
Journal of Mathematics Research; Vol. 7, No. 3; 2015
ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

Calmness for Closed Multifunctions over
Constraint Sets in Banach Spaces

Liyun Huang1 & Zhou Wei2

1 School of Mathematics and Information Science, Qujing Normal University, Qujing 655011, Yunnan, China
2 Department of Mathematics, Yunnan University, Kunming 650091, China

Correspondence: Zhou Wei, Department of Mathematics, Yunnan University, Kunming 650091, China. E-mail:
wzhou@ynu.edu.cn

Received: April 18, 2015 Accepted: June 5, 2015 Online Published: July 11, 2015

doi:10.5539/jmr.v7n3p16 URL: http://dx.doi.org/10.5539/jmr.v7n3p16

Abstract

In this paper, we mainly study calmness and strong calmness of closed multifunctions over constraint sets in Ba-
nach spaces. In terms of tangent cones, normal cones and coderivatives, we provide some dual necessary/sufficient
conditions ensuring calmness over constraint sets. In particular we proved a dual characterization for strong calm-
ness of a closed multifunction over constraint closed sets with mild assumptions.
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1. Introduction

Calmness is a well-known concept in mathematical programming and optimization. Recall that a multifunction
M : Y ⇒ X between Banach spaces Y and X is said to be calm at (ȳ, x̄) ∈ gph(M)(graph of M) if there exists
τ ∈ (0,+∞) such that

d(x,M(ȳ)) ≤ τ∥y − ȳ∥ for all (y, x) ∈ gph(M) close to (ȳ, x̄). (1)

Since calmness is closely related to many issues from mathematical programming and optimization, it has been
extensively studied by many authors (see Poliquin, Rockafellar & Thibault, 2000; Dontchev & Rockafellar, 2004;
Henrion, 2001; Henrion & Jourani, 2002; Herion, Jourani & Outrata, 2002; Herion & Outrata, 2005; Wei, Yao
& Zheng, 2014; Zheng & Ng, 2007; Zheng & Ng, 2008; Zheng & Ng, 2009; Zheng & Ng, 2010 and references
therein). The aim of this paper is to study calmness of multifunctions over constraint subsets. Let A be a closed
subset of X. Recall that generally M is said to be calm at (ȳ, x̄) ∈ gph(M) over A if there exist τ ∈ (0,+∞) such that

d(x,M(ȳ) ∩ A) ≤ τ(∥y − ȳ∥ + d(x, A)) for all (y, x) ∈ gph(M) close to (ȳ, x̄). (2)

When we take A := X, (2) reduces to (1). Hence it is more general to study calmness with constraint subsets as (2).

Calmness is essentially equivalent to metric subregularity which is another well-known and important concept in
mathematical programming and optimization. If we take F(x) := {y ∈ Y : x ∈ M(y)} for all x ∈ X, then (2) is
equivalent to

d(x, F−1(ȳ) ∩ A) ≤ τ(d(ȳ, F(x)) + d(x, A)) for all x close to x̄, (3)

and (3) means that the generalized equation with constraint: ȳ ∈ F(x) subject to x ∈ A is metrically subregular at
x̄ ∈ F−1(ȳ) ∩ A. The metric subregularity can be used to estimate the distance of a candidate x to the solution set
of generalized equation.

Calmness is known to be a weakened version of the Aubin pseudo-Lipschitz property and closely relates to the
upper Lipschitz property of multifunctions. Several subdifferential conditions ensuring calmness for multifunc-
tions in finite-dimensional spaces have been developed. Reader are invited to consult (Henrion, 2001; Henrion &
Jourani, 2002; Herion, Jourani & Outrata, 2002; Herion & Outrata, 2005; Mordukhovich, 1995) and references
therein for more details. It is noted that Zheng and Ng studied calmness of convex closed multifunctions in Banach
spaces and provided its dual characterizations in terms of normal cones and coderivative (see Zheng & Ng, 2007).
Subsequently, in (Zheng & Ng 2009; Zheng & Ng, 2010), they further consider calmness of closed (not convex
necessarily) multifunctions and gave several necessary and/or sufficient dual conditions for calmness. Motivated
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by (Zheng & Ng 2007; Zheng & Ng 2009; Zheng & Ng, 2010), we mainly discuss calmness of closed multifunc-
tions over constraint subsets in this paper and aim to establish several subdifferential conditions ensuring calmness
over constraint subsets via normal cones and coderivatives.

This paper is organized as follows. Several preliminaries and known results will be given in Section 2. Section 3 is
devoted to main results on sufficient and/or necessary conditions for calmness and strong calmness over constraint
subsets which are established by using some results in Section 2 and in terms of normal cone and coderivative.
Applications of main results to calmness of one special multifunction are also given therein. The conclusion of
this paper is presented in Section 4.

2. Preliminaries

Let X,Y be Banach spaces with the closed unit balls denoted by BX and BY , and let X∗,Y∗ denote the dual spaces
of X and Y respectively. Let A be a closed subset of X and a ∈ A. Denote Tc(A, a) the Clarke tangent cone of A at
a which is defined as

Tc(A, a) = Liminf
x

A→a,t→0+

A − x
t

,

where x
A→ a means that x→ a with x ∈ A. Therefore, v ∈ Tc(A, a) if and only if for any an

A→ a and any tn → 0+,
there exists vn → v such that an + tnvn ∈ A for all n.

