
Journal of Mathematics Research; Vol. 7, No. 3; 2015
ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

Domain Decomposition Modified with Characteristic Finite
Element Method for Numerical Simulation of Semiconductor

Transient Problem of Heat Conduction
Yirang Yuan1, Luo Chang1, Changfeng Li1,2 & Tongjun Sun1

1 Institute of Mathematics, Shandong University, Jinan, China
2 School of Economics, Shandong University, Jinan, China

Correspondence: Yirang Yuan, Institute of Mathematics, Shandong University, Jinan, ShandaNanlu 27, China.
E-mail: yryuan@sdu.edu.cn

Received: May 15, 2015 Accepted: June 5, 2015 Online Published: July 11, 2015

doi:10.5539/jmr.v7n3p61 URL: http://dx.doi.org/10.5539/jmr.v7n3p61

The research is financed by the National Natural Science Foundation of China (Grant Nos£11101244, 11271231),
the National Tackling Key Program (Grant No. 20050200069), and the Doctorate Foundation of the Ministry of
Education of China (Grant No. 20030422047)

Abstract

A characteristic finite element algorithm based on domain decomposition is structured in this paper to approximate
numerically multi-dimensional semiconductor transient problems of heat conduction. Finite element approxima-
tion is presented for the electric field potential equation, and a domain decomposition discretization with charac-
teristic finite element is put forward for the electron concentration equation, hole concentration equation and heat
conductor equation. An optimal order error estimate in L2 norm is derived for the coupled system by using some
techniques such as variation, domain decomposition, the method of characteristics, the principle of energy, negative
norm estimates, induction hypothesis, prior estimates theory and other techniques of partial differential equations.
Finally, experimental data consistent with theoretical convergence rate are shown. This type of numerical method
is of high computational efficiency and can successfully solve this international problem.

Keywords: Numerical simulation of semiconductor device, domain decomposition, characteristic finite element,
optimal order estimates in L2 norm, numerical experiments

1. Introduction

Because of the great development of semiconductor device industry described by an initial-boundary value system
of diffusion type of nonlinear partial differential equations, numerical simulation must be of high order accuracy
and quite efficient, and traditional numerical methods are not considered in actual computation. Then some new
modern discretization techniques are introduced to solve multi-dimensional problems with complicated and irreg-
ular geometric regions (He & Wei,1989; Shi, 2002; Yuan, 2009, 2013).

Numerical simulation of semiconductor device begins at the use of the sequence iteration presented Gummel
successfully in 1964 (Gummel, 1964). Considering actual computations, Douglas and Yuan put forward a useful
finite difference method for simplified one-dimensional and two-dimensional models (constant coefficient, without
consideration of temperature) and give the precise theoretical results firstly (Douglas & Yuan, 1987; Yuan, Ding
& Yang, 1982). Then Yuan applies the method of characteristics respectively with finite element and mixed finite
element to solve two-dimensional problems with variable coefficients and gives optimal order error in H1 norm
and L2 norm (Yuan, 1991, 1993, 1991). In view of applications, Yuan discusses the effect of heat conduction to
semiconductor device and gives the characteristic finite difference and upwind fractional steps finite difference of
three dimensional problem on uniform partition and the convergence rate in discrete l2 norm (Yuan, 1996, 2000,
2005, 2008). In numerical simulation of modern semiconductor device, the computation scale is huge, and the
discretization consists of tens of thousand or several millions nodes, so a powerful parallel tool is introduced
(He & Wei,1989; Shi, 2002; Yuan, 2009, 2013). For the simplest parabolic equation, Dawson, Dupont and Du
take the lead in discussing Galerkin domain decomposition method and theoretical analysis (Dawson & Dupont,

61



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 3; 2015

1992, 1994; Dawson, Du & Dupont, 1991; Dawson & Du, 1990). On the discussion how to simulate three-
dimensional semiconductor transient problem of heat conduction efficiently, the authors state a type of domain
decomposition with modified characteristic finite element and analyze the convergence and optimal order estimates
in l2 norm by using the techniques such as variation, domain decomposition, characteristics, energy norm, negative
norm estimates, mathematical induction hypothesis and prior estimate theory and technique of partial differential
equation. Numerical data of experimental example are shown consistent with theoretical convergence rate and
by which it illustrates that this procedure is more efficient and applied successfully to solve international famous
problems (He & Wei,1989; Shi, 2002; Yuan, 2009, 2013; Bank, et al., 1985; Jerome, 1994; Seidmann, 1986;
Lou, 1995). It is most valuable in model analysis, numerical method, principle research, theory and application of
semiconductor device simulation.

This paper is organized as follows. In the first section, mathematical model, physical interpretation and some
related research are introduced. Some notations and primary work are given in the second section. In the third
section, the authors present the procedures of domain decomposition and modified characteristic finite element. In
the fourth section, the authors attempt to give convergence analysis. We examine numerically the accuracy and
parallelism of the scheme by an example. Some conclusions and discussions are stated in the last section. In this
paper M and ε express general positive constant and general positive small constant, respectively, and they have
different meanings at different places.

2. Mathematical Model and Physical Background

The mathematical model of semiconductor transient problem of heat conduction is described by an initial boundary
value system of four partial differential equations (Yuan, 1996, 2000, 2005, 2008; Bank, et al., 1985; Jerome,
1994; Seidmann, 1986; Lou, 1995), where the potential is defined by an elliptic equation, the concentrations of
electron and hole are defined by convection-diffusion equations and the temperature is defined by a heat conduction
equation. Electronic field potential is generated by the intensity in the electron equation, the hole concentration
equation and the heat conduction equation, and becomes a system with initial and boundary conditions, which is
defined on three variables spatial domain Ω as follows,

−∆ψ = α(p − e + N(X)), X = (x1, x2, x3)T ∈ Ω, t ∈ J = (0, T̄ ], (1)

∂e
∂t
= ∇ · (De(X)∇e − µe(X)∇ψ) − R1(e, p,T ), (X, t) ∈ Ω × J, (2)

∂p
∂t
= ∇ ·

(
Dp(X)∇p + µp(X)p∇ψ

)
− R2(e, p,T ), (X, t) ∈ Ω × J, (3)

ρ(X)
∂T
∂t
− ∆T =

{
(Dp(X)∇p + µp(X)p∇ψ) − (De(X)∇e − µe(X)e∇ψ)

}
· ∇ψ, (X, t) ∈ Ω × J, (4)

where the electronic field potential ψ, electron concentration e, hole concentration p, and temperature T are
unknown functions. All the coefficients of (1)-(4) are greater than a positive number and less than another
positive number. The number α = q/ε denotes the quotient of two positive constants, electronic load q and
dielectric coefficient ε. The relation of diffusion coefficient Ds(X) and mobility ratio µs(X) is formulated by
Ds(X) = UTµs(X)(s = e, p), where UT means the quantity of heat (unit: volt). N(X), a given function, is the dif-
ference of the donor impurity concentration ND(X) and the acceptor impurity concentration NA(X). The values of
N(X) vary quickly as X lies nearby semiconductor knot P-N. Ri(e, p,T )(i = 1, 2) represents the recombination rate
influenced by the electron concentration, the hole concentration and the temperature. ρ = ρ(X) is the coefficient of
heat conduction. Let gradient operator and Laplace operator of a function be denoted by ∇ = ( ∂

∂x1
, ∂
∂x2
, ∂
∂x3

)T and

∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
.

