
www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 3; August 2010

Convergence of Symmetric Rank-one Method

Based on Modified Quasi-Newton Equation

Farzin Modarres (Corresponding author)

Department of Mathematics, Faculty of Science, Universiti Putra Malaysia

43400 Serdang, Selangor, Malaysia

Tel: 60-1-7249-6327 E-mail: farzin.modarres@gmail.com

Malik Abu Hassan

Department of Mathematics, Faculty of Science Universiti Putra Malaysia

43400 Serdang, Selangor, Malaysia

Tel: 60-1-3390-6116 E-mail: malik@fsas.upm.edu.my

Wah June Leong

Department of Mathematics, Faculty of Science, Universiti Putra Malaysia

43400 Serdang, Selangor, Malaysia

Tel: 60-1-2226-6562 E-mail: leong@math.upm.edu.my

Abstract

In this paper we investigate on convergence rate of a modified symmetric rank-one (SR1) method for unconstrained

optimization problems. In general, the modified SR1 method incorporates a modified secant equation into the standard

SR1 method. Also a restart procedure is applied to avoid the loss of positive definiteness and zero denominator. A

remarkable feature of the modified SR1 method is that it possesses at most n + 1-step q-superlinearly convergent and

2n-step quadratic convergent without uniformly independent assumptions of steps.
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1. Introduction

We consider the unconstrained optimization problem

min f (x)
x∈Rn

(1)

where f : Rn → R is a smooth function whose gradient at point xk is ∇ f (xk) or gk, for the sake of simplicity. We assume

that f is continuous and at least twice differentiable. Among various iterative methods for solving eq.(1), quasi-Newton

methods constitute an important class. These methods have been developed based on Newton’s method, in which the

Hessian matrix of f at xk, ∇2 f (xk) is substituted by some matrix Bk to avoid the calculation of a Hessian matrix. The QN

method for solving eq.(1) takes the following iterative process.

Given the kth iterate xk and the gradient of the function at xk, ∇ f (xk), we determine the QN direction dk by Bkdk+∇ f (xk) =

0 where Bk is an secant approximation to ∇2 f (x). Once dk is obtained, the next iterate xk+1 is generated by xk+1 = xk+αkdk.

Update Bk to Bk+1 such that Bk+1 satisfies in the following secant equation

Bk+1sk = yk

where sk = xk+1 − xk and yk = gk+1 − gk. However the general secant equation employ only the gradient information and

ignores function information. Therefore Wei et al. (Wei et al., (2006)) proposed the modified secant equation

Bk+1sk = y∗k, (2)

where

y∗k = yk + Ak sk, (3)

and Ak is a simple symmetric and positive definite matrix.

In order to use both function and gradient information in the secant equation, they proposed a modified BFGS-type method

for the solution of eq.(1) and the superlinear convergence of the BFGS-type algorithm was proved. On the other hand
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Conn et al. (Conn et al., (1991)) and Khalfan et al. (Khalfan et al., (1993)) have analyzed the computational and numerical

results of the SR1 methods and the numerical results showed that SR1 is a competitive formula among the QN method.

Motivated by this Modarres et al. (Farzin et al., (2009)) presented a modification to the secant equation of Wei et al.

and employed this modification to the SR1 update. They used a restart procedure to preserve positive definiteness and

to avoid the unbounded updates in the modified SR1 update. The global convergence for this method has been proved.

Convergence rate of SR1 method has been studied by Conn et al. and proved that the rate of convergence is q-superlinear

by the assumption of the uniformly linearly independent steps. This condition may be too strong in practice. Therefore

Khalfan et al. made the weaker assumptions, in which the matrices are positive definite and uniformly bounded. They

showed that the convergence rate for the standard SR1 update is at most n + 1-step q-superlinear and 2n-step q-quadratic.

Hence, it seems possible to extend the similar results of Khalfan et al. to the modified SR1 method. In the next section,

we present the algorithm of the modified SR1 method. Finally we concentrate our attention on the proof of the superlinear

convergence of the modified SR1 method.

2. Description of algorithm

Modified SR1 Algorithm (+MSR1)

Step 0. Given an initial point x0, an initial positive matrix H0 = I, set k=0.

Step 1. If the convergence criterion ‖∇ f (xk)‖ ≤ ε × max (1, ‖xk‖) is achieved, then stop.

