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Abstract

With some elementary methods, a number of new travelling solutions of the modified double Sine-Gordon (SG)
equation are obtained, including different types of exact solion solutions and exact periodic solutions.
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1. Introduction

The equation

Uy — Uyy = @ SINU + @y SIN 21 (D)
is commonly called the double SG equation, which describes weak higher anisotropy in an easy-plane ferromag-
netic field, and

. u
Uy — Uyy = @7 SINU + @y COS 3 )

may be called the modified double SG equation because of cos 5 = sin(§ — 5), where a; and a; are arbitrary con-
stants (Khater, 2013, Webb, 1988, Kivshar, 1989). In fact, when a; is a small dissipative coefficient, equation (2) is
a perturbed SG equation, and an external magnetic field perpendicular both to the x axis and to the magnetization
vector is described by the perturbed term a5 cos 5 (Kivshar, 1989).

As a typical model of fluxion dynamics in Josephson junctions, equation (1) and its other forms always attract much
attention. For example, a new group of traveling wave solutions with Jacobian amplitude function for the general-
ized form of the double SG equation were presented (Sun, 2015), by using the approach of dynamical systems to
the travelling wave solutions, all possible explicit exact travelling wave solutions to the (n + 1)-dimensional double
SG equation were obtained (Geng, 2007), some complex hyperbolic functions were proposed to derive travelling
wave solutions to equation (1) (Bin, 2007), exact solutions to the double SG equation were studied by F-expansion
method (Wang, 2006), the tanh method and a variable separated ODE method were used for solving the double SG
equation (Wazwaz, 2006). However, the relative references for equation (2) are very few, the method of bifurca-
tion theory of dynamical systems was used for the exact solutions to the (N + 1)-dimensional sine-cosine-Gordon
equations (Tang, 2010), the solutions of the combined sine-cosine-Gordon equation were studied by the variable
separated ODE method (Kuo, 2009). In the paper, we first make the travelling wave transformation for equation
(2), and take some elementary methods to solve its exact traveling wave solutions. Most of all, we consider the
periodic characteristic of @ sinu + @ cos 5 , this is mainly different from the references mentioned above.

Set
w=u@), ¢ = PP 3)
VB -5
where 81, 8> and c are arbitrary constants, but ,8% - B% > 0. Substituting u = u(¢) into equation (2) gets
Uge =y sinu + a; cosg. “4)

Since every solution to equation (4) is a particular solution of equation (2), we only discuss the exact solutions for
ordinary differential equation (4).
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2. First Group of Solutions to Equation (2)
Multiplying (4) by u; and integrating with respect to & both sides leads to

w2 = d(a sin® g + ay sin g +A), (5)

where A is an integral constant. Especially, we fix a; > 0, if @; < 0, making another travelling transformation
u=ulm), n= % + ¢ for equation (2) leads to
17 P2
2 -2 U -
u: = 4(—asin”“ = —ap sin = + A),
, =4C-a 5 ~e2sing +4)
so we only consider the solutions to (5) in the case of a; > 0.

Next, we make the substitution u = v + nm,n € N for equation (5), and further get

2o e sin® £ + ax(-Dfsin % + Al, n =2k, (6a)
¢ 4la; cos? L + ar(-Dfcos ¥ + A]), n=2k+1, (6b)
where k € N.
(1) When A = 2, (6) is simplified as
. { +2 \/E[(—l)lfsiné + % L= 2k, (Ta)
£2 Va1 cos § + 2], n=2k+ 1. (7b)

As for (7a), separating the variables and integrating both sides, we finally obtain periodic solutions

Dary (1)1 . \/ag —4a% \/a% —4a/%

= 2km + 4 arct t ,
uy 74 arctan| o - an by £]
Dary (= 1)+ \/ag —401% \/ag —4af
up = 2km + 4 arctan| + cot é],
e (%3 4+Jay

and soliton solutions

l4,2 2 [402 2

Qa1 (—1)+1 daj — a; day — a;

uz = 2km + 4 arctan| @D + tanh &l,
(0%) (0%) 4 Vaq

Dary (= 1)+ ,/4&% —a/g
an

an

coth

H

uy = 2k + 4 arctan[

102 _ 2
daj — a; f
4oy ’
For (7b), repeating the same procedure, we can get particular solutions to equation (2)

2 2
2(11(—1)k+02t VG,’2—4(1’1
an
1/&%—4&% 4ya

2 2
2a1(=DF + ay t V@ — 4y p
co s
,/ag - 40(% 4fa

2 2
201 (-1 + 4oy - @;
ur = 2k + Dy + darctan[ 22D £ é]
402 — o 4
1 2

us = 2k + 1)mr = 4 arctan[

&l

ug = (2k + 1) + 4 arctan|
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and
2 2
20 (- 1k + 4oy -
us = (2k + Dy + darctan[ 20D F @2 oV £l.
a
4a'%—a'§ !

Note that, in u;, up, uz and uy, a% — 4af > 0, in u3, ug, u7 and ug, 40% — a% > 0.

(2) When A = a1 > 0,ap = £2a, (6) is transformed into

[ #2val(-Dsing £ 1], n=2k,
T 2vanl(-1fcos L+ 1], n=2k+ 1.