Initial-value conditions are stated as follows,

e(X, 0) = e0(X), p(X, 0) = p0(X), T (X, 0) = T0(X), X ∈ Ω. (5)

Boundary-value conditions are defined by

∂ψ

∂γ

∣∣∣∣∣
∂Ω

=
∂e
∂γ

∣∣∣∣∣
∂Ω

=
∂p
∂γ

∣∣∣∣∣
∂Ω

=
∂T
∂γ

∣∣∣∣∣
∂Ω

= 0, (X, t) ∈ ∂Ω × J, (6)

where ∂Ω denotes the boundary of Ω, and γ is the outward unit normal vector of ∂Ω.
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Neumann boundary value conditions determine a family of electric field potential functions differed by a constant.
So an additional condition is supplied to get a unique formulation∫

Ω

ψdX = 0, t ∈ J, (7a)

A compatibility condition is given, ∫
Ω

(p − e + N) dX = 0, t ∈ J. (7b)

In general, the problem (1)-(7) is supposed to be positive definite,

(C) 0 < D∗ ≤ Ds(X) ≤ D∗, 0 < µ∗ ≤ µs(X) ≤ µ∗, s = e, p; 0 < ρ∗ ≤ ρ(X) ≤ ρ∗, (8)

where D∗, D∗, µ∗, µ∗, ρ∗ and ρ∗ are positive constants. Ri(e, p,T )(i = 1, 2) are Lipschitz continuous in ε0-neighbor
centered by (e, p, T ).

Assume that exact solutions of (1)-(7) are regular,

(R) ψ ∈ L∞(J; Wk+1(Ω)), e, p,T ∈ L∞(J; W l+1(Ω)),
∂2e
∂τ2

e
,
∂2 p
∂τ2

p
,
∂2T
∂t2 ∈ L∞(J; L2(Ω)). (9)

3. Notations and Preparations

For simplification, let the computational domain Ω = {(x1, x2, x3)|0 < x1 < 1, 0 < x2 < 1, 0 < x3 < 1} be
decomposed into two cuboids Ω1 = {(x1, x2, x3)|0 < x1 < 1/2, 0 < x2 < 1, 0 < x3 < 1}, Ω2 = {(x1, x2, x3)|1/2 <
x1 < 1, 0 < x2 < 1, 0 < x3 < 1}, whose interior boundary is Γ = {(x1, x2, x3)|x1 = 1/2, 0 < x2 < 1, 0 < x3 < 1},
as in Fig. 1. We use approximation of derivatives of delta function at several points in this work, and for further

x2 2

  0     (1/2,0,0)                      x1

(1/2,1,1)

x3

Figure 1. Sketch of domain decomposition partition Ω1,Ω2, Γ

reference we define two special functions Φ2 and Φ4 as follows (Dawson & Dupont, 1992, 1994; Dawson, Du &
Dupont, 1991; Dawson & Du, 1990).

Φ2(x1) =


1 − x1, 0 ≤ x1 ≤ 1,
x1 + 1, −1 ≤ x1 ≤ 0,
0, otherwise.

(10a)

Φ4(x1) =


(x1 − 2)/12, 1 ≤ x1 ≤ 2,
−5x1/4 + 7/6, 0 ≤ x1 ≤ 1,
5x1/4 + 7/6, −1 ≤ x1 ≤ 0,
−(x1 + 2)/12, −2 ≤ x1 ≤ −1,
0, otherwise.

(10b)

Note that if p(x1) is a polynomial of degree at most one, then∫ ∞

−∞
p(x1)Φ2(x1)dx1 = p(0), (11a)
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and if p(x1) is a polynomial of degree at most three, then∫ ∞

−∞
p(x1)Φ4(x1)dx1 = p(0). (11b)

Definition 1: For any number H ∈ (0, 1
2 ), define a normalized function

Φ(x1) = Φm((x1 − 1/2)/H)/H, m = 2, 4. (12)

Let Nh, j be a finite-dimensional finite element space H1(Ω j)( j = 1, 2), and let Nh(Ω) be a finite-dimensional finite
element subspace of l degree of L2(Ω). Moreover, if a function v comes from Nh, then v|Ω j must belong to Nh, j.
Note that a given function v ∈ Nh(Ω) has a well-defined jump [v] on Γ,

[v]( 1
2 ,x2,x3) = v(

1
2
+ 0, x2, x3) − v(

1
2
− 0, x2, x3). (13)

Definition 2: Define a bilinear mapping D̄s(u, v),

D̄s(u, v) =
∫
Ω1∪Ω2

Ds(X)∇u · ∇vdx1dx2dx3 + λs

∫
Ω1∪Ω2

uvdx1dx2dx3, s = e, p,T, (14)

where u, v ∈ H1(Ω j), j = 1, 2, and Ds(X)(s = e, p) are all positive definite functions, DT = 1, and λs is a positive
constant.
Definition 3: An integral operator approximating normal derivative at interior boundary is defined as follows

B(ψ)(
1
2
, x2, x3) = −

∫ 1

0
Φ′(x1)ψ(x1, x2, x3)dx1, (15)

where Φ formulated by (12) is used.

Let (·, ·) denote a product inner in L2(Ω1 ∪ Ω2), and omit the subscript notation (ψ, ρ) = (ψ, ρ)Ω as Ω1 ∪ Ω2 = Ω.
Consider a function ψ of H1(Ω1) and H1(Ω2), and give a special norm,

|||ψ|||2s = D̄s(ψ, ψ) + H−1||Ds[ψ]||2L2(Γ), s = e, p,T. (16)

Note

(D(x1, x2, x3)B(ψ), [ψ])Γ = −
∫ 1

0

∫ 1

0
D(

1
2
, x2, x3)

∫ 1

0
Φ′(x1)ψ(x1, x2, x3)dx1[ψ](

1
2
, x2, x3)dx2dx3,∫ 1

0
Φ′(x1)ψ(x1, x2, x3)dx1 = ψ(x1, x2, x3)Φ(x1)|10 −

∫ 1

0
Φ(x1)ψx1 (x1, x2, x3)dx1

= − 1
H

[ψ](
1
2
, x2, x3) −

∫ 1

0
Φ(x1)ψx1 (x1, x2, x3)dx1,

we have

(D(x1, x2, x3)B(ψ), [ψ])Γ =
1
H

∫ 1

0

∫ 1

0
D(

1
2
, x2, x3)[ψ]2(

1
2
, x2, x3)dx2dx3

+

∫ 1

0

∫ 1

0
D(

1
2
, x2, x3)

∫ 1

0
Φ(x1)ψx1 (x1, x2, x3)dx1[ψ](

1
2
, x2, x3)dx2dx3.