Step 2. Compute a quasi-Newton direction by dk = −Hk∇ f (xk).

Step 3. Find an acceptable steplength such that the Wolfe conditions

f (xk + αkdk) ≤ f (xk) + δ1αk∇ f (xk)T dk, (4)

∇ f (xk + αkdk)T dk≥δ2∇T f xkdk, (5)

where 0 < δ1 < δ2 < 1 , δ1 <
1
2
, are satisfied.

(αk = 1 is always tried first, δ1 = 10−4, δ2 = 0.9).

Step 4. Set xk+1 = xk + αkdk.

Step 5. If

sT
k yk − yT

k Hkyk < 0, ( Hk might not be positive definite) (6)

or ∣∣∣ỹT
k (sk − Hkỹk)

∣∣∣ < r ‖ỹk‖ ‖sk − Hkỹk‖ , (7)

where r ∈ (0, 1), (denominator in Hk is sufficiently close to zero)

or

‖Hk‖∞ > L, ( where L is a preset constant ), (8)

set Hk+1 = λ̃kI, where λ̃k is given by

λ̃k =
sT

k sk

ỹT
k sk

−
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
sT

k sk

)2(
ỹT

k sk

)2
− sT

k sk

ỹT
k ỹk

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1
/2

, (9)

and subsequently dk+1 = −λ̃k∇ f (xk).

Step 6. Calculate ỹk by using the following equation

ỹk = yk + sgn(ψk)
ψk

sT
k sk

sk,

where ψk = 2( f (xk) − f (xk+1)) + (∇ f (xk+1) + ∇ f (xk))T sk.

Step 7. Compute the next inverse Hessian approximation Hk+1 as follows

Hk+1 = Hk +
(sk − Hkỹk) (sk − Hkỹk)T

(sk − Hkỹk)T ỹk
. (10)
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Step 8. Set k = k + 1, and go to step 1.

Remark 1 Note that the +MSR1 method preserves positive definiteness, however in the case Bk is non-positive definite,
by replacing λ̃kI we can preserve positive definiteness of Hessian matrix.

Remark 2 The scaling factor λ̃k−1 is derived in such a way to improve condition of modified SR1 method while preserving
positive definiteness.

3. Convergence Rate of +MSR1 Algorithm

In this section we show that the modified SR1 update generated by +MSR1 Algorithm is at most n + 1-step q-superlinear

convergence, and 2n-quadratic convergence.

To give the convergence results, the following assumptions are given:

(i) The sequence of iterates {xk} remains in a closed bounded convex set D.

(ii) The function f has an unique minimizer at a point x∗ such that its Hessian ∇2 f (x∗) is positive definite, and ∇2 f (x)

is Lipschitz continuous near x∗, that is, there exists a constant τ > 0 such that for all x, y in some neighborhood of

x∗,
∥∥∥∇2 f (x) − ∇2 f (y)

∥∥∥ ≤ τ ‖x − y‖ .

(iii) The sequence {xk} converges to x∗.

Since modified SR1 method always generates positive definite updates, then for a strongly convex objective function, a

line search implementation with Wolfe conditions will ensure that Assumption (iii) holds.

We first extend Lemma 1 from (Conn et al., (1991)) to the modified SR1 update, which does not assume linear indepen-

dence of the step directions.

Lemma 1 Let {xk} be a sequence of iterates generated by the +MSR1 Algorithm. Suppose that Assumptions (i)-(iii) holds,
Assume, furthermore, for each iteration eq.(7) holds. Then, for each j,

∥∥∥ỹ j − Bj+1s j

∥∥∥ = 0, (11)

and ∥∥∥ỹ j − Bis j

∥∥∥ ≤ (
τ

r
(
2

r
+ 1)i− j−2ηi, j)

∥∥∥s j

∥∥∥ , (12)

for all i ≥ j + 2, where
ηi, j = max

{∥∥∥xq − xt

∥∥∥ : j ≤ t ≤ q ≤ i
}
, (13)

and τ is the Lipschitz constant from Assumption (ii).

