(Gk(b, x)) = πs(̂ghk−1b ◦ . . . ĝhk− j+1b ◦ ψ ◦ π ◦ Gk− j+1(b, x)) >

(1 − 1
m2n ) j(1 − 2

n ) − 1
n2

∑ j−1
t=0 (1 − 1

m2n )t − ( 1
mn +

2m
n2 )(
∑[ j

m ]−1
t=0 (1 − 1

m2n )mt) >

(1 − 1
m2n )2n(1 − 2

n ) − 1
n2

∑2n−1
t=0 (1 − 1

m2n )t − ( 1
mn +

2m
n2 )(
∑[ 2n

m ]−1
t=0 (1 − 1

m2n )mt),

for s = j (mod m), 0 ≤ j ≤ 2n, see figure 2. The limit of the right side of the last inequality is 2
m2√

e2
− 1 which is

greater than 1 − 1
m for n ≥ 100m2. This contradicts the assumptions of the proposition.

R*

∂
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f
1
(R*) : x=1-4/3n

R

...

...

..
.

..
.

x=1-1/m

y=1-1/m

A

^

^ ^

^

^

^

O

Figure 2. Invisible part of the attractor.
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The ergodicity of Bernoulli shift implies that the subwords in U are met in almost all forward sequences ω =
(ω0ω1ω2 . . .) with frequency 2−2n. But almost all sequences ω, correspond under Φ+ to almost all b ∈ B. Thus we
conclude that, for almost all b ∈ B, subwords inU are met inΦ+(b) with frequency at most (2n+1).2−2n < 2−n = ε.
This fact and the previous proposition imply that almost all orbits visit N with frequency at most ε = 2−n. Hence
N is ε- invisible, as desired.

Now we are going to prove the last statement of the main theorem. Let us, consider the North-South like skew
product G ∈ Dn(X) ∩C2(X), X = B × M, which is 1

n2 -close to F . We show that G is structurally stable in D1(X).

According to the criterion of structural stability, we need to check two things:

(1) The non-wandering set of G is hyperbolic and periodic points are dense in it (Axiom A).

(2) The stable and unstable manifolds of the non-wandering points are transversal.
The choices of F and G cause that the non-wandering set of G is the union of the invariant sets

A =
∞∩

k=0

Gk(B × R∗), R =
∞∩

k=0

G−k(ΛG ×W), Si =

∞∩
k=−∞
Gk(ΛG × Vi), i = 1, ..., l.

Now, we can apply an argument similar to Proposition 4.6 of (Ghane & et al., 2012) to conclude that A,R and
Si, i = 1, . . . , l are hyperbolic (see also Lemma 2 of (Ilyashenko & Negut, 2010)).
Also, the dynamics on A,R and Si, i = 1, . . . , l are conjugate to the Bernoulli shift and it is known that it has a
dense set of periodic points. These facts imply that statement (1) is justified.

The proof of statement (2) is similar to proof of statement (c) of Theorem 4 of (Ilyashenko & Negut, 2010).

5. Perturbations

Here, to complete the proof of the main theorem, we will show that the assertions of Theorem A hold for all nearby
diffeomorphismsH ∈ DL(X), X = B×M. We will use the approach suggested in (Ilyashenko & Negut, 2010) with
any modification.

Consider the solenoid map h which has the maximal attractor Λ (the solenoid attractor). It is a hyperbolic invariant
set with contraction coefficient λ < 0.1 and expansion coefficient µ−1 = 2.
Now we recall the concept of modified dominated splitting condition. We say that the skew product G over
the solenoid of the form (4) with contraction coefficient λ and expansion coefficient µ−1 satisfies the modified
dominated splitting condition if

max(max(λ, µ) + ∥
∂g∓1

b

∂b
∥C0(X), ∥

∂g∓1
b

∂x
∥C0(X)) =: L < min(λ−1, µ−1),

see (Ilyashenko & Negut, 2010). Now consider the almost step skew product F over the solenoid with the solenoid
map h : Λ → Λ and the fiber M, as introduced in section 2. It is a North-South like skew product such that the
bundle maps fb, b ∈ B, possess all properties mentioned in Proposition 2.3. By construction, F satisfies the
modified dominated splitting condition.

Now, we fix G ∈ Dn. We recall that G is a North-South like skew product over the solenoid. Moreover, G satisfying
the modified dominated splitting condition.

Suppose that H is any C2-diffeomorphism which is C1-close to G. Let us note that small perturbations of skew
products are not necessarily skew product anymore. However, one can show that they are conjugate to skew
products, and moreover the conjugation map satisfies a Hölder continuity property. The following theorem is cited
from (Ilyashenko & Negut, 2010).

Theorem 5.1 Consider a skew product G on X := B × M as in (4) over the solenoid map h in the base, satisfying
the modified dominated splitting condition, where B is the solid torus and M is a closed m-dimensional manifold.
Then for small enough ρ > 0, any ρ-perturbationH of G has the following properties:

a) There exists aH-invariant set Y ⊂ X and a continuous map p : Y → B such that the diagram

H
Y −→ Y
p ↓ p ↓
ΛG −→ ΛG

h
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commutes, where ΛG is the solenoid attractor corresponding to G. Moreover, the map

K : Y → ΛG × M, K(b, x) = (p(b, x), x)

is a homeomorphism.

b) The fibers p−1(b) are Lipschitz close to vertical fibers and Hölder continuous in b. Moreover, the map K−1 is
also Hölder continuous.

As we have mentioned before, H is a priori not a skew product anymore. However, letting H = K ◦ H|Y ◦ K−1,
statement (a) of the above theorem implies that

H : ΛG × M → ΛG × M

is indeed a skew product:
H(b, x) = (h(b), hb(x)).