(17)

The second term is formulated in another expression,∫ 1

0

∫ 1

0
D1/2(

1
2
, x2, x3)

∫ 1
2+H

1
2−H

D1/2(
1
2
, x2, x3)Φ(x1)ψx1 (x1, x2, x3)dx1[ψ](

1
2
, x2, x3)dx2dx3

≤
∫ 1

0

∫ 1

0
D1/2(

1
2
, x2, x3)

( ∫ 1

0
Φ2(x1)dx1

)1/2( ∫ 1
2+H

1
2−H

D(
1
2
, x2, x3)ψ2

x1
(x1, x2, x3)dx1

)1/2

· [ψ](
1
2
, x2, x3)dx2dx3

≤
(

2
3H

)1/2 (∫ 1

0

∫ 1

0
D(

1
2
, x2, x3)[ψ]2(

1
2
, x2, x3)dx2dx3

)1/2

·
∫ 1

0

∫ 1

0

∫ 1
2+H

1
2−H

D(
1
2
, x2, x3)ψ2

x1
(x1, x2, x3)dx1dx2dx3

1/2

.
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Note that the value of D(x1, x2, x3) at x1 = 1/2 is defined by

D(
1
2
, x2, x3) = D(x1, x2, x3) + (x1 −

1
2

)
∂D
∂x1

(ξ1(x1), x2, x3),

then we have ∫ 1

0

∫ 1

0

∫ 1
2+H

1
2−H

D(
1
2
, x2, x3)ψ2

x1
(x1, x2, x3)dx1dx2dx3

=

∫ 1

0

∫ 1

0

∫ 1
2+H

1
2−H

[D(x1, x2, x3) + (x1 −
1
2

)
∂D
∂x1

(ξ1(x1), x2, x3)]ψ2
x1

(x1, x2, x3)dx1dx2dx3

≤ (1 + M∗H)
∫ 1

0

∫ 1

0

∫ 1
2+H

1
2−H

D(x1, x2, x3)ψ2
x1

(x1, x2, x3)dx1dx2dx3,

where M∗ = max
x1 ∈ ( 1

2 − H, 1
2 + H)

(x2, x3) ∈ (0, 1) × (0, 1)

∣∣∣∣ ∂D
∂x1

(ξ(x1),x2,x3)
∣∣∣∣

D(x1,x2,x3) .

Continue to find a positive constant M0 such that

D̄s(ψ, ψ) + (DsB(ψ), [ψ])Γ ≥
1

M0
|||ψ|||2s , s = e, p,T, (18a)

or
|||ψ|||2s ≤ M0

{
D̄s(ψ, ψ) + (DsB(ψ), [ψ])Γ

}
, s = e, p,T. (18b)

Similarly, we have the following estimates for 0 ≤ t ≤ T ,

||B(ψ)||2L2(Γ) ≤ M1H−3||ψ||20, (19a)

||B(ψ)||L2(Γ) ≤ M2H−1||ψ||0,∞, (19b)∣∣∣∣∣∣∣∣∣∣∂u(·, t)
∂γ

− B(u)(·, t)
∣∣∣∣∣∣∣∣∣∣

L2(Γ)
≤ M3Hm, (19c)

where M1,M2,M3 are positive constants, m = 2, 4, and ∂u
∂γ

denotes the normal derivative of u across interior
boundary Γ.

4. Domain Decomposition Scheme Modified with Characteristic Finite Element

The parallel procedures are illustrated in this section, which consists of a finite element scheme for the electric
field potential and a domain decomposition scheme modified with characteristics for the electron concentration,
hole concentration and temperature. Firstly, rewrite the potential equation (1),

(∇ψ,∇v) = α (p − e + N, v) , ∀v ∈ H1(Ω), t ∈ J, (20a)
(ψ, 1) = 0. (20b)

Secondly, (2)-(4) are reformulated as follows

∂e
∂t
= ∇ · (De(X)∇e) + µeu · ∇e + αµee (p − e + N) + eu · ∇µe − R1(e, p,T ), (X, t) ∈ Ω × J, (21a)

∂p
∂t
= ∇ ·

(
Dp(X)∇p

)
− µpu · ∇p − αµp p (p − e + N) − pu · ∇µp − R2(e, p,T ), (X, t) ∈ Ω × J, (21b)

ρ(X)
∂T
∂t
= ∇ · (∇T ) −

{
(Dp(X)∇p − µp(X)pu) − (De(X)∇e + µe(X)eu)

}
· u, (X, t) ∈ Ω × J, (21c)

where u = ∇ψ.

Let Wh = Whψ denote a finite element space of k degree, and let hψ be the partition step, then we have

inf
vh∈Wh

||v − vh||L2(Ω) ≤ M ||v||k+1 hk+1
ψ . (22)
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Noting that the electric field potential changes very slow with respect to t, we can adopt a large step in its calcula-
tions. While in the computations of the electron concentration, hole concentration and temperature small steps are
adopted. Some notations are given as follows, ∆tc, time step of the concentration equation, ∆tψ, time step of the
potential equation, j = ∆tψ/∆tc, tn = n∆tc, tm = m∆tψ, ψn = ψ(tn), and ψm = ψ(tm). For a potential function ψ(X, t),
define a linear extrapolation Eψn of the values at the closest two time levels to tn,

Eψn =

{
ψ0, tn ≤ t1
(1 + γ/ j)ψm − γ/ jψm−1, tm < tn < tm+1, tn = tm + γ∆tc.

where the subscripts correspond to potential time levels, superscripts to concentration time levels. The extrapola-
tion can be applied for the vector function u = −∇ψ, that is to say Eu is defined similarly to Eψ and has some same
properties.

Electric field potential equation (20) is approximated by the following finite element scheme(∇ψh,m,∇vh
)
= α

(
ph,m − eh,m + Nm, vh

)
, ∀vh ∈ Wh, (23a)(

ψh,m, 1
)
= 0. (23b)

Then the gradient of potential is computed by Uh,m = −∇ψh,m.