We denote by Nc(A, a) the Clarke normal cone of A at a which is defined by

Nc(A, a) := {x∗ ∈ X∗ : ⟨x∗, h⟩ ≤ 0 for all h ∈ Tc(A, a)}.

Let N̂(A, a) denote the Fréchet normal cone of A at a which is defined by

N̂(A, a) :=

x∗ ∈ X∗ : lim sup
y

A→a

⟨x∗, y − a⟩
∥y − a∥ ≤ 0

 ,
and let N(A, a) denote the Mordukhovich (limiting/basic) normal cone of A at a which is defined by

N(A, a) := Limsup
x

A→a,ε↓0
N̂ε(A, x),

where N̂ε(A, x) is the set of ε-normal to A at x and defined as

N̂ε(A, x) :=

x∗ ∈ X∗ : lim sup
y

A→x

⟨x∗, y − x⟩
∥y − x∥ ≤ ε

 .
This means that x∗ ∈ N(A, a) if and only if there exist xn

A→ a, εn → 0+ and x∗n
w∗→ x∗ such that x∗n ∈ N̂εn (A, xn) for

all n.

For the case when X is an Asplund space (see Phelps, 1989 for definitions and their equivalences), it has been
proved in (Mordukhovich & Shao, 1996) that

Nc(A, a) = cow∗ (N(A, a)) and N(A, a) = Limsup
x

A→a

N̂(A, x) (4)

where cow∗ denotes the weak∗ closed convex hull. Thus, x∗ ∈ N(A, a) if and only if there exist xn
A→ a and x∗n

w∗→ x∗

such that x∗n ∈ N̂(A, xn) for all n.

It is known from (Mordukhovich, 2006) that

N̂(A, a) ⊂ N(A, a) ⊂ Nc(A, a).

If A is convex, all normal cones coincide and reduce to the normal cone in the sense of convex analysis; that is

Nc(A, a) = N(A, a) = N̂(A, a) = {x∗ ∈ X∗ : ⟨x∗, x − a⟩ ≤ 0 for all x ∈ A}.
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The following result for a general closed set is derived from (Zheng & Ng, 2008) which will be used in the proofs
of our main results.

Lemma 2.1. Let X be a Banach space and A be a nonempty closed subset of X. Let γ ∈ (0, 1). Then for any x < A
there exist a ∈ A and a∗ ∈ Nc(A, a) with ∥a∗∥ = 1 such that

γ∥x − a∥ < min{d(x, A), ⟨a∗, x − a⟩}.

Let F : X ⇒ Y be a multifunction between X and Y . We define the graph of F by

gph(F) := {(x, y) ∈ X × Y : y ∈ F(x)}.

Recall that F is said to be closed if gph(F) is a closed subset of X × Y . Let (x, y) ∈ gph(F). Recall that the Clarke
tangent derivative DcF(x, y) : X ⇒ Y of F at (x, y) is defined by

DcF(x, y)(u) := {v ∈ Y : (u, v) ∈ Tc(gph(F), (x, y))} for all u ∈ X.

Let D̂∗F(x, y),D∗F(x, y),D∗cF(x, y) : Y∗ ⇒ X∗ denote Fréchet, Mordukhovich and Clarke coderivatives of F at
(x, y) respectively and they are defined as

D̂∗F(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂(gph(F), (x, y))},
D∗F(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(gph(F), (x, y))},
D∗cF(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ Nc(gph(F), (x, y))}.

It is known that prox-regularity is an important extension of convexity, and prox-regularity of a set express a
variational behavior of “order two”. Recall that A is said to be prox-regular at a ∈ A if there exist σ, δ > 0 such
that

⟨x∗ − u∗, x − u⟩ ≥ −σ∥x − u∥2

whenever x, u ∈ B(a, δ) ∩ A, x∗ ∈ Nc(A, x) ∩ BX∗ and u∗ ∈ Nc(A, u) ∩ BX∗ . (see Clarke, Stern & Wolenski, 1995;
Poliquin & Rockafellar, 1996; Rockafelar & Wets, 1998).

In 2005, Aussel, Daniilidis and Thibault introduced the concept of subsmoothness which is the extension of prox-
regularity and smoothness (see Aussel, Daniilidis & Thibault, 2005). This concept expresses a variational behavior
of “order one”.

Let A be a closed subset of X and a ∈ A. Recall that

(i) A is said to be subsmooth at a if for any ε > 0 there exists δ > 0 such that

⟨x∗ − u∗, x − u⟩ ≥ −ε∥x − u∥

whenever x, u ∈ B(a, δ) ∩ A, x∗ ∈ Nc(A, x) ∩ BX∗ and u∗ ∈ Nc(A, u) ∩ BX∗ .

(ii) A is said to satisfy Condition (S) at a if for any ε > 0 there exists δ > 0 such that

⟨a∗, x − a⟩ ≤ ε∥x − a∥

holds for all x ∈ B(a, δ) ∩ A and all a∗ ∈ Nc(A, a) ∩ BX∗ .