Proof 1 It is obvious that eq.(11) and eq.(12) with i = j + 1 are immediate result of Bk+1sk = ỹk. Now we proof eq.(12) by
induction. First of all we choose k ≥ j + 1 and suppose that eq.(12) holds for every i = j + 1, ..., k. Now consider∣∣∣(ỹk − Bk sk)T s j

∣∣∣ = ∣∣∣ỹT
k s j − sT

k Bk s j

∣∣∣ + (
τ

r
(
2

r
+ 1)k− j−2ηk, j)

∥∥∥s j

∥∥∥ ‖sk‖ (14)

In the last inequality, we used inductive assumption and Cauchy-Schwarz inequality.

Using the mean value theorem, we obtain that, for all l,

Hlsl = ỹl, (15)

where Hl =
∫ 1

0
H(xl + tsl)dt. Then from eq.(14) we have,

∣∣∣(ỹk − Bk sk)T s j

∣∣∣ ≤ ∣∣∣sT
k (Hk − Hj)s j

∣∣∣ + (
τ

r
(
2

r
+ 1)k− j−2ηk, j)

∥∥∥s j

∥∥∥ ‖sk‖

≤ (τηk+1, j +
τ

r
(
2

r
+ 1)k− j−2ηk, j)

∥∥∥s j

∥∥∥ ‖sk‖ . (16)

Furthermore we know from the triangle inequality and eq.(7) that∥∥∥ỹ j − Bk+1s j

∥∥∥ = ∥∥∥∥∥∥ỹ j − Bk s j − (ỹk − Bk sk)(ỹk − Bk sk)T s j

(ỹk − Bk sk)T sk

∥∥∥∥∥∥
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≤ ∥∥∥ỹ j − Bk s j

∥∥∥ + ‖ỹk − Bk sk‖
∣∣∣(ỹk − Bk sk)T s j

∣∣∣
r ‖ỹk − Bk sk‖ ‖sk‖ , (17)

Hence if we use induction assumption and eq.(16) in eq.(17) we have

∥∥∥ỹ j − Bk+1s j

∥∥∥ ≤ (
τ

r
(
2

r
+ 1)k− j−2ηk, j)

∥∥∥s j

∥∥∥ + τ
r
ηk+1, j

∥∥∥s j

∥∥∥
+(
τ

r2
(
2

r
+ 1)k− j−2ηk, j)

∥∥∥s j

∥∥∥ , (18)

If we put i = k + 1 in eq.(18), when one takes into account the fact that r ∈ (0, 1) and use the inequality ηk, j ≤ ηk+1, j we
can deduce eq.(12). �
We then have the following useful two Lemmas by using the Lemma 1, which state that by using +MSR1 Algorithm,

there is at least p − n superlinear steps for each p > n iterations.

Lemma 2 Let {xk} be the sequences of iterates generated by +MSR1 Algorithm and Bk be the corresponding Hessian
approximation, also suppose the assumptions of Lemma 1 are satisfied for the sequences and that in addition there
exists M for which ‖Bk‖ ≤ M, for all k. Then there exist K ≥ 0 with S =

{
ski : K ≤ k1 ≤ ... ≤ kn+1

}
and an index km,

m ∈ {2, 3, ..., n + 1} such that

∥∥∥(Bkm − f (x∗)skm )
∥∥∥∥∥∥skm

∥∥∥ <
−
ρ ε1/n

M (19)

where
εM = max

1≤ j≤n+1

{∥∥∥x j − x∗
∥∥∥} (20)

and

−
ρ = 4

[
τ +

√
n
τ

r
(
2

r
+ 1)kn+1+k1−2 + M +

∥∥∥∇2 f (x∗)
∥∥∥] (21)

Proof 2 The proof is similar to the proof in the Lemma 1 of (Khalfan et al., (1993)). �
For our final result, Theorem 1 below, which establish convergence rate of the modified SR1 method (+MSR1), we first

establish the following Lemma which is closely related to the well-known superlinear convergence characterization of

Dennis and Moré (Dennis and Moré, (1974)).

Lemma 3 Suppose the Assumptions ((i)-(iii)) hold for objective function f . If the following quantities in the +MSR1
method ek = ‖xk − x∗‖ and ‖(Bk− f (x∗)sk)‖

‖sk‖ are sufficiently small, and if Bk sk = −∇ f (xk), then

‖xk + sk − x∗‖ ≤
∥∥∥∇2 f (x∗)

∥∥∥ [2
‖(Bk − f (x∗)sk)‖

‖sk‖ ek +
τ

2
e2

k].

Proof 3 See Khalfan et al. (Khalfan et al., (1993)). �
We are now ready to prove our final result.