By the method of separating variables, some soliton solutions are obtained from (8)

ug = 2km + (=1)*r + 4 arctan Va £,
uo = 2kn + (-1)*"'7 + 4 arctan v ¢,

uy; = 2k + D + 4arctan Va €
and

upp = 2k + i + darccot \a €.
(3) When A = —a; + ax(—D)F!, (6) is rewritten as

2 {4(1—sin§)[—a1(1+sin§)+a2(—1)’<+1], n =2k,
2=

~ 41 = cos DH—ai(1 +cos 2) + ar(~DF], n=2k+ 1.

In equation (9a), making transformation ¢ = sin 3 yields

ge = £(1 =) (1 + @l-a1(1 +¢) + aa(- D],
this is a separated variables differential equation, solving it gets a solution in the form

day — 3&2(—1)k+1 + ap sin V4a; + 2012(—1)k f
—4ay + ar(=DF £ @y sin \fday + 2aa(=1F &

where 2a; > ap(—1)F1. By the same way, from equation (9b), we can obtain another solution

day — 3&2(—1)k+1 + @, sin \/4&1 + 26112(—1)k f
—4ay + ar(=DF £ @y sin \fday + 2aa(=1F &

uy3 = 2km + 2 arcsin

u14 = 2k + 1) + 2 arccos

(4) When A = —a; + as(—DF, (6) becomes

v§ _ { 4(1 +sin H)[ay(sin§ — 1) + ap(=DF], n =2k,

~ 41 +cos Dai(cos L = 1)+ aa(=1F], n=2k+1.

Making transformation ¢ = sin 3 for (10a) gets

ge = £(1+ ) (1 - @laie - 1) +as(-DF,

with the method of separating variables, we can get a solution from the above equation

—4ay + 3&2(—1)k F ap sin \/4&1 + 2&2(—1)k+1 f
—4ay + ar(=DF + @ sin \da; + 2an(-DFL ¢
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where 2a; > a»(~1)X. Similarly, solving (10b) gives a solution to equation (2) in the form

—day + 3aa(~ 1) F oy sin Aay + 2an(— D]
e = (2k + 1) + 2 arccos 1 ¥ 302D F axsin Vaay + 202D &
—4ay + ar(=1)* £ @ sin y4a; + 2ar(-1)k1 &

3. Second Group of Solutions to Equation (2)

In order to find more exact solutions to equation (2), equation (4) is transformed into
2 .U
u; = —2a; cosu + 4ay sin — + B,
where B is an integral constant, then making the substitution u = nr + f(£) for equation (11) yields

. ~2a; cos f +4ar(~1)sin L + B, n =2k
¢ 2a cosf+4a/2(—1)kcos§+B, n=2k+1.

Again setting f = 4arccotg for (12), we get

1602 = (B—=2a)(1 + gz)2 + 16a/1g2 + 80/2(—1)kg(1 + gz), n =2k,
£ B+2a)( +g2)? - 16a18% +dar(-Dr(g* = 1), n=2k+1.

(1) Take B = 2a1, a2(—=1)* = +a; in (13a), we get

2 ag(+g),
28 = { —aig(1 - g%,

solving the above equations, some solutions to equation (2) are finally given by

up7 = 2km + 4arccot tan? ,/%f, uig = 2km + 4arccot cot® ,/%f, a; >0,
Uy = 2km + 4darccot tanh? A / %‘llf, o = 2km + darccot coth? A / _To“g, a; <0.

(2) When B = 6ay, ay(—1)F = +2ay, a1 > 0, (13a) is simplified as 4g§ = a;(1 £ g)*, solve it, we obtain

and

up; = 2km + 4arccot(—1 + é:), uyy = 2km + 4arccot(1 +
1

NoT

(1)

(12q)
(12b)

(13a)
(13b)

(14a)
(14b)

(3) When B = 2ay, ax(-1)¥ = @, (13b) is reduced to 2g§ = a,8%(g> — 1), which leads to solutions to equation (2)

up3 = (2k + 1) + 4arccot sec ,/%‘f, up4 = (2k + 1) + 4arccot csc ,/%‘f, a; >0,

and

ups = (2k + 1) + 4arccot sech /—%f, a; <0.

(4) Take B = 2ay, ax(=1F! = @ in (13b), we get 2g§ =a(1- gz), solve it and the relative solutions are given by

ure = (2k + 1)m + 4arccotsin / a—zlf, uy7 = (2k + 1)mr + 4arccot cos / %f,al >0
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and

uzg = (2k + 1)m + 4arccotcosh /—%f, a; <0.

4. Conclusions

As we know, the travelling transformation method, the substitution method, the reduced order method and the
separable variables method are elementary and straightforward methods to find the exact travelling wave solutions
of nonlinear evolution equations, an advantage of these methods is that they avoid tedious algebra and guesswork.
In the paper, by fully considering the periodicity of the solution to equation (2), we obtain different kinds of explicit
exact solutions with the aid of some elementary methods. Actually, making linear transformations u = 7 + 2p, ¢’ =
\/LZ’ X = % for equation (2), we can get py — pry = @1 SIn2p + a» sin p, this is just another form of equation (1).
However, we noticed that, this type of solutions such as u;7 — uy did not appear in relative references (Sun, 2015,
Geng, 2007, Wang, 2006, Bin, 2007, Wazwaz, 2006, Tang, 2010, Kuo, 2009).
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