It is easy to verify that A is subsmooth at a if and only if for any ε > 0 there exists δ > 0 such that

⟨u∗, x − u⟩ ≤ ε∥x − u∥

whenever x, u ∈ B(a, δ) ∩ A and u∗ ∈ Nc(A, u) ∩ BX∗ .

In 2008, Zheng and Ng further studied the concept of subsmooth and provide a characterization for this concept;
that is, A is subsmooth at a if and only if for any ε > 0 there exists δ > 0 such that

⟨u∗, x − u⟩ ≤ d(x, A) + ε∥x − u∥ for all x ∈ B(a, δ)
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holds for all u ∈ B(a, δ) ∩ A and u∗ ∈ Nc(A, u) ∩ BX∗ (see Zheng & Ng, 2008). Further, they considered a
weakened notion which is called L-subsmooth, and studied calmness for closed multifunctions with L-subsmooth
assumptions (see Zheng & Ng, 2009).

Let M : Y ⇒ X be a closed multifunction and (ȳ, x̄) ∈ gph(M). Recall that

(i) M is said to subsmooth (resp. satisfy Condition (S)) at (ȳ, x̄) if gph(M) is subsmooth (resp. satisfies Condition
(S)) at (ȳ, x̄);

(ii) M is said to be L-subsmooth at (ȳ, x̄) if for any ε > 0 there exists δ > 0 such that for any u ∈ M(ȳ) ∩ B(x̄, δ),
one has

⟨v∗, y − ȳ⟩ + ⟨u∗, x − u⟩ ≤ ε(∥y − ȳ∥ + ∥x − u∥) (5)

holds for all (v∗, u∗) ∈ Nc(gph(M), (ȳ, u)) ∩ (BY∗ × BX∗) and (y, x) ∈ gph(M) ∩ (B(ȳ, δ) × B(x̄, δ)).

It is easy to verify that L-smoothness is weaker than subsmoothness but stronger than Condition (S). We refer
readers to (Zheng & Ng, 2009) for more properties and examples with respect to L-subsmoothness.

For a proper lower semicontinuous convex function ψ : X → R ∪ {+∞}, recall that the subdifferential of ψ at
x̄ ∈ dom(ψ) := {x ∈ X : ψ(x) < +∞} is defined as

∂ψ(x̄) := {x∗ ∈ X∗ : ⟨x∗, x − x̄⟩ ≤ ψ(x) − ψ(x̄) for all x ∈ X}.

We close this section with the following result which is a cornerstone in convex analysis and convex optimization.
Readers could consulte Theorem 3.16 in (Phelps, 1989).

Lemma 2.2. Let ψ1, ψ2 : X → R ∪ {+∞} be proper lower semicontinuous convex functions and x ∈ dom(ψ1) ∩
dom(ψ2) be such that ψ1 is continuous at x. Then

∂(ψ1 + ψ2)(x) = ∂ψ1(x) + ∂ψ2(x).

3. Main Results

In this section, we main study calmness and strong calmness of closed multifunctions over constraint subsets, and
aim to provide sufficient conditions for calmness and strong calmness. We begin with the definition of calmness
over constraint subset.

Let M : Y ⇒ X be a closed multifunction and A be a closed subset of X. Let ȳ ∈ Y and x̄ ∈ M(ȳ) ∩ A. Recall that
M is said to be calm at (ȳ, x̄) over A if there exist τ, δ ∈ (0,+∞) such that

d(x,M(ȳ) ∩ A) ≤ τ(∥y − ȳ∥ + d(x, A)) ∀(y, x) ∈ gph(M) ∩ (B(ȳ, δ) × B(x̄, δ)). (6)

Noting that d(x, ∅) = +∞ and d(x,M(ȳ)) ≤ ∥x − x̄∥, it follows that M is calm at (ȳ, x̄) if and only if there exist
τ, δ ∈ (0,+∞) such that

d(x,M(ȳ) ∩ A) ≤ τ(d(ȳ,M−1(x)) + d(x, A)) ∀x ∈ B(x̄, δ). (7)

The following proposition is on necessary conditions for calmness of closed multifunctions over constraint subsets.
The proof can be obtained by using Proposition 4.1 and Theorem 4.2 in (Huang, He & Wei, 2014) and Theorem
4.2 in (Zheng & Ng, 2009).

Proposition 3.1. Let M : Y ⇒ X be a closed multifunction, A be a closed subset of X and let ȳ ∈ Y and x̄ ∈ M(ȳ)∩A.
If M is calm at (ȳ, x̄) over A, then there exist τ, δ ∈ (0,+∞) such that

N̂(M(ȳ) ∩ A, u) ∩ BX∗ ⊂ τ(D∗c M−1(u, ȳ)(BY∗ ) + Nc(A, u) ∩ BX∗) (8)

holds for all u ∈ M(ȳ) ∩ A ∩ B(x̄, δ).