Theorem 1 Consider the sequence {xk} generated by the +MSR1 Algorithm and suppose that Assumptions (i)-(iii) holds.
If there exists K0 such that Bk is positive definite for all k ≥ K0, then for any p ≥ n + 1 there exists K1 such that for all
k ≥ K1, ∥∥∥xk+p − x∗

∥∥∥ ≤ α ‖xk − x∗‖p/n , (22)

where α is a constant.

Proof 4 Since ∇2 f (x∗) is positive definite, there exists K1, ł1 > 0 and ł2 > 0 such that

ł1( f (xk) − f (x∗))1/2 ≤ ‖xk − x∗‖ ≤ ł2( f (xk) − f (x∗))1/2 (23)

for all k ≥ K1. Therefore as +MSR1 method is a descent method, for all t > k > K1, we have ‖xt − x∗‖ ≤ ł2
ł1
‖xk − x∗‖ .

Applying Lemma 2 to the set {sk, sk+1, ..., sk+n}, there exist t1 ∈ {k + 1, ..., k + n} such that
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∥∥∥(Bt1 − ∇2 f (x∗)st)
∥∥∥∥∥∥st1

∥∥∥ <
−
ρ(

ł2

ł1
ek)1/n (24)

Eq.(24) implies that for sufficiently small el and by Lemma 3, we can choose a steplength αt1 in +MSR1 Algorithm so that
xt1+1 = xt1 + st1 .

On the other hand using this fact, together with Lemma 3 and eq.(24) implies that if ek is sufficiently small then

et1+1 ≤ α̂e1/n
k et1 , (25)

for some constants α̂.

We may also apply Lemma 2 to the set {sk, sk+1, ..., sk+n, sk+n+1} − {st1 } to get t2. Hence, by repeating this step for n − p
times we get a set of integers t1 < t2 < ... < tp−n with t1 > k and tp−n < k + p such that

eti+1 ≤ α̂e1/n
k eti , (26)

for each ti. Since we have a descent method, it follows that

( f (x j+1) − f (x∗))1/2 < ( f (x j) − f (x∗))1/2. (27)

Using eq.(23) we have that for an arbitrary k ≥ K1,

( f (xti+1) − f (x∗))1/2 ≤ 1

ł1
eti+1 ≤ α̂

ł1
e1/n

k eti ≤
α̂ł2

ł1
e1/n

k ( f (xti+1) − f (x∗))1/2, (28)

for i = 1, 2, ..., p − n. Therefore using eq.(26) and eq.(27) we obtain

( f (xk+p+1) − f (x∗))1/2 ≤ (
α̂β2

ł1
e1/n

k )p−n( f (xk+1) − f (x∗))1/2

which by eq.(23) implies that

ek+p ≤ (
ł2

ł1
e1/n

k )p−nek.

Thus,

ek+p ≤ α̂p−n(
ł2

ł1
)p−nep/n

k .

and the inequality eq.(22) holds. �
Note that Theorem 1 only requires positive definiteness at the p − n out of p ”good iterations” (which is, steps where f is

reduced).

Finally, we give the rate of convergence for the +MSR1 algorithm:

Corollary 1 Under the assumptions of Theorem 1, the sequence {xk} generated by the +SSR1 algorithm is at most n+1-step
q-superlinear, i.e.,

lim inf
k→∞

ek+n+1

ek
= 0,

and is 2n-step q-quadratic, i.e.,
lim sup

k→∞
ek+2n

e2
k

≤ ∞.

Proof 5 The results follows by setting p = n + 1, and p = 2n, respectively in Theorem 1.

Remark 3 By choosing p = n + 1 in Corollary 1, we need just the positive definiteness condition just at only 1 step out of
n + 1 ”good steps”. Hence, for every n + 1 steps greater than k, we will have at least 1 good step (which is, where Bk (or
Hk) is positive definite and bounded).

4. Conclusion

In summary, we have considered the convergence properties of the modified SR1 method based on modified secant

equation of Wei et al. An important feature of the proposed method is that it preserves positive definiteness of the updates.
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Specifically by assuming positive definiteness and boundedness of Hessian approximations for modified SR1, we have

proved that the modified SR1 is at most n+ 1-step q-superlinear, without requiring an extra assumption such as uniformly

linearly independent steps.
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