The electron concentration equation (2), hole concentration equation (3) and heat conduction equation (4) are
considered. Multiply them by ω ∈ Nh(Ω), apply integration by parts, then we have weak forms of domain decom-
position as follows(∂e

∂t
, ω

)
Ω −

(
µeu · ∇e, ω)Ω +

(
De∇e,∇ω)

Ω +
(
De

∂e
∂γ
, [ω]

)
Γ −

(
eu · ∇µe, ω

)
Ω

= α
(
µee(p − e + N), ω

)
Ω −

(
R1(e, p,T ), ω

)
Ω, ∀ω ∈ Nh(Ω), (24a)(∂p

∂t
, ω

)
Ω +

(
µpu · ∇p, ω)Ω +

(
Dp∇p,∇ω)

Ω +
(
Dp

∂p
∂γ
, [ω]

)
Γ +

(
pu · ∇µp, ω

)
Ω

= −α(µp p(p − e + N), ω
)
Ω −

(
R2(e, p,T ), ω

)
Ω, ∀ω ∈ Nh(Ω), (24b)(

ρ
∂T
∂t
, ω

)
Ω −

(∇T,∇ω)Ω +
(∂T
∂γ

, [ω]
)
Γ

=
([

(Dp∇p + µp p∇ψ) − (De∇e − µee∇ψ)
] · ∇ψ,ω)

Ω, ∀ω ∈ Nh(Ω). (24c)

Noting that the flow moves essentially along the characteristics, we apply a modified procedure of characteristics
for the first-order hyperbolic part of (2) and (3) to overcome numerical dispersion and oscillation. This kind of
method has a high order accuracy and a fine stability in numerical simulation and a large time step can be adopted
(Ewing 1983; Ewing, Russell & Wheeler, 1984; Douglas & Russell, 1982; Russell, 1985; Douglas & Yuan, 1986;
Ewing, Yuan & Li, 1989). Let τ = τ(X, t) denote the unit vector in characteristic direction (−µeu1,−µeu2,−µeu3, 1)

and let τp = τp(X, t) be the unit vector in (µpu1, µpu2, µpu3, 1)-direction. Let Φs =

[
1 + µ2

s

∣∣∣u∣∣∣2]1/2
, s = e, p, and

compute the characteristic directional derivative by

Φe
∂

∂τe
=
∂

∂t
− µeu · ∇, Φp

∂

∂τp
=
∂

∂t
+ µpu · ∇.

Then (24a) and (24b) are changed into(
Φe

∂e
∂τe

, ω
)
Ω +

(
De∇e,∇ω)

Ω +
(
De

∂e
∂γ
, [ω]

)
Γ −

(
eu · ∇µe, ω

)
Ω

= α
(
µee(p − e + N), ω

)
Ω −

(
R1(e, p,T ), ω

)
Ω, ∀ω ∈ Nh(Ω), (25a)(

Φp
∂p
∂τp

, ω
)
Ω +

(
Dp∇p,∇ω)

Ω +
(
Dp

∂p
∂γ
, [ω]

)
Γ +

(
pu · ∇µp, ω

)
Ω

= −α(µp p(p − e + N), ω
)
Ω −

(
R2(e, p,T ), ω

)
Ω, ∀ω ∈ Nh(Ω). (25b)

Approximate ∂en+1

∂τe
= ∂e

∂τe
(X, tn+1) by a backward difference quotient in τe-direction,

∂en+1

∂τe
(X) ≈

en+1 − en(X + µeun+1∆t)
∆t(1 + µ2

e |un+1|2)1/2 ,
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and approximate ∂pn+1

∂τp
(X) in τp,

∂pn+1

∂τp
(X) ≈

pn+1 − pn(X − µpun+1∆t)
∆t(1 + µ2

p|un+1|2)1/2 .

Then the procedures of domain decomposition with characteristic finite element are stated as follows to approxi-
mate the concentrations (25),

(en+1
h − ên

h

∆tc
, ωh

)
Ω +

(
De∇en+1

h ,∇ωh
)
Ω +

(
DeB(en

h), [ωh]
)
Γ

= α
(
µeen

h( p̂n
h − ên

h + N), ωh
)
Ω +

(
ên

hEUn+1
h · ∇µe, ωh

)
Ω −

(
R1(ên

h, p̂n
h,T

n
h ), ωh

)
Ω,∀ωh ∈ Nh(Ω), (26a)( pn+1

h − p̂n
h

∆tc
, ωh

)
Ω +

(
Dp∇pn+1

h ,∇ωh
)
Ω +

(
DpB(pn

h), [ωh]
)
Γ

= −α(µp pn
h(p̂n

h − ên
h + N), ωh

)
Ω −

(
p̂n

hEUn+1
h · ∇µp, ωh

)
Ω −

(
R2(ên

h, p̂n
h,T

n
h ), ωh

)
Ω,∀ωh ∈ Nh(Ω), (26b)

where ên
h = en

h(X̂n
e ), X̂n

e = X + µeEUn+1
h ∆tc, p̂n

h = pn
h(X̂n

p), X̂n
p = X − µpEUn+1

h ∆tc, Uh,m = −∇ψh,m, and Uh,m−1 =

−∇ψh,m−1. Noting that the values of X̂n
e and X̂n

e maybe lie outside the boundary ∂Ω, while we can use the reflection
of the boundary because of Neumann conditions (6) and define the values of ên

h(X̂n
e ) and p̂n

h(X̂n
p) (Douglas & Yuan,

1986; Ewing, Yuan & Li, 1989).

Similarly, the heat conduction equation is discretized by the method of domain decomposition with finite element,

(
ρ

T n+1
h − T n

h

∆t
, ωh

)
Ω +

(∇T n+1
h ,∇ωh

)
Ω +

(
B(T n

h ), [ωh]
)
Γ

=
([

(Dp∇pn
h − µp pn

hEUn+1
h ) − (De∇en

h + µeen
hEUn+1

h )
] · EUn+1

h , ωh
)
Ω,∀ωh ∈ Nh(Ω).

(26c)

The program works for a time step as follows. Firstly, given the initial approximation {e0
h, p0

h,T
0
h }, {ψh,0,Uh,0} is

computed by the finite element scheme (23). Secondly, {e1
h, p1

h,T
1
h }, {e2

h, p2
h,T

2
h }, · · · , {ei

h, pi
h,T

i
h} are computed

in parallel by the domain decomposition scheme with finite element (26). It continues to get {ψh,1,Uh,1} by the
values {e j

h, p j
h,T

j
h} = {eh,1, ph,1,Th,1} and (23), and as a result, the solutions {e j+1

h , p j+2
h ,T j+1

h },· · · , {eh,2, ph,2,Th,2} are
obtained in parallel by (26). Finally, numerical solutions can be shown after a series of above computation and
they exist and are sole by the positive definite condition (C).