One can then study the dynamical properties of H|Y by studying the dynamical properties of its conjugate skew
product H.
The fiber maps hb of the skew product H are C1-close to those of the skew product G, in the following sense:

dC1 (h∓1
b , g∓1

b ) ≤ O(ρ).

These facts and the inclusion
G(B × R∗) ⊂ B × R∗

imply that
H(B × R∗) ⊂ B × R∗, H(B × R∗) ⊂ B × R∗,

where the cubes R and R∗ are introduced in section 2.

Consider the maximal attractors ofH|B × R∗ and H|B × R∗:

Amax(H) =
∞∩

k=0

Hk(B × R∗), Amax(H) =
∞∩

k=0

Hk(B × R∗),

respectively. These attractors are connected, since B × R∗ is connected. Let us mention that if the fiber M is
1-dimensional, M := S 1, then the connectivity of π(Amax(H)) implies that it must be an arc without any holes.
However, in general case, π(Amax(H)) may have some holes. In this setting, we need to apply Theorem 5.1 and
statement (1) of Theorem A to conclude that

R ⊂ π(Amax(H)) ⊂ R∗,

and therefore
R ⊂ π(Amax(H)) ⊂ R∗,

provided that ρ > 0 is small enough.
The rest arguments goes roughly as follows. The hyperbolicity of Amax(H) will be provided by the structural
stability of the hyperbolic attractors. Now, since H is a C2-diffeomorphism, a theorem in (Gorodetsky, 1999)
yields the following equation

Amax(H) = Astat(H).

Hence, statement (1) of Theorem A is proved for all nearby diffeomorphisms.

To prove statement (2), let µG∞ denote the SRB measure for G, which is described in Theorem 3.1. By statement
(b) of Theorem 3.1 and Proposition 1 of (Gorodetsky, 1999), we conclude that

µG∞(N) ≤ ε.

The Ruelle theorem on the differentiability of the SRB measures (Ruelle, 1997) implies that any small perturbation
H of G has an SRB measure µH∞ , and that this measure depends differentiably on H . In particular, it follows that
forH close enough to G we will still have

µH∞ (N) ≤ ε.
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By applying Proposition 1 of (Gorodetsky, 1999) again, it follows that N is ε-invisible forH .

6. Natural Extensions

This section is devoted to prove Corollary B. We recall that E(M) is the space of all skew product maps acting on
S 1 × M of the form

F : S 1 × M → S 1 × M, F(y, x) = (g(y), fy(x)),

where g(y) = ky, k ≥ 2, is an expanding circle map and fiber maps x 7→ fy(x) are C1- diffeomorphism defined on a
closed manifold M. We equip E(M) by the metric

d(F,G) = sup
y∈S 1

dC1 ( f ±1
y , g±1

y ).

For each F ∈ E(M), we consider its natural extension as the following form

F : B × M → B × M, (b, x)→ (h(b), fy(x)),

where b = (y, z) belongs to the solid torus B := S 1 × D and x ∈ M. Then F is a skew product map over the
solenoid. Also we observe that the fiber maps fy do not depend on z. This permits us to consider F as a skew
product map over g with fiber D × M. Let q be the projection map along D,

q : B × M → S 1 × M, q(y, z, x) = (y, x).

Then
q ◦ F = F ◦ q (18)

Note that in (Homburg, 2012), the author establishes some facts on extension of skew product endomorphisms to
skew product maps over the solenoid.

Let us take the skew product map F ∈ E(M) acting on S 1 ×M and its natural extension F such that the fiber maps
fy defined by (11). Then F is an almost step North-South like skew product map which is introduced in section 2.
Therefore we can apply Theorem 3.1 for F to conclude that it has a statistical attractorAstat(F ) which is equal to
Amax(F ) =

∩∞
k=0 F k(B×R∗). Also it is the graph of a continuous function ΓF . Moreover, there is an SRB measure

µ∞ on B × M which is concentrated onAmax(F ).
The equation (16) and these facts imply that F(S 1 × R∗) ⊂ (S 1 × R∗), hence we can consider

Amax(F) =
∞∩

k=0

Fk(S 1 × R∗).

Now, we show that the maximal attractor Amax(F) is robustly topologically mixing. Consider
∑+

2 = {0, 1}N en-
dowed with the product topology and let σ :

∑+
2 →

∑+
2 be the left shift.

The base map g (or some iterate of it) admits an invariant Cantor set on which the dynamics is topologically con-
jugate to σ :

∑+
2 →

∑+
2 . Therefore the skew product F is also conjugate to a step skew product over

∑+
2 with fiber

maps fi, i = 0, 1. By Proposition 2.2, the maximal attractorAmax(F ) = Λ × ∆. Therefore,

Amax(F) = q(Amax(F )) = q(Λ × ∆) = S 1 × ∆.

This observations and Lemma 2.1 imply that Amax(F) is robustly topologically mixing.
Indeed, take an open set U in

∑+
2 ×∆. The construction in Lemma 2.1 gives that

∪
n∈N Fn(U) is open and dense in∑+

2 ×∆. Now take open sets U,V ⊂ S 1 ×∆. As g is expanding, some iterate of U under F intersects
∑+

2 ×∆. Again
as g is expanding, a higher iterate will intersect V , establishing topological mixing of F : S 1 × ∆→ S 1 × ∆.

Also statement (1) of Theorem A and equation (18) imply that

S 1 × R ⊂ Amax(F).

In particular, if we set µ := q∗(µ∞) then µ is an SRB measure for F with S upp(µ) = Amax(F).
Let us consider an open ball Dn ⊂ E(M) with the center F and radius 1

n2 . Since every G ∈ Dn ∩ C2(S 1 × M)
has a natural extension G close to F , then G satisfies all properties mentioned above. This terminates the proof of
Corollary B.
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