Assume further that X is finite-dimensional and Y is an Asplund space. If M is calm at (ȳ, x̄) over A, then there
exist τ, δ ∈ (0,+∞) such that

N(M(ȳ) ∩ A, u) ∩ BX∗ ⊂ τ(D∗M−1(u, ȳ)(BY∗) + N(A, u) ∩ BX∗ ) (9)

holds for all u ∈ M(ȳ) ∩ A ∩ B(x̄, δ).
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Let F := M−1 and consider the following generalized equation with constraint:

ȳ ∈ F(x) subject to x ∈ A. (10)

By using (7), one has that M is calm at (ȳ, x̄) over A if and only if the generalized equation with constraint of (10)
is metrically subregular at x̄ ∈ F−1(ȳ) ∩ A. Thus, the proof of Proposition 3.1 can be obtained by Proposition 4.1
and Theorem 4.2 in (Huang, He & Wei, 2014).

The following proposition provides a sufficient condition for calmness of closed multifunctions over constraint
subset with the help of subsmooth assumptions. We give its proof for the sake of completeness.

Proposition 3.2. Let M : Y ⇒ X be a closed multifunction, A be a closed subset of X and let ȳ ∈ Y and x̄ ∈ M(ȳ)∩A.
Suppose that M is L-subsmooth at (ȳ, x̄), A is subsmooth at x̄ and there exist τ, δ ∈ (0,+∞) such that

Nc(M(ȳ) ∩ A, u) ∩ BX∗ ⊂ τ(D∗c M−1(u, ȳ)(BY∗) + Nc(A, u) ∩ BX∗) (11)

holds for all u ∈ M(ȳ)∩ A∩ B(x̄, δ). Then M is calm at (ȳ, x̄) over A. More precise, for any ε ∈ (0, 1
2τ+1 ) there exist

δ1 ∈ (0,+∞) such that

d(x,M(ȳ) ∩ A) ≤ τ1(d(ȳ,M−1(x)) + d(x, A)) for all x ∈ B(x̄, δ1) (12)

holds with constant τ1 := (τ+1)ε+τ
1−(2τ+1)ε > 0.

Proof. Let ε ∈ (0, 1
2τ+1 ). Since M is L-subsmooth at (ȳ, x̄) and A is subsmooth at x̄, there exists r ∈ (0, δ) such that

whenever u ∈ M(ȳ)∩B(x̄, r), for any (v∗, u∗) ∈ Nc(gph(M), (ȳ, u))∩ (BY∗ ×BX∗) and any (y, x) ∈ gph(M)∩ (B(ȳ, r)×
B(u, r)), one has

⟨(v∗, u∗), (y − ȳ, x − u)⟩ ≤ ε(∥y − ȳ∥ + ∥x − u∥), (13)

and
⟨z∗1, z2 − z1⟩ ≤ d(z2, A) + ε∥z2 − z1∥ ∀z2 ∈ B(x̄, r) (14)

holds for any z1 ∈ A ∩ B(x̄, r) and z∗1 ∈ Nc(A, z1) ∩ BX∗ .

Take δ1 ∈ (0, r
2 ) such that δ1 <

(τ+1)ε+τ
1−(2τ+1)ε r. Let x ∈ B(x̄, δ1)\(M(ȳ) ∩ A). Then d(x,M(ȳ) ∩ A) ≤ ∥x − x̄∥ < δ1.

Choose arbitrary number γ ∈ (0, 1) such that γ > max{(2τ + 1)ε, d(x,M(ȳ)∩A)
δ1

}. By virtue of Lemma 2.1, there exist
u ∈ M(ȳ) ∩ A and u∗ ∈ Nc(M(ȳ) ∩ A, u) with ∥u∗∥ = 1 such that

γ∥x − u∥ < min{d(x,M(ȳ) ∩ A), ⟨u∗, x − u⟩}. (15)

Since ∥u − x̄∥ ≤ ∥u − x∥ + ∥x − x̄∥ < d(x,M(ȳ)∩A)
γ

+ δ1 < r, it follows from (11) that there exist x∗1 ∈ D∗c M−1(u, ȳ)(y∗1)
for some y∗1 ∈ BY∗ and x∗2 ∈ Nc(A, u) ∩ BX∗ such that

u∗ = τ(x∗1 + x∗2). (16)

Noting that ∥x∗1∥ ≤ ∥
1
τ
u∗∥ + ∥x∗2∥ ≤

τ+1
τ

, it follows that

τ

τ + 1
(x∗1,−y∗1) ∈ Nc(gph(M−1), (u, ȳ)) ∩ (BX∗ × BY∗).

By using (13) and (14), one has

⟨x∗1, x̃ − u⟩ − ⟨y∗1, ỹ − ȳ⟩ ≤ τ + 1
τ

ε(∥x̃ − u∥ + ∥ỹ − ȳ∥) (17)

holds for all (ỹ, x̃) ∈ gph(M) ∩ (B(ȳ, r) × B(u, r)) and

⟨x∗2, x − u⟩ ≤ d(x, A) + ε∥x − u∥. (18)

If M−1(x) ∩ B(ȳ, r) = ∅, one has d(ȳ,M−1(x)) ≥ r and thus

d(x,M(ȳ) ∩ A) ≤ ∥x − x̄∥ < δ1 ≤
(τ + 1)ε + τ

1 − (2τ + 1)ε
(d(ȳ,M−1(x)) + d(x, A)) (19)
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(thanks to the choice of δ1). Next, we assume that M−1(x) ∩ B(ȳ, r) , ∅. Then, it is easy to verify that

d(ȳ,M−1(x)) = d(ȳ,M−1(x) ∩ B(ȳ, r)). (20)

By virtue of (17), one has

⟨x∗1, x − u⟩ ≤ ∥y − ȳ∥ + 1 + τ
τ

ε(∥y − ȳ∥ + ∥x − u∥) ∀y ∈ M−1(x) ∩ B(ȳ, r).