5. Convergence Analysis

Several subsidiary elliptic projections are introduced first in this section, and let {ψ̃} : J → Nh be defined on
J = (0,T ], (

∇(ψ − ψ̃),∇vh

)
= 0, ∀vh ∈ Wh, (27a)(

ψ − ψ̃, 1
)
= 0. (27b)

Let θ = ψ− ψ̃h and η = ψh− ψ̃h be error functions and they are estimated as follows (Ciarlet, 1978; Wheeler, 1973),

||θ||0 + hψ||θ||1 ≤ M||ψ||k+1hk+1
ψ , (28a)∣∣∣∣∣∣∣∣∣∣∂θ∂t

∣∣∣∣∣∣∣∣∣∣
0
+ hψ

∣∣∣∣∣∣∣∣∣∣∂θ∂t

∣∣∣∣∣∣∣∣∣∣
1
≤ M

{
||ψ||k+1 +

∣∣∣∣∣∣∣∣∣∣∂ψ∂t

∣∣∣∣∣∣∣∣∣∣
k+1

}
hk+1
ψ . (28b)

Define elliptic mapping {ẽ, p̃, T̃ } : J → Nh × Nh × Nh as follows,

D̄e(e(·, t) − ẽ(·, t), ωh) + λe(e(·, t) − ẽ(·, t), ωh) = 0, ∀ωh ∈ Nh, (29a)
D̄p(p(·, t) − p̃(·, t), ωh) + λp(p(·, t) − p̃(·, t), ωh) = 0, ∀ωh ∈ Nh, (29b)
D̄T (T (·, t) − T̃ (·, t), ωh) + λT (T (·, t) − T̃ (·, t), ωh) = 0, ∀ωh ∈ Nh, (29c)

where the elliptic operator is coercive in H1(Ω) for sufficiently large constant λe, λp and λT .

Initial approximation is given by
e0

h = ẽ(0), p0
h = p̃(0), T 0

h = T̃ (0). (30)
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Introduce error functions denoted by ξe = eh − ẽ, ζe = e − ẽ, ξp = ph − p̃, ζp = p − p̃, π = Th − T̃ and σ = T − T̃ .
By Galerkin method (Ciarlet, 1978; Wheeler, 1973),

||ζe||0 + hc||ζe||1 ≤ M||e||l+1hl+1
c , (31a)

||ζp||0 + hc||ζp||1 ≤ M||p||l+1hl+1
c , (31b)

||σ||0 + hc||σ||1 ≤ M||T ||l+1hl+1
c , (31c)

∣∣∣∣∣∣∣∣∣∣∂ζe

∂t

∣∣∣∣∣∣∣∣∣∣
0
+ hc

∣∣∣∣∣∣∣∣∣∣∂ζe

∂t

∣∣∣∣∣∣∣∣∣∣
1
≤ M

{
||e||l+1 +

∣∣∣∣∣∣∣∣∣∣∂e
∂t

∣∣∣∣∣∣∣∣∣∣
l+1

}
hl+1

c , (32a)∣∣∣∣∣∣
∣∣∣∣∣∣∂ζp

∂t

∣∣∣∣∣∣
∣∣∣∣∣∣
0
+ hc

∣∣∣∣∣∣
∣∣∣∣∣∣∂ζp

∂t

∣∣∣∣∣∣
∣∣∣∣∣∣
1
≤ M

{
||p||l+1 +

∣∣∣∣∣∣∣∣∣∣∂p
∂t

∣∣∣∣∣∣∣∣∣∣
l+1

}
hl+1

c , (32b)∣∣∣∣∣∣∣∣∣∣∂σ∂t

∣∣∣∣∣∣∣∣∣∣
0
+ hc

∣∣∣∣∣∣∣∣∣∣∂σ∂t

∣∣∣∣∣∣∣∣∣∣
1
≤ M

{
||T ||l+1 +

∣∣∣∣∣∣∣∣∣∣∂T
∂t

∣∣∣∣∣∣∣∣∣∣
l+1

}
hl+1

c , (32c)

where Ω = Ω1 ∪Ω2, and hc denotes the spacial step of finite element space Nh(Ω).
Theorem 1 Suppose that exact solutions of (1)-(7) are suitably regular, ψ ∈ L∞(J; Wk+1(Ω)), e, p,T ∈ L∞(J; W l+1

(Ω)), ∂2e
∂τ2

e
, ∂

2 p
∂τ2

p
, ∂

2T
∂t2 ∈ L∞(J; L∞(Ω)). Adopt the parallel procedure modified characteristic finite element (23) and

(26) on Ω1 and Ω2, and suppose that the relation of partition parameters is

∆t = O(h2
c), hψ = O(hc), ∆tc ≤ M−1

1 H2, hl+1
c = o(H), (33)

where M1 is a positive constant and k ≥ 1 and l ≥ 1 are the indexes of finite element space. We have

||ψ − ψh||L̄∞(J;W) + ||e − eh||L̄∞(J;L2(Ω)) + ||p − ph||L̄∞(J;L2(Ω)) + ||T − Th||L̄∞(J;L2(Ω))

≤ M∗
{
∆tc + Hm+1/2 + hk

ψ + hl+1
c + H−1hl+1

c

}
,

(34)

where ||g||L̄∞(J;X) = sup
n∆t≤T

||gn||X and the constant M∗ is dependent on ψ, e, p, T and their derivatives.

Proof. The potential function ψ is considered firstly, and ψh − ψ̃ is estimated. By (20) (t = tm), (27) (t = tm) and
(23), we have

||∇ηm||2 ≤ M
{∣∣∣∣∣∣ξe,m

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξp,m

∣∣∣∣∣∣2 + h2(l+1)
c

}
. (35)

The electron concentration e is discussed secondly. Subtract (26a) from (24a) (t = tn+1), and use (29a) (t = tn+1),(
ξn+1

e − ξn
e

∆tc
, ωh

)
+

(
De∇ξn+1

e , ωh

)
+

(
DeB(ξn

e ), [ωh]
)
Γ

=

(
en+1 − en

∆tc
− ∂en+1

∂t
− µeEUn+1

h · ∇en+1, ωh

)
+ λe

(
ζn+1

e , ωh

)
+ α

(
µe

[
en

h(p̂n
h − ên

h + N) − en+1(pn+1 − en+1 + N)
]
, ωh

)
+

([
ên

hEUn+1
h − en+1un+1

]
· ∇µe, ωh

)
−

(
R1(ên

h, p̂n
h,T

n
h ) − R1(en+1, pn+1,T n+1), ωh

)
+

(
µe(EUn+1

h − un+1) · ∇en+1, ωh

)
+

(
ξ̂n

e − ξn
e

∆tc
, ωh

)
+

(
ζn+1

e − ζ̂n
e

∆tc
, ωh

)
+

(
De

(
∂en+1

∂γ
− B(en

h)
)
, [ωh]

)
Γ

, ∀ωh ∈ Nh,

(36)

where ên = en(X̂n
e ), ξ̂n = ξn(X̂n

e ), ζ̂n
e = ζ

n
e (X̂n

e ) and X̂n
e = X + µeEUn+1

h ∆tc.

Take ωh = ξ
n+1
e as a test function in (36),(
ξn+1

e − ξn
e

∆tc
, ξn+1

e

)
+

(
De∇ξn+1

e , ξn+1
e

)
+ λe

(
ξn+1

e , ξn+1
e

)
+

(
DeB(ξn

e ), [ξn+1
e ]

)
Γ

=
(
DeB(ξn+1

e − ξn
e ), [ξn+1

e ]
)
Γ
+

(
De

(
∂en+1

∂γ
− ∂en

∂γ

)
, [ξn+1

e ]
)
Γ

+

(
De

(
∂en

∂γ
− B(en)

)
, [ξn+1

e ]
)
Γ

+
(
DeB(ζn), [ξn+1

e ]
)
Γ
+

(
en+1 − en

∆tc
− ∂en+1

∂t
− µeEUn+1

h · ∇en+1, ξn+1
e

)
+

(
ζn+1

e − ζ̂n
e

∆tc
, ξn+1

e

)
+

(
ξ̂n

e − ξn
e

∆tc
, ξn+1

e

)
+ λe

(
ξn+1

e , ξn+1
e

)
+ λe

(
ζn+1

e , ξn+1
e

)
−

(
R1(ên

h, p̂n
h,T

n
h )
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−R1(en+1, pn+1, T n+1), ξn+1
e

)
+ α

(
µe

[
en

h( p̂n
h − ên

h + N) − en+1(pn+1 − en+1 + N)
]
, ξn+1

e

)
+

([
ên

hEUn+1
h − en+1un+1

]
· ∇µe, ξ

n+1
e

)
+

(
µe

(
EUn+1

h − un+1
)
· ∇en+1, ξn+1

e

)
.

(37)

The terms on the left-hand side are estimated as follows,(
ξn+1

e − ξn
e

∆tc
, ξn+1

e

)
=

1
2∆t

{∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣2 − ∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2} + 1
2∆t

∣∣∣∣∣∣ξn+1
e − ξn

e

∣∣∣∣∣∣2 , (38a)(
De∇ξn+1

e , ξn+1
e

)
+ λe

(
ξn+1

e , ξn+1
e

)
+

(
DeB(ξn

e ), [ξn+1
e ]

)
Γ
≥ M−1

0

∣∣∣∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣∣∣∣2
e . (38b)

The terms on the right hand side of (37) are estimated later. Using (19), we have for positive constants Mi(i =
1, 2, 3), (

DeB(ξn+1
e − ξn

e ), [ξn+1
e ]

)
Γ
≤ M1

∣∣∣∣∣∣B(ξn+1
e − ξn

e )
∣∣∣∣∣∣

L2(Γ) ·
∣∣∣∣∣∣[ξn+1

e ]
∣∣∣∣∣∣

L2(Γ)

≤ M1H−3/2
∣∣∣∣∣∣ξn+1

e − ξn
e

∣∣∣∣∣∣ · H1/2
∣∣∣∣∣∣∣∣∣ξn+1

e

∣∣∣∣∣∣∣∣∣ ≤ M1H−2
∣∣∣∣∣∣ξn+1

e − ξn
e

∣∣∣∣∣∣2 + ε ∣∣∣∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣∣∣∣2 , (39a)(
De

[
∂en+1

∂γ
− ∂en

∂γ

]
, [ξn+1

e ]
)
Γ

≤ M2

∣∣∣∣∣∣
∣∣∣∣∣∣∂en+1

∂γ
− ∂en

∂γ

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(Γ)
·
∣∣∣∣∣∣[ξn+1

e ]
∣∣∣∣∣∣

L2(Γ)

≤ M2∆tH1/2
∣∣∣∣∣∣∣∣∣ξn+1

e

∣∣∣∣∣∣∣∣∣ ≤ M2(∆tc)2H + ε
∣∣∣∣∣∣∣∣∣ξn+1

e

∣∣∣∣∣∣∣∣∣2 , (39b)(
De

[
∂en

∂γ
− B(en)

]
, [ξn+1

e ]
)
Γ

≤ M3H2m+1 + ε
∣∣∣∣∣∣∣∣∣ξn+1

e

∣∣∣∣∣∣∣∣∣2 , (39c)(
DeB(ζn), [ξn+1

e ]
)
Γ
≤ M3H−2 ||ζn||2 + ε

∣∣∣∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣∣∣∣2 ≤ M3H−2h2(l+1)
c + ε

∣∣∣∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣∣∣∣2 . (39d)

Take ∆tc sufficiently small,
2∆t ≤ M−1

1 H2. (40)

Then
1

2∆t

∣∣∣∣∣∣ξn+1
e − ξn

e

∣∣∣∣∣∣2 ≥ M1H−2
∣∣∣∣∣∣ξn+1

e − ξn
e

∣∣∣∣∣∣2 . (41)

An induction hypothesis is given,

sup
0≤m≤[(L−1)/ j]

||∇ηm||0,∞ → 0, sup
0≤n≤L

max
{∣∣∣∣∣∣ξn

e

∣∣∣∣∣∣
0,∞ ,

∣∣∣∣∣∣ξn
p

∣∣∣∣∣∣
0,∞ , ||π

n||0,∞
}
→ 0, hc → 0. (42)

Other terms on the right hand side are estimated. Note that∣∣∣∣∣∣
∣∣∣∣∣∣en+1 − ên

∆tc
− ∂en+1

∂t
− µeEUn+1

h · ∇en+1

∣∣∣∣∣∣
∣∣∣∣∣∣2
0
≤ ∆tc ||Φe||0,∞

∫
Ω

∫ (X,tn+1)

(X̂,tn)

∣∣∣∣∣∣∂2e
∂τ2

e

∣∣∣∣∣∣ dtdX,

and Φe is bounded because of (42), we have(
en+1 − ên

∆tc
− ∂en+1

∂t
− µeEUn+1

h · ∇en+1, ξn+1
e

)
≤ M

∆tc

∣∣∣∣∣∣
∣∣∣∣∣∣∂2e
∂τ2

e

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Jn;L2(Ω))

+
∣∣∣∣∣∣ξn+1

e

∣∣∣∣∣∣2
0

 , (43)

where Jn = (tn, tn+1].