This and (20) imply that

⟨x∗1, x − u⟩ ≤ τ + (τ + 1)ε
τ

d(ȳ,M−1(x)) +
τ + 1
τ

ε∥x − u∥.

By (15),(16) and (18), one has

γ∥x − u∥ ≤ ((τ + 1)ε + τ)d(ȳ,M−1(x)) + τd(x, A) + (2τ + 1)ε∥x − u∥. (21)

Noting that d(x,M(ȳ) ∩ A) ≤ ∥x − u∥, it follows from (21) that

d(x,M(ȳ) ∩ A) ≤ (τ + 1)ε + τ
γ − (2τ + 1)ε

(d(ȳ,M−1(x)) + d(x, A)).

Taking limits as γ → 1− and together with (19), one has

d(x,M(ȳ) ∩ A) ≤ τ1(d(ȳ,M−1(x)) + d(x, A)) with τ1 :=
(τ + 1)ε + τ

1 − (2τ + 1)ε
. (22)

Hence (12) holds. This proof is complete. 2

It is known from Proposition 3.2 that (11) is a key matter for proving the calmness. Naturally, our attention will be
paid to equivalent conditions for ensuring (11). We first prove the following lemma.

Lemma 3.1 Let M : Y ⇒ X be a closed multifunction and A be a closed subset of X. Suppose that (ȳ, x̄) ∈ gph(M)
with x̄ ∈ A and τ ∈ (0,+∞). Then

Nc(M(ȳ) ∩ A, x̄) ∩ BX∗ ⊂ τ(D∗c M−1(x̄, ȳ)(BY∗) + Nc(A, x̄) ∩ BX∗ ) (23)

if and only if
d(x,Tc(M(ȳ) ∩ A, x̄)) ≤ τ(∥y∥ + d(x,Tc(A, x̄))) (24)

holds for all y ∈ Y and x ∈ DcM(ȳ, x̄)(y).

Proof. The sufficiency part. Let δgph(Dc M(ȳ,x̄)) denote the indicator function of gph(DcM(ȳ, x̄)). Take any x∗ ∈
Nc(M(ȳ) ∩ A, x̄) ∩ BX∗ . Note that

Nc(M(ȳ) ∩ A, x̄) = N(Tc(M(ȳ) ∩ A, x̄), 0)

and thus x∗ ∈ ∂d(·,Tc(M(ȳ) ∩ A, x̄))(0) = N(Tc(M(ȳ) ∩ A, x̄), 0) ∩ BX∗ . Then by (24), one has

⟨x∗, x⟩ ≤ d(x,Tc(M(ȳ) ∩ A, x̄)) ≤ τ∥y∥ + τd(x,Tc(A, x̄))

holds for all (y, x) ∈ gph(DcM(ȳ, x̄)) and consequently (0, 0) is a global minimizer of function ϕ + δgph(Dc M(ȳ,x̄)),
where ϕ(y, x) := −⟨x∗, x⟩ + τ∥y∥ + τd(x,Tc(A, x̄)) for any (y, x) ∈ Y × X. This and Lemma 2.2 imply that

(0, 0) ∈ ∂(ϕ + δgph(Dc M(ȳ,x̄)))(0, 0) = ∂ϕ(0, 0) + ∂δgph(Dc M(ȳ,x̄))(0, 0)
= (τBY∗ × {−x∗}) + ({0} × τ∂d(·, Tc(A, x̄))(0)) + N(gph(DcM(ȳ, x̄)), (0, 0))
= (τBY∗ × {−x∗}) + ({0} × τ∂d(·, Tc(A, x̄))(0)) + Nc(gph(M), (ȳ, x̄)).

Noting that ∂d(·,Tc(A, x̄))(0) = N(Tc(A, x̄), 0) ∩ BX∗ = Nc(A, x̄) ∩ BX∗ , it follows that there exist y∗ ∈ BY∗ and
x∗1 ∈ Nc(A, x̄) ∩ BX∗ such that

(−τy∗, x∗ − τx∗1) ∈ Nc(gph(M), (ȳ, x̄)).
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This means that x∗ − τx∗1 ∈ D∗c M−1(x̄, ȳ)(τy∗) and thus

x∗ ∈ τ(D∗c M−1(x̄, ȳ)(BY∗) + Nc(A, x̄) ∩ BX∗).

Hence (23) holds.

The necessity part. Let y ∈ Y and x ∈ DcM(ȳ, x̄)(y)\Tc(M(ȳ) ∩ A, x̄). Take any γ ∈ (0, 1). Applying Lemma 2.1,
there exist z ∈ Tc(M(ȳ) ∩ A, x̄) and z∗ ∈ N(Tc(M(ȳ) ∩ A, x̄), z) with ∥z∗∥ = 1 such that

γ∥x − z∥ ≤ ⟨z∗, x − z⟩. (25)

Since Tc(M(ȳ)∩ A, x̄) is a closed and convex cone, then one has that ⟨z∗, z⟩ = 0 by using z∗ ∈ N(Tc(M(ȳ)∩ A, x̄), z)
and consequently

z∗ ∈ N(Tc(M(ȳ) ∩ A, x̄), 0) = Nc(M(ȳ) ∩ A, x̄).

By (23), there exist y∗1 ∈ BY∗ , x∗1 ∈ DcM−1(x̄, ȳ)(y∗1) and x∗2 ∈ Nc(A, x̄) ∩ BX∗ such that

z∗ = τ(x∗1 + x∗2). (26)

Noting that x∗2 ∈ Nc(A, x̄) ∩ BX∗ = N(Tc(A, x̄), 0) ∩ BX∗ = ∂d(·,Tc(A, x̄))(0), it follows that

⟨x∗2, h⟩ ≤ d(h,Tc(A, x̄)) ∀h ∈ X.

This with (25) and (26) implies that

γ∥x − z∥ ≤ ⟨z∗, x − z⟩ = ⟨z∗, x⟩ = τ⟨x∗1, x⟩ + τ⟨x∗2, x⟩
≤ τ⟨y∗1, y⟩ + τd(x,Tc(A, x̄))
≤ τ(∥y∥ + d(x,Tc(A, x̄)))

as (x, y) ∈ Tc(gph(M−1), (x̄, ȳ)) and (x∗1,−y∗1) ∈ Nc(gph(M−1), (x̄, ȳ)). Taking limits as γ → 1−, one has

d(x,Tc(M(ȳ) ∩ A, x̄)) ≤ τ(∥y∥ + d(x,Tc(A, x̄)))

(thanks to z ∈ Tc(M(ȳ) ∩ A, x̄). This means that (24) holds for all y ∈ Y and x ∈ DcM(ȳ, x̄)(y). The proof is
complete. 2

The following theorem presents one sufficient condition for calmness of closed multifunctions over constraint
closed subset under subsmooth assumptions. The proof is immediate from Proposition 3.2 and Lemma 3.1.

Theorem 3.1. Let M : Y ⇒ X be a closed multifunction, A be a closed subset of X and let ȳ ∈ Y and x̄ ∈ M(ȳ)∩A.
Suppose that M is L-subsmooth at (ȳ, x̄), A is subsmooth at x̄ and there exist τ, δ ∈ (0,+∞) such that for any
u ∈ M(ȳ) ∩ A ∩ B(x̄, δ), one has

d(x,Tc(M(ȳ) ∩ A, u)) ≤ τ(∥y∥ + d(x,Tc(A, u)))

holds for all y ∈ Y and x ∈ DcM(ȳ, u)(y). Then for any ε ∈ (0, 1
2τ+1 ), M is calm at (ȳ, x̄) over A with constant

(τ+1)ε+τ
1−(2τ+1)ε > 0.

Next, we study the strong calmness for close multifunctions over constraint subsets. Recall that M is said to be
strongly calm at (ȳ, x̄) over A if there exist τ, δ > 0 such that

∥x − x̄∥ ≤ τ(∥y − ȳ∥ + d(x, A)) ∀ y ∈ B(ȳ, δ) and ∀x ∈ M(y) ∩ B(x̄, δ). (27)

It is easy to verify that M is strongly calm at (ȳ, x̄) over A if and only if M is calm at (ȳ, x̄) over A and M(ȳ) ∩ A ∩
B(x̄, δ0) = {x̄} for some δ0 > 0.

Under the assumption of Condition (S), we provide a characterization for strong calmness of closed multifunctions
over constraint closed subsets through the following theorem.

Theorem 3.2. Let M : Y ⇒ X be a closed multifunction, A be a closed subset of X and let ȳ ∈ Y and x̄ ∈ M(ȳ)∩A.
Suppose that M satisfies Condition (S) at (ȳ, x̄) and A satisfies Condition (S) at x̄. Then M is strongly calm at (ȳ, x̄)
over A if and only if there exists η ∈ (0,+∞) such that

ηBX∗ ⊂ D∗c M−1(x̄, ȳ)(BY∗ ) + Nc(A, x̄) ∩ BX∗ . (28)
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Proof. The necessity part. Suppose that M is strongly calm at (ȳ, x̄) over A. Then there exist τ, δ > 0 such that M
is calm at (ȳ, x̄) over A with constant τ > 0 and M(ȳ) ∩ A ∩ B(x̄, δ) = {x̄}. By virtue of Proposition 3.1, one has

N̂(M(ȳ) ∩ A, x̄) ∩ BX∗ ⊂ τ(D∗c M−1(z, ȳ)(BY∗ ) + Nc(A, x̄) ∩ BX∗ ).

Noting that N̂(M(ȳ) ∩ A, x̄) = X∗ as M(ȳ) ∩ A ∩ B(x̄, δ) = {x̄}, it follows that (28) holds with η := 1
τ
> 0.