It follows from negative norm estimate and induction hypothesis (42),(
ζn+1

e − ζ̂n
e

∆t
, ξn+1

e

)
=

(
ζn+1

e − ζn
e

∆t
, ξn+1

e

)
+

(
ζn

e − ζ̂n
e

∆t
, ξn+1

e

)
≤ M

{
(∆t)−1

∣∣∣∣∣∣∣∣∣∣∂ζe

∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Jn;L2(Ω))

+
∣∣∣∣∣∣ξn+1

e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2} + ε ∣∣∣∣∣∣∇ξn+1
e

∣∣∣∣∣∣2 , (44a)(
ξ̂n

e − ξn
e

∆tc
, ξn+1

e

)
≤ M

∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2 + ε ∣∣∣∣∣∣∇ξn+1
e

∣∣∣∣∣∣2 , (44b)

λe

{(
ξn+1

e , ξn+1
e

)
+

(
ζn+1

e , ξn+1
e

)}
≤ M

{
h2(l+1)

c +
∣∣∣∣∣∣ξn+1

e

∣∣∣∣∣∣2} , (44c)

−
(
R1(ên

h, p̂n
h,T

n
h ) − R1(en+1, pn+1,T n+1), ξn+1

e

)
≤ M

{
(∆t)2 + h2k

ψ + h2(l+1)
c +

∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
p

∣∣∣∣∣∣2 + ||πn||2
}
, (44d)
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By (42), we can see that en
h, pn

h and T n
h are bounded, then we have

α
(
µe

[
en

h( p̂n
h − ên

h + N) − en+1(pn+1 − en+1 + N)
]
, ξn+1

e

)
≤ M

{
(∆tc)2 + h2k

ψ + h2(l+1)
c +

∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
p

∣∣∣∣∣∣2} , (44e)

([
ên

hEUn+1
h − en+1un+1

]
· ∇µe, ξ

n+1
e

)
+

(
µe

(
EUn+1

h − un+1
)
· ∇en+1, ξn+1

e

)
≤ M

{
(∆tc)2 + h2k

ψ + h2(l+1)
c +

∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξe,[n/ j]
∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξp,[n/ j]

∣∣∣∣∣∣2} . (44f)

Collecting (38)-(44), we derive

1
2∆t

{∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣2 − ∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2} + 1
M0

∣∣∣∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣∣∣∣2
≤ M

{
(∆tc)−1

∣∣∣∣∣∣∣∣∣∣∂ζe

∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Jn;L2(Ω))

+ ∆tc

∣∣∣∣∣∣
∣∣∣∣∣∣∂2e
∂τ2

e

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Jn;L2(Ω))

+ h2k
ψ + h2(l+1)

c + (∆tc)2 + (∆tc)2H

+ H−2h2(l+1)
c + H2m+1 +

∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
p

∣∣∣∣∣∣2 + ||πn||2 +
∣∣∣∣∣∣ξe,[n/ j]

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξp,[n/ j]
∣∣∣∣∣∣2 }

+ ε
{∣∣∣∣∣∣∇ξn+1

e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣∇ξn
e

∣∣∣∣∣∣2} .
(45)

It continues to estimate the hole concentration. Subtract (26b) from (24b) (t = tn+1), and use (29b) (t = tn+1),ξn+1
p − ξn

p

∆tc
, ωh

 + (
Dp∇ξn+1

p , ωh

)
+

(
DpB(ξn

p), [ωh]
)
Γ

=

(
pn+1 − pn

∆tc
− ∂pn+1

∂t
− µpEUn+1

h · ∇pn+1, ωh

)
+ λp

(
ζn+1

p , ωh

)
− α

(
µp

[
pn

h( p̂n
h − ên

h + N) − pn+1(pn+1 − en+1 + N)
]
, ωh

)
−

([
p̂n

hEUn+1
h − pn+1un+1

]
· ∇µp, ωh

)
−

(
R2(ên

h, p̂n
h,T

n
h ) − R2(en+1, pn+1,T n+1), ωh

)
+

(
µp(EUn+1

h − un+1) · ∇pn+1, ωh

)
+

 ξ̂n
p − ξn

p

∆tc
, ωh

 + ζn+1
p − ζ̂n

p

∆tc
, ωh

 + (
Dp

(
∂pn+1

∂γ
− B(pn

h)
)
, [ωh]

)
Γ

, ∀ωh ∈ Nh,

(46)

where p̂n = pn(X̂n
p) and X̂n

p = X + µpEUn+1
h ∆tc. Test function ωh = ξ

n+1
p is substituted in (46), and it follows from

a similar discussion and analysis,

1
2∆t

{∣∣∣∣∣∣ξn+1
p

∣∣∣∣∣∣2 − ∣∣∣∣∣∣ξn
p

∣∣∣∣∣∣2} + 1
M0

∣∣∣∣∣∣∣∣∣ξn+1
p

∣∣∣∣∣∣∣∣∣2
≤ M

{
(∆tc)−1

∣∣∣∣∣∣
∣∣∣∣∣∣∂ζp

∂t

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Jn;L2(Ω))

+ ∆tc

∣∣∣∣∣∣
∣∣∣∣∣∣∂2 p
∂τ2

p

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Jn;L2(Ω))

+ h2k
ψ + h2(l+1)

c + (∆tc)2

+ H−2h2(l+1)
c + H2m+1 +

∣∣∣∣∣∣ξn+1
p

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
p

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2 + ||πn||2 +
∣∣∣∣∣∣ξe,[n/ j]

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξp,[n/ j]
∣∣∣∣∣∣2 }

+ ε
{∣∣∣∣∣∣∇ξn+1

p

∣∣∣∣∣∣2 + ∣∣∣∣∣∣∇ξn
p

∣∣∣∣∣∣2} .
(47)

Finally, error equation of temperature is derived from (4),(
ρ
πn+1 − πn

∆tc
, ωh

)
+

(
∇πn+1, ωh

)
+ (B(πn), [ωh])Γ

=

(
ρ

[
T n+1 − T n

∆tc
− ∂T n+1

∂t

]
, ωh

)
+ λT

(
σn+1, ωh

)
− ([

(Dp∇pn
h − µp pn

hEUn+1
h − De∇en

h

+ µeen
hEUn+1

h ) · EUn+1
h − (Dp∇pn+1 − µp pn+1un+1 − De∇en+1 + µeen+1un+1) · un+1], ωh

)
+

(
ρ
σn+1 − σn

∆tc
, ωh

)
+

(
∂T n+1

∂γ
− B(T n

h ), [ωh]
)
Γ

, ∀ωh ∈ Nh.

(48)
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Take ωh = π
n+1 as test function in (48),

1
2∆t

{∣∣∣∣∣∣πn+1
∣∣∣∣∣∣2 − ||πn||2

}
+

1
M0

∣∣∣∣∣∣∣∣∣πn+1
∣∣∣∣∣∣∣∣∣2

≤ M
{
(∆tc)−1

∣∣∣∣∣∣∣∣∣∣∂σ∂t

∣∣∣∣∣∣∣∣∣∣2
L2(Jn;L2(Ω))

+ ∆tc

∣∣∣∣∣∣
∣∣∣∣∣∣∂2T
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(Jn;L2(Ω))

+ h2k
ψ + h2(l+1)

c + (∆tc)2

+ H−2h2(l+1)
c + H2m+1 +

∣∣∣∣∣∣πn+1
∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn

p

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξe,[n/ j]
∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξp,[n/ j]

∣∣∣∣∣∣2 }
.