The sufficiency part. Let ε ∈ (0, η
η+2 ). Since M satisfies Condition (S) at (ȳ, x̄) and A satisfies Condition (S) at x̄,

there exists δ ∈ (0,+∞) such that whenever x∗ ∈ Nc(A, x̄) ∩ BX∗ and v∗ ∈ D∗c M−1(x̄, ȳ)(BY∗) ∩ BX∗ , one has

⟨v∗, x − x̄⟩ ≤ ε∥x − x̄∥ ∀x ∈ M(ȳ) ∩ B(x̄, δ), (29)

and
⟨x∗, u − x̄⟩ ≤ d(u, A) + ε∥u − x̄∥ ∀u ∈ B(x̄, δ). (30)

We claim that
M(ȳ) ∩ A ∩ B(x̄, δ) = {x̄}. (31)

Granting this, it follows from (28) that (11) holds with τ := 1
η

for all u ∈ M(ȳ) ∩ A ∩ B(x̄, δ), and thus M is calm at
(ȳ, x̄) over A by Proposition 3.2.

Let x ∈ M(ȳ) ∩ A ∩ B(x̄, δ). By the Hahn-Banach Theorem, there exists u∗ ∈ BX∗ such that ⟨u∗, x − x̄⟩ = ∥x − x̄∥.
By virtue of (28), there exist x∗1 ∈ D∗c M−1(x̄, ȳ)(y∗) for some y∗ ∈ BY∗ and x∗2 ∈ Nc(A, x̄) ∩ BX∗ such that

ηu∗ = x∗1 + x∗2. (32)

Noting that ( x∗1
η+1 ,−

y∗

η+1 ) ∈ Nc(gph(M−1), (x̄, ȳ)) ∩ (BX∗ × BY∗ ), it follows from (29) and (30) that

⟨x∗1, x − x̄⟩ ≤ (η + 1)ε∥x − x̄∥ and ⟨x∗2, x − x̄⟩ ≤ ε∥x − x̄∥.

This and (32) imply that

η∥x − x̄∥ = η⟨u∗, x − x̄⟩ = ⟨x∗1 + x∗2, x − x̄⟩
≤ (η + 1)ε∥x − x̄∥ + (ε + 1)∥x − x̄∥
= (η + 2)ε∥x − x̄∥.

Thus x = x̄ (thanks to ε < η
η+2 ). The proof is complete. 2

Remark 3.1 Let ȳ ∈ Y and x̄ ∈ M(ȳ) ∩ A. We define

τ(M, A; ȳ, x̄) := inf{τ > 0 : there exists δ > 0 such that (27) holds}

and
η(M, A; ȳ, x̄) := sup{η > 0 : (28) holds}.

Under the assumptions that M satisfies Condition (S) at (ȳ, x̄) and A satisfies Condition (S) at x̄, by using the proof
of Theorem 3.2, it is easy to verify that

1
τ(M, A; ȳ, x̄)

= η(M, A; ȳ, x̄),

here we use the convention that the infimum over the empty set is +∞ and the supremum over the empty set is 0.

As applications of main results in this paper, we are now in a position to consider calmness and strong calmness of
the following multifunction (see Herion, 2001; Herion, Jourani & Outrata, 2002):

G(y) := {x ∈ A : g(x) + y ∈ D} for all y ∈ Y, (33)

where A is a closed subset of X, g : X → Y and D is a closed subset of Y .

Let ȳ ∈ Y and x̄ ∈ G(ȳ). We set M(y) := g−1(D − y) for any y ∈ Y . Then it is easy to verify that M is calm (resp.
strongly calm) at (ȳ, x̄) over A implies the calmness (resp. strong calmness) of G at (ȳ, x̄).

The following proposition provides one sufficient condition for calmness of G in (33).
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Proposition 3.3. Let G be as (33) and (ȳ, x̄) ∈ gph(G). Suppose that g is smooth, A is subsmooth at x̄, D is
subsmooth at g(x̄) + ȳ and there exist τ, δ ∈ (0,+∞) such that

Nc(G(ȳ), u) ∩ BX∗ ⊂ τ
(▽g(u)∗(Nc(D, g(u) + ȳ) ∩ BY∗ ) + Nc(A, u) ∩ BX∗

)
(34)

holds for all u ∈ G(ȳ) ∩ B(x̄, δ). Then G is calm at (ȳ, x̄).

Proof. Let M(y) := g−1(D − y) for any y ∈ Y . Then M−1(x) = D − g(x) for all x ∈ X. Since D is subsmooth at
g(x̄) + ȳ, by using Proposition 3.3 in (Zheng & Ng, 2009), one has that M is subsmooth at (ȳ, x̄) and thus M is
L-subsmooth at (ȳ, x̄).

Let u ∈ G(ȳ) ∩ B(x̄, δ). It only suffices to prove that

D∗c M−1(u, ȳ)(BY∗ ) = ▽g(u)∗
(
Nc(D, g(u) + ȳ) ∩ BY∗

)
. (35)

Granting this, by virtue of Proposition 3.2 and (34), it yields that M is calm at (ȳ, x̄) over A and consequently G is
calm at (ȳ, x̄).

Indeed, since M−1(x) = D − g(x) for any x ∈ X and g is smooth, by using Proposition 3.3 in (Zheng & Ng, 2009),
one has

Nc(gph(M−1)(u, ȳ)) = {(▽g(u)∗(y∗), y∗) : y∗ ∈ Nc(D, g(u) + ȳ)}. (36)

Therefore, for any x∗ ∈ D∗c M−1(u, ȳ)(BY∗ ), there exists y∗ ∈ BY∗ such that

(x∗,−y∗) ∈ Nc(gph(M−1), (u, ȳ)),

and it follows from (36) that −y∗ ∈ Nc(D, g(u) + ȳ) and x∗ = ▽g(u)∗(−y∗).