(49)

Collecting (45), (47) and (49), multiplying both sides of the resulting equation by 2∆tc, summing on n (0 ≤ n ≤
L − 1), and noting that ξ0

e = ξ
0
p = π

0 = 0, we have

∣∣∣∣∣∣ξL
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξL
p

∣∣∣∣∣∣2 + ∣∣∣∣∣∣πL
∣∣∣∣∣∣2 + L−1∑

n=0

{∣∣∣∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∣ξn+1
p

∣∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∣πn+1
∣∣∣∣∣∣∣∣∣2}∆tc

≤ M


∣∣∣∣∣∣∣∣∣∣∂ζe

∂t

∣∣∣∣∣∣∣∣∣∣2
L2(J;L2(Ω))

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂ζp

∂t

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(J;L2(Ω))

+

∣∣∣∣∣∣∣∣∣∣∂σ∂t

∣∣∣∣∣∣∣∣∣∣2
L2(J;L2(Ω))

+

L−1∑
n=0

[∣∣∣∣∣∣πn+1
∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξn

p

∣∣∣∣∣∣2
+

∣∣∣∣∣∣ξn
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξe,[n/ j]
∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξp,[n/ j]

∣∣∣∣∣∣2]∆tc + (∆tc)2

∣∣∣∣∣∣
∣∣∣∣∣∣∂2e
∂τ2

e

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(J;L2(Ω))

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2 p
∂τ2

p

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(J;L2(Ω))

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2T
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(J;L2(Ω))

 + (∆tc)2 + h2k
ψ + h2(l+1)

c + H−2h2(l+1)
c + H2m+1

 .

(50)

Using Gronwall Lemma,

∣∣∣∣∣∣ξL
e

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ξL
p

∣∣∣∣∣∣2 + ∣∣∣∣∣∣πL
∣∣∣∣∣∣2 + L−1∑

n=0

{∣∣∣∣∣∣∣∣∣ξn+1
e

∣∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∣ξn+1
p

∣∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∣πn+1
∣∣∣∣∣∣∣∣∣2}∆tc

≤ M
{
(∆tc)2 + h2k

ψ + h2(l+1)
c + H−2h2(l+1)

c + H2m+1
}
.

(51)

Therefore, it follows from (35) and (51),∣∣∣∣∣∣ψh,m − ψ̃m

∣∣∣∣∣∣ ≤ M
{
∆tc + hk

ψ + hl+1
c + H−1hl+1

c + Hm+1/2
}
. (52)

It remains to testify the induction hypothesis (42). It is right as n is equal to 0 because of ξ0
e = ξ0

p = π0 = 0.
Assume (42) holds for any positive integer n between 1 and a given positive integer L − 1. By (51) (52) and the
restriction (40), it is easy to see that (42) holds for n = L. Based on the resulting estimates (51) and (52), and (31),
Theorem 1 is proved.

The method discussed in this paper can be extended to three-dimensional case, such as Mespet model (see Fig.2)
(He & Wei,1989). The technique of domain decomposition is very important in numerical simulation of actual

applications, as shown in Fig.2, where computational region Ω is divided into five subdomains, Ω =
5∪

i=1
Ωi (He &

Wei, 1989; Shi, 2002; Yuan, 2009, 2013).

6. Numerical Example

In this section one numerical example is presented to testify the efficiency of the parallel algorithm discussed
above. Consider the following model problem,

∂c
∂t
+ u

∂c
∂x
− ∂

∂x

(
D(x, t)

∂c
∂x

)
= f (c, x, t), 0 < x < 1, 0 < t < T, (53a)

c(x, 0) = cos(2πx), 0 ≤ x ≤ 1, (53b)
∂c
∂x

(0, t) =
∂c
∂x

(1, t) = 0, 0 ≤ t ≤ T. (53c)

Some related functions and partition parameters are given as follows, u = xet, D(x, t) = 0.01x2e2t, c = et cos(2πx),
f = et cos(2πx) − 2πe2t x sin(2πx) + 0.04πe3t x

(
sin(2πx) + πx cos(2πx)

)
, H = 4h, ∆t = 1

12 h2 and T = 0.25.
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Figure 2. Decomposition of computational domain of three-dimensional Mespet model, Ω =
5∪

i=1
Ωi

The computational interval is decomposed into two subintervals, [0, 1] = [0, 0.5] ∪ [0.5, 1], and interior boundary
is Γ = 0.5. Absolute errors of numerical data are shown in Table 1.

Table 1. Absolute Errors

x = 0.05 x = 0.25 x = 0.45 x = 0.55 x = 0.75 x = 0.95
h = 1/40 65.1989E − 3 1.3641E − 3 65.2575E − 3 65.1989E − 3 1.3641E − 3 65.2575E − 3
h = 1/80 15.3215E − 3 0.0829E − 3 15.3597E − 3 15.3215E − 3 0.0829E − 3 15.3597E − 3
h = 1/160 3.7531E − 3 0.0051E − 3 3.8745E − 3 3.7531E − 3 0.0051E − 3 3.8745E − 3

Numerical data are consistent with theoretical analysis from Table 1, and error results of approximation to normal
derivative at inner boundary, ∂c

∂x (0.5) = eT sin π = 0 are shown in Table 2.

Table 2. Error results of approximation to norma derivative at interior boundary

B
h = 1/40 6.2728E − 16
h = 1/80 5.1736E − 15

h = 1/160 7.8249E − 14

Time costs (unit: second) in numerical computation of domain decomposition method (DDM) are illustrated in
Table 3 comparing with another computation strategy, non-domain decomposition method (NDDM).

Table 3. Time costs comparison (unit: second)

DDM NDDM
h = 1/40 0.4530 0.9220
h = 1/80 1.0075 2.2500
h = 1/160 3.9450 16.5940
h = 1/320 88.6170 346.3590

From Table 3, it is easy to conclude that domain decomposition becomes more and more efficient as the partition
becomes more refined and the system of algebraic equations becomes larger and larger.

7. Conclusion and Discussion

In this paper a domain decomposition of finite element is discussed to simulate semiconductor transient problems
of heat conductor. Mathematical model, physical basic and international research are introduced in the first sec-
tion. In the second section some primary elliptic projections, notations and basic properties are stated. Then the
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procedures of domain decomposition modified with characteristic finite element are structured in the third sec-
tion. Theoretical analysis is shown and an optimal order estimate in L2 norm is derived in the fourth section. In
the last section a numerical experiment is illustrated to testify the theoretical result and some advantages of this
method are concluded as follows. Firstly, this method can be applied in large-scaled numerical computation of
three-dimensional problem with complicated domain. Secondly, industrial software is made easily on this method.
Thirdly, the algorithm works on modern parallel computers and gives numerical computation of high order ac-
curacy and high efficiency in parallel for semiconductor transient problems. Finally, this paper is an expansive
argument of my early research (Yuan, 2012), and a mixed element method combined with domain decomposition
is argued firstly in the reference (Yuan, 2012) to solve the problem of semiconductor device. In this paper the
optimal error estimate in L2 norm is derived in theoretical analysis but not obtained in the previous work.
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