Conversely, for any y∗ ∈ Nc(D, g(u) + ȳ) ∩ BY∗ , one has

(▽g(u)∗(y∗), y∗) ∈ Nc(gph(M−1), (u, ȳ))

by (36) and thus
▽g(u)∗(y∗) ∈ D∗c M−1(u, ȳ)(−y∗) ⊂ D∗c M−1(u, ȳ)(BY∗).

This implies that (35) holds. The proof is complete. 2

By Proposition 3.3 and Theorem 3.2, we present one sufficient condition for ensuring strong calmness of G in (33)
via the following Proposition.

Proposition 3.4. Let G be as (33) and (ȳ, x̄) ∈ gph(G). Suppose that g is smooth, A satisfies Condition (S) at x̄, D
is subsmooth at g(x̄) + ȳ, and there exists η ∈ (0,+∞) such that

ηBX∗ ⊂
(▽g(x̄)∗(Nc(D, g(x̄) + ȳ) ∩ BY∗ ) + Nc(A, x̄) ∩ BX∗

)
. (37)

Then G is strongly calm at (ȳ, x̄).

4. Conclusions

This paper is devoted to calmness of closed multifunctions over constraint closed sets. Some necessary or suffi-
cient conditions for calmness have been provided in terms of tangent cones, normal cones and coderivatives with
the help of subsmooth assumptions. For a closed multifunction and closed set satisfying Condition (S), a dual
characterization for strong calmness has been proved. Applications of obtained results are also given.

Acknowledgements

The authors are indebted to referees for the helpful remarks and comments. This research was supported by the
National Natural Science Foundation of P. R. China (Grant No. 11401518).

References

Aussel, D., Daniilidis, A., & Thibault, L. (2005). Subsmooth sets: Functional characterizations and related con-
cepts. Trans. Amer. Math. Soc., 357, 1275-1301.

Clarke, F. H., Stern R., & Wolenski, P. (1995). Proximal smoothness and the lower-C2 property. J. Convex Anal.,
2, 117-144.

24



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 3; 2015

Dontchev, A. L., & Rockafellar, R. T. (2004). Regularity and conditioning of solution mappings in variational
analysis. Set-Valued Anal., 12, 79-109.

Henrion, R. (2001). A subdifferential condition for calmness of multifunctions, J. Math. Anal. Appl., 258, 110-130.

Henrion, R., & Jourani, A. (2002). Subdifferential conditions for calmness of convex constraints. SIAM J. Optim.,
13, 520-534.

Henrion, R., Jourani, A., & Outrata, J. (2002). On the calmness of a class of multifunctions. SIAM J. Optim., 13,
603-618.

Henrion R., & Outrata, J. (2005). Calmness of constraint systems with applications. Math. Program., 104, 437-
464.

Huang, L., He, Q., & Wei, Z. (2014). BCQ and strong BCQ for nonconvex generalized equations with applications
to metric subregularity. Set-Value Var. Anal, 22, 747-762.

Mordukhovich, B. S. (1994). Complete characterization of openness, metric regularity, and Lipschitzian properties
of multifunctions. Trans. Amer. Math. Soc., 340, 1-35.

Mordukhovich, B. S. (2006). Variational Analysis and Generalized Differentiation I/II. Springer-verlag, Berlin
Heidelberg.

Mordukhovich, B. S., & Shao, Y. (1996). Nonsmooth sequential analysis in Asplund spaces. Trans. Amer. Math.
Soc., 348, 1235-1280.

Phelps, R. R. (1989). Convex functions, Monotone operators and Differentiability, Lecture Notes in Math. 1364,
Springer, New York.

Poliquin, R. A., & Rockafellar, R. T. (1996). Prox-regular functions in variational analysis, Trans. Amer. Math.
Soc., 348, 1805-1838.

Poliquin, R., Rockafellar, R. T., & Thibault, L. (2000). Local differentiability of distance functions. Trans. Amer.
Math. Soc., 352, 5231-5249.

Rockafellar, R. T., & Wets R. J.-B. (1998). Variational Analysis, Springer, Heidelberg.

Wei, Z., Yao, J.-C., & Zheng, X. Y. (2014). Strong Abadie CQ, ACQ, calmness and linear regularity. Math.
Program., 145, 97-131.

Zheng, X. Y., & Ng, K. F. (2007). Metric Subregularity and Constraint qualifications for Convex Generalized
equations in Banach spaces. SIAM J. Optim., 18, 437-460.

Zheng, X. Y., & Ng, K. F. (2008). Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM
J.Optim., 19, 62-76.

Zheng, X. Y., & Ng, K. F. (2009). Calmness for L-subsmooth multifunctions in Banach spaces. SIAM. J. Optim.,
19, 1648-1673.

Zheng, X. Y., & Ng, K. F. (2010). Metric subregularity and calmness for nonconvex generalized equation in
Banach spaces, SIAM J. Optim., 20, 2119-2139.